Spaces:
Sleeping
Sleeping
import sys | |
import os | |
import json | |
import gradio as gr | |
sys.path.append('src') | |
from procesador_de_cvs_con_llm import ProcesadorCV | |
use_dotenv = False | |
if use_dotenv: | |
from dotenv import load_dotenv | |
load_dotenv("../../../../../../../apis/.env") | |
api_key = os.getenv("OPENAI_API_KEY") | |
else: | |
api_key = os.getenv("OPENAI_API_KEY") | |
unmasked_chars = 8 | |
masked_key = api_key[:unmasked_chars] + '*' * (len(api_key) - unmasked_chars*2) + api_key[-unmasked_chars:] | |
print(f"API key: {masked_key}") | |
def process_cv(job_text, cv_text, req_experience, req_experience_unit, positions_cap, dist_threshold_low, dist_threshold_high): | |
if dist_threshold_low >= dist_threshold_high: | |
return {"error": "dist_threshold_low must be lower than dist_threshold_high."} | |
if not isinstance(cv_text, str) or not cv_text.strip(): | |
return {"error": "Please provide the CV or upload a file."} | |
# Convertir la experiencia requerida a meses si se introduce en años | |
if req_experience_unit == "years": | |
req_experience = req_experience * 12 | |
try: | |
procesador = ProcesadorCV(api_key, cv_text, job_text, ner_pre_prompt, | |
system_prompt, user_prompt, ner_schema, response_schema) | |
dict_respuesta = procesador.procesar_cv_completo( | |
req_experience=req_experience, | |
positions_cap=positions_cap, | |
dist_threshold_low=dist_threshold_low, | |
dist_threshold_high=dist_threshold_high | |
) | |
return dict_respuesta | |
except Exception as e: | |
return {"error": f"Processing error: {str(e)}"} | |
# Parámetros de ejecución: | |
job_text = "Generative AI engineer" | |
cv_sample_path = 'cv_examples/reddgr_cv.txt' # Ruta al fichero de texto con un currículo de ejemplo | |
with open(cv_sample_path, 'r', encoding='utf-8') as file: | |
cv_text = file.read() | |
# Prompts: | |
with open('prompts/ner_pre_prompt.txt', 'r', encoding='utf-8') as f: | |
ner_pre_prompt = f.read() | |
with open('prompts/system_prompt.txt', 'r', encoding='utf-8') as f: | |
system_prompt = f.read() | |
with open('prompts/user_prompt.txt', 'r', encoding='utf-8') as f: | |
user_prompt = f.read() | |
# Esquemas JSON: | |
with open('json/ner_schema.json', 'r', encoding='utf-8') as f: | |
ner_schema = json.load(f) | |
with open('json/response_schema.json', 'r', encoding='utf-8') as f: | |
response_schema = json.load(f) | |
# Fichero de ejemplo para autocompletar (opción que aparece en la parte de abajo de la interfaz de usuario): | |
with open('cv_examples/reddgr_cv.txt', 'r', encoding='utf-8') as file: | |
cv_example = file.read() | |
default_parameters = [4, "years", 10, 0.5, 0.7] # Parámetros por defecto para el reinicio de la interfaz y los ejemplos predefinidos | |
# Código CSS para truncar el texto de ejemplo en la interfaz (bloque "Examples" en la parte de abajo): | |
css = """ | |
table tbody tr { | |
height: 2.5em; /* Set a fixed height for the rows */ | |
overflow: hidden; /* Hide overflow content */ | |
} | |
table tbody tr td { | |
overflow: hidden; /* Ensure content within cells doesn't overflow */ | |
text-overflow: ellipsis; /* Add ellipsis for overflowing text */ | |
white-space: nowrap; /* Prevent text from wrapping */ | |
vertical-align: middle; /* Align text vertically within the fixed height */ | |
} | |
""" | |
# Interfaz Gradio: | |
with gr.Blocks(css=css) as interface: | |
gr.Markdown(""" | |
Evaluate a CV against a job position using AI. Enter the job title in the **'Vacancy Title'** field and paste \ | |
the CV in plain text in the **'CV in Text Format'** box. Enter the desired experience in months or years under **'Required Experience'**. \ | |
Expand the **'Advanced options'** section to adjust the number of positions analyzed and set distance thresholds for the matching \ | |
score based on embeddings distance evaluation. | |
Click the **'Process'** button to analyze the CV. The results will be displayed in a structured JSON format below. \ | |
Reset the inputs using the **'Clear'** button. | |
At the bottom of the interface, you can find predefined examples to quickly test the app with sample data. | |
""") | |
# Inputs | |
job_text_input = gr.Textbox(label="Vacancy Title", lines=1, placeholder="Enter the vacancy title") | |
gr.Markdown("Required Experience") | |
with gr.Row(): | |
req_experience_input = gr.Number(label="Required Experience", value=default_parameters[0], precision=0, elem_id="req_exp", show_label=False) | |
req_experience_unit = gr.Dropdown(label="Period", choices=["months", "years"], value=default_parameters[1], elem_id="req_exp_unit", show_label=False) | |
cv_text_input = gr.Textbox(label="CV in Text Format", lines=5, max_lines=5, placeholder="Enter the CV text") | |
# Opciones avanzadas ocultas en un objeto "Accordion" | |
with gr.Accordion("Advanced options", open=False): | |
positions_cap_input = gr.Number(label="Maximum number of positions to extract", value=default_parameters[2], precision=0) | |
dist_threshold_low_slider = gr.Slider( | |
label="Minimum embedding distance threshold (equivalent position)", | |
minimum=0, maximum=1, value=default_parameters[3], step=0.05 | |
) | |
dist_threshold_high_slider = gr.Slider( | |
label="Maximum embedding distance threshold (irrelevant position)", | |
minimum=0, maximum=1, value=default_parameters[4], step=0.05 | |
) | |
submit_button = gr.Button("Process") | |
clear_button = gr.Button("Clear") | |
output_json = gr.JSON(label="Result") | |
# Ejemplos: | |
examples = gr.Examples( | |
examples=[ | |
["Supermarket cashier", "Deli worker since 2021. Previously worked 2 months as a waiter in a tapas bar."] + default_parameters, | |
["Generative AI Engineer", cv_example] + default_parameters | |
], | |
inputs=[job_text_input, cv_text_input, req_experience_input, req_experience_unit, positions_cap_input, dist_threshold_low_slider, dist_threshold_high_slider] | |
) | |
# Botón "Procesar" | |
submit_button.click( | |
fn=process_cv, | |
inputs=[ | |
job_text_input, | |
cv_text_input, | |
req_experience_input, | |
req_experience_unit, | |
positions_cap_input, | |
dist_threshold_low_slider, | |
dist_threshold_high_slider | |
], | |
outputs=output_json | |
) | |
# Botón "Limpiar" | |
clear_button.click( | |
fn=lambda: ("","",*default_parameters), | |
inputs=[], | |
outputs=[ | |
job_text_input, | |
cv_text_input, | |
req_experience_input, | |
req_experience_unit, | |
positions_cap_input, | |
dist_threshold_low_slider, | |
dist_threshold_high_slider | |
] | |
) | |
# Footer | |
gr.Markdown(""" | |
<footer> | |
<p>You can view the complete code for this app and the explanatory notebooks on | |
<a href='https://github.com/reddgr/procesador-de-curriculos-cv' target='_blank'>GitHub</a></p> | |
<p>© 2024 <a href='https://talkingtochatbots.com' target='_blank'>talkingtochatbots.com</a></p> | |
</footer> | |
""") | |
# Lanzar la aplicación: | |
if __name__ == "__main__": | |
interface.launch() |