Spaces:
Runtime error
Runtime error
Rohil Bansal
commited on
Commit
·
821284f
1
Parent(s):
8778311
search improved
Browse files
course_search/app/run.py
CHANGED
|
@@ -10,6 +10,7 @@ if str(project_root) not in sys.path:
|
|
| 10 |
sys.path.append(str(project_root))
|
| 11 |
|
| 12 |
from course_search.search_system.data_pipeline import DataPipeline
|
|
|
|
| 13 |
|
| 14 |
# Setup logging
|
| 15 |
logging.basicConfig(level=logging.INFO)
|
|
@@ -32,10 +33,21 @@ def main():
|
|
| 32 |
# Setup paths
|
| 33 |
project_root, data_dir = setup_paths()
|
| 34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
# Run data pipeline
|
| 36 |
logger.info("Running data pipeline...")
|
| 37 |
pipeline = DataPipeline()
|
| 38 |
-
pipeline.run_pipeline(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
# Run Gradio app
|
| 41 |
logger.info("Starting Gradio app...")
|
|
@@ -43,7 +55,7 @@ def main():
|
|
| 43 |
|
| 44 |
if not gradio_path.exists():
|
| 45 |
raise FileNotFoundError(f"Gradio app not found at: {gradio_path}")
|
| 46 |
-
|
| 47 |
# Change to project root directory before running
|
| 48 |
os.chdir(str(project_root))
|
| 49 |
|
|
|
|
| 10 |
sys.path.append(str(project_root))
|
| 11 |
|
| 12 |
from course_search.search_system.data_pipeline import DataPipeline
|
| 13 |
+
from course_search.search_system.rag_system import RAGSystem
|
| 14 |
|
| 15 |
# Setup logging
|
| 16 |
logging.basicConfig(level=logging.INFO)
|
|
|
|
| 33 |
# Setup paths
|
| 34 |
project_root, data_dir = setup_paths()
|
| 35 |
|
| 36 |
+
# Create cache directory
|
| 37 |
+
cache_dir = data_dir / 'cache'
|
| 38 |
+
cache_dir.mkdir(exist_ok=True)
|
| 39 |
+
|
| 40 |
# Run data pipeline
|
| 41 |
logger.info("Running data pipeline...")
|
| 42 |
pipeline = DataPipeline()
|
| 43 |
+
df = pipeline.run_pipeline(
|
| 44 |
+
save_path=str(data_dir / 'courses.pkl'),
|
| 45 |
+
force_scrape=False # Set to True to force new scraping
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
# Initialize RAG system with caching
|
| 49 |
+
rag_system = RAGSystem()
|
| 50 |
+
rag_system.load_and_process_data(df, cache_dir=cache_dir)
|
| 51 |
|
| 52 |
# Run Gradio app
|
| 53 |
logger.info("Starting Gradio app...")
|
|
|
|
| 55 |
|
| 56 |
if not gradio_path.exists():
|
| 57 |
raise FileNotFoundError(f"Gradio app not found at: {gradio_path}")
|
| 58 |
+
|
| 59 |
# Change to project root directory before running
|
| 60 |
os.chdir(str(project_root))
|
| 61 |
|
course_search/search_system/data_pipeline.py
CHANGED
|
@@ -1,47 +1,35 @@
|
|
| 1 |
import pandas as pd
|
| 2 |
-
from
|
| 3 |
-
from course_search.scraper.course_scraper import CourseScraper
|
| 4 |
-
from course_search.search_system.embeddings import EmbeddingGenerator
|
| 5 |
-
from course_search.search_system.vector_store import FAISSManager
|
| 6 |
import logging
|
|
|
|
| 7 |
|
|
|
|
| 8 |
logger = logging.getLogger(__name__)
|
| 9 |
|
| 10 |
class DataPipeline:
|
| 11 |
def __init__(self):
|
| 12 |
self.scraper = CourseScraper()
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
def run_pipeline(self, save_path: Optional[str] = None) -> pd.DataFrame:
|
| 17 |
-
"""
|
| 18 |
-
Run the complete data pipeline: scraping, embedding generation, and vector storage
|
| 19 |
-
"""
|
| 20 |
try:
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
|
|
|
|
|
|
| 25 |
|
| 26 |
-
#
|
| 27 |
-
logger.info("
|
| 28 |
-
df = self.
