reiflja1 commited on
Commit
b1f84bf
·
verified ·
1 Parent(s): aacfc00

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +35 -7
app.py CHANGED
@@ -1,12 +1,40 @@
1
  import gradio as gr
 
 
 
2
 
3
- description = "Story generation with GPT-2"
4
- title = "Generate your own story"
5
- examples = [["Adventurer is approached by a mysterious stranger in the tavern for a new quest."]]
6
 
7
- interface = gr.Interface.load("huggingface/pranavpsv/gpt2-genre-story-generator",
8
- description=description,
9
- examples=examples
10
- )
11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
  interface.launch()
 
1
  import gradio as gr
2
+ import tensorflow as tf
3
+ from PIL import Image
4
+ import numpy as np
5
 
6
+ # Load your custom regression model
7
+ model_path = "freshwaterfish_classifier_model_ResNet50.keras"
8
+ model = tf.keras.models.load_model(model_path)
9
 
10
+ labels = ['Catfish', 'Freshwater Eel', 'Goby', 'Perch']
 
 
 
11
 
12
+ # Define regression function
13
+ def predict_regression(image):
14
+ # Preprocess image
15
+ image = Image.fromarray(image.astype('uint8'))
16
+ image = image.resize((224, 224)).convert('RGB')
17
+ image = np.array(image)
18
+ print(image.shape)
19
+ # Predict
20
+ prediction = model.predict(image[None, ...]) # Assuming single regression value
21
+ confidences = {labels[i]: np.round(float(prediction[0][i]), 2) for i in range(len(labels))}
22
+ return confidences
23
+
24
+ # Define the file paths for the test images
25
+ test_images = ["myImages/Egli1.jpeg", "myImages/Egli2.jpeg", "myImages/Wels1.jpeg", "myImages/Wels2.jpeg"]
26
+
27
+ # Load and preprocess the test images
28
+ example_images = [np.array(Image.open(image_path).resize((224, 224)).convert('RGB')) / 255.0 for image_path in test_images]
29
+
30
+ # Create Gradio interface
31
+ input_image = gr.Image()
32
+ output_text = gr.Textbox(label="Predicted Value")
33
+ interface = gr.Interface(fn=predict_regression,
34
+ inputs=input_image,
35
+ outputs=gr.Label(),
36
+ title="Freshwater Fish Classifier",
37
+ description="This model predicts four species of a freshwater fish from the lake of constance.",
38
+ examples=example_images
39
+ )
40
  interface.launch()