Spaces:
Sleeping
Sleeping
Update .gitignore, refactor app.py for improved agent functionality, and enhance README
Browse files- .gitignore +2 -1
- README.md +7 -1
- app.py +81 -137
.gitignore
CHANGED
|
@@ -1,3 +1,4 @@
|
|
| 1 |
.venv
|
| 2 |
.idea
|
| 3 |
-
.env
|
|
|
|
|
|
| 1 |
.venv
|
| 2 |
.idea
|
| 3 |
+
.env
|
| 4 |
+
questions.txt
|
README.md
CHANGED
|
@@ -12,4 +12,10 @@ hf_oauth: true
|
|
| 12 |
hf_oauth_expiration_minutes: 480
|
| 13 |
---
|
| 14 |
|
| 15 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
hf_oauth_expiration_minutes: 480
|
| 13 |
---
|
| 14 |
|
| 15 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
| 16 |
+
|
| 17 |
+
# Validate answer here
|
| 18 |
+
|
| 19 |
+
```
|
| 20 |
+
https://huggingface.co/datasets/gaia-benchmark/GAIA/blob/main/2023/validation/metadata.jsonl
|
| 21 |
+
```
|
app.py
CHANGED
|
@@ -1,19 +1,15 @@
|
|
| 1 |
import os
|
| 2 |
import asyncio
|
|
|
|
| 3 |
import gradio as gr
|
| 4 |
import requests
|
| 5 |
-
import inspect
|
| 6 |
import pandas as pd
|
| 7 |
-
from agent import agent
|
| 8 |
from agno.agent import RunResponse
|
|
|
|
| 9 |
|
| 10 |
-
# (Keep Constants as is)
|
| 11 |
-
# --- Constants ---
|
| 12 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
| 13 |
|
| 14 |
|
| 15 |
-
# --- Basic Agent Definition ---
|
| 16 |
-
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
| 17 |
async def _async_answer(answer_text: str) -> str:
|
| 18 |
response: RunResponse = await agent.arun(answer_text)
|
| 19 |
return response.content
|
|
@@ -21,188 +17,136 @@ async def _async_answer(answer_text: str) -> str:
|
|
| 21 |
|
| 22 |
class BasicAgent:
|
| 23 |
def __init__(self):
|
| 24 |
-
|
| 25 |
|
| 26 |
def __call__(self, question: str) -> str:
|
| 27 |
-
|
| 28 |
-
fixed_answer = "This is a default answer."
|
| 29 |
-
answer = asyncio.run(_async_answer(question))
|
| 30 |
-
print(f"Agent returning fixed answer: {answer}")
|
| 31 |
-
return answer
|
| 32 |
|
| 33 |
|
| 34 |
-
def
|
| 35 |
-
""
|
| 36 |
-
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
| 37 |
-
and displays the results.
|
| 38 |
-
"""
|
| 39 |
-
# --- Determine HF Space Runtime URL and Repo URL ---
|
| 40 |
-
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
|
| 41 |
-
|
| 42 |
if profile:
|
| 43 |
username = f"{profile.username}"
|
| 44 |
-
print(f"User logged in: {username}")
|
| 45 |
else:
|
| 46 |
-
|
| 47 |
-
return "Please Login to Hugging Face with the button.", None
|
| 48 |
|
| 49 |
api_url = DEFAULT_API_URL
|
| 50 |
questions_url = f"{api_url}/questions"
|
| 51 |
submit_url = f"{api_url}/submit"
|
| 52 |
|
| 53 |
-
# 1. Instantiate Agent ( modify this part to create your agent)
|
| 54 |
try:
|
| 55 |
-
|
| 56 |
except Exception as e:
|
| 57 |
-
print(f"Error instantiating agent: {e}")
|
| 58 |
return f"Error initializing agent: {e}", None
|
| 59 |
-
|
| 60 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
| 61 |
-
print(agent_code)
|
| 62 |
|
| 63 |
-
# 2. Fetch Questions
|
| 64 |
-
print(f"Fetching questions from: {questions_url}")
|
| 65 |
try:
|
| 66 |
response = requests.get(questions_url, timeout=15)
|
| 67 |
response.raise_for_status()
|
| 68 |
questions_data = response.json()
|
| 69 |
-
if not questions_data:
|
| 70 |
-
print("Fetched questions list is empty.")
|
| 71 |
-
return "Fetched questions list is empty or invalid format.", None
|
| 72 |
-
print(f"Fetched {len(questions_data)} questions.")
|
| 73 |
-
except requests.exceptions.RequestException as e:
|
| 74 |
-
print(f"Error fetching questions: {e}")
|
| 75 |
-
return f"Error fetching questions: {e}", None
|
| 76 |
-
except requests.exceptions.JSONDecodeError as e:
|
| 77 |
-
print(f"Error decoding JSON response from questions endpoint: {e}")
|
| 78 |
-
print(f"Response text: {response.text[:500]}")
|
| 79 |
-
return f"Error decoding server response for questions: {e}", None
|
| 80 |
except Exception as e:
|
| 81 |
-
|
| 82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
|
| 84 |
-
# 3. Run your Agent
|
| 85 |
results_log = []
|
| 86 |
answers_payload = []
|
| 87 |
-
print(f"Running agent on {len(questions_data)} questions...")