|
| 29 |
-
df,
|
| 30 |
-
text_column='description'
|
| 31 |
-
)
|
| 32 |
-
logger.info("Embeddings generated successfully")
|
| 33 |
|
| 34 |
-
#
|
| 35 |
-
logger.info("
|
| 36 |
-
|
| 37 |
|
| 38 |
-
# Step 4: Save data if path provided
|
| 39 |
-
if save_path:
|
| 40 |
-
logger.info(f"Saving data to {save_path}")
|
| 41 |
-
df.to_pickle(save_path)
|
| 42 |
-
|
| 43 |
return df
|
| 44 |
|
| 45 |
except Exception as e:
|
| 46 |
-
logger.error(f"Error in pipeline: {str(e)}")
|
| 47 |
raise
|
|
|
|
| 1 |
import pandas as pd
|
| 2 |
+
from pathlib import Path
|
|
|
|
|
|
|
|
|
|
| 3 |
import logging
|
| 4 |
+
from course_search.scraper.course_scraper import CourseScraper
|
| 5 |
|
| 6 |
+
logging.basicConfig(level=logging.INFO)
|
| 7 |
logger = logging.getLogger(__name__)
|
| 8 |
|
| 9 |
class DataPipeline:
|
| 10 |
def __init__(self):
|
| 11 |
self.scraper = CourseScraper()
|
| 12 |
+
|
| 13 |
+
def run_pipeline(self, save_path: str, force_scrape: bool = False) -> pd.DataFrame:
|
| 14 |
+
"""Run the data pipeline with option to use cached data"""
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
try:
|
| 16 |
+
data_path = Path(save_path)
|
| 17 |
+
|
| 18 |
+
# Check if cached data exists
|
| 19 |
+
if not force_scrape and data_path.exists():
|
| 20 |
+
logger.info("Loading cached data...")
|
| 21 |
+
return pd.read_pickle(data_path)
|
| 22 |
|
| 23 |
+
# If no cached data or force_scrape is True, scrape new data
|
| 24 |
+
logger.info("Scraping course data...")
|
| 25 |
+
df = self.scraper.scrape_all_courses()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
+
# Save the data
|
| 28 |
+
logger.info(f"Saving data to {save_path}")
|
| 29 |
+
df.to_pickle(save_path)
|
| 30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
return df
|
| 32 |
|
| 33 |
except Exception as e:
|
| 34 |
+
logger.error(f"Error in data pipeline: {str(e)}")
|
| 35 |
raise
|
course_search/search_system/rag_system.py
CHANGED
|
@@ -96,7 +96,7 @@ class RAGSystem:
|
|
| 96 |
raise ValueError("FAISS index not initialized. Please load data first.")
|
| 97 |
|
| 98 |
# Get query embedding
|
| 99 |
-
query_embedding = self.model.encode([query])
|
| 100 |
|
| 101 |
# Get initial similarity scores
|
| 102 |
D, I = self.index.search(query_embedding.reshape(1, -1), top_k * 2)
|
|
|
|
| 96 |
raise ValueError("FAISS index not initialized. Please load data first.")
|
| 97 |
|
| 98 |
# Get query embedding
|
| 99 |
+
query_embedding = self.model.encode([query], convert_to_numpy=True)
|
| 100 |
|
| 101 |
# Get initial similarity scores
|
| 102 |
D, I = self.index.search(query_embedding.reshape(1, -1), top_k * 2)
|