|
| 88 |
for item in questions_data:
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
if not
|
| 92 |
-
print(f"Skipping item with missing task_id or question: {item}")
|
| 93 |
continue
|
| 94 |
try:
|
| 95 |
-
submitted_answer =
|
| 96 |
-
answers_payload.append({"task_id":
|
| 97 |
-
results_log.append({"Task ID":
|
| 98 |
except Exception as e:
|
| 99 |
-
|
| 100 |
-
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
| 101 |
|
| 102 |
if not answers_payload:
|
| 103 |
-
|
| 104 |
-
|
|
|
|
|
|
|
| 105 |
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
|
|
|
| 110 |
|
| 111 |
-
# 5. Submit
|
| 112 |
-
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
| 113 |
try:
|
| 114 |
response = requests.post(submit_url, json=submission_data, timeout=60)
|
| 115 |
response.raise_for_status()
|
| 116 |
result_data = response.json()
|
| 117 |
final_status = (
|
| 118 |
-
f"Submission Successful
|
| 119 |
f"User: {result_data.get('username')}\n"
|
| 120 |
-
f"
|
| 121 |
-
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')}
|
| 122 |
-
f"Message: {result_data.get('message', '
|
| 123 |
)
|
| 124 |
-
|
| 125 |
-
results_df = pd.DataFrame(results_log)
|
| 126 |
-
return final_status, results_df
|
| 127 |
-
except requests.exceptions.HTTPError as e:
|
| 128 |
-
error_detail = f"Server responded with status {e.response.status_code}."
|
| 129 |
-
try:
|
| 130 |
-
error_json = e.response.json()
|
| 131 |
-
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
|
| 132 |
-
except requests.exceptions.JSONDecodeError:
|
| 133 |
-
error_detail += f" Response: {e.response.text[:500]}"
|
| 134 |
-
status_message = f"Submission Failed: {error_detail}"
|
| 135 |
-
print(status_message)
|
| 136 |
-
results_df = pd.DataFrame(results_log)
|
| 137 |
-
return status_message, results_df
|
| 138 |
-
except requests.exceptions.Timeout:
|
| 139 |
-
status_message = "Submission Failed: The request timed out."
|
| 140 |
-
print(status_message)
|
| 141 |
-
results_df = pd.DataFrame(results_log)
|
| 142 |
-
return status_message, results_df
|
| 143 |
-
except requests.exceptions.RequestException as e:
|
| 144 |
-
status_message = f"Submission Failed: Network error - {e}"
|
| 145 |
-
print(status_message)
|
| 146 |
-
results_df = pd.DataFrame(results_log)
|
| 147 |
-
return status_message, results_df
|
| 148 |
except Exception as e:
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 153 |
|
| 154 |
|
| 155 |
-
# --- Build Gradio Interface using Blocks ---
|
| 156 |
with gr.Blocks() as demo:
|
| 157 |
gr.Markdown("# Basic Agent Evaluation Runner")
|
| 158 |
-
gr.Markdown(
|
| 159 |
-
"""
|
| 160 |
-
**Instructions:**
|
| 161 |
-
|
| 162 |
-
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
|
| 163 |
-
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
|
| 164 |
-
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
| 165 |
-
|
| 166 |
-
---
|
| 167 |
-
**Disclaimers:**
|
| 168 |
-
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
|
| 169 |
-
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
|
| 170 |
-
"""
|
| 171 |
-
)
|
| 172 |
|
| 173 |
gr.LoginButton()
|
| 174 |
|
| 175 |
-
|
|
|
|
|
|
|
| 176 |
|
| 177 |
-
status_output = gr.Textbox(label="
|
| 178 |
-
|
| 179 |
-
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
| 180 |
|
| 181 |
-
|
| 182 |
-
fn=
|
| 183 |
-
|
|
|
|
| 184 |
)
|
| 185 |
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
if space_host_startup:
|
| 193 |
-
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
| 194 |
-
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
|
| 195 |
-
else:
|
| 196 |
-
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
| 197 |
-
|
| 198 |
-
if space_id_startup: # Print repo URLs if SPACE_ID is found
|
| 199 |
-
print(f"✅ SPACE_ID found: {space_id_startup}")
|
| 200 |
-
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
| 201 |
-
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
| 202 |
-
else:
|
| 203 |
-
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
|
| 204 |
|
| 205 |
-
|
|
|
|
|
|
|
| 206 |
|
| 207 |
-
|
| 208 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
import asyncio
|
| 3 |
+
import argparse
|
| 4 |
import gradio as gr
|
| 5 |
import requests
|
|
|
|
| 6 |
import pandas as pd
|
|
|
|
| 7 |
from agno.agent import RunResponse
|
| 8 |
+
from agent import agent
|
| 9 |
|
|
|
|
|
|
|
| 10 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
| 11 |
|
| 12 |
|
|
|
|
|
|
|
| 13 |
async def _async_answer(answer_text: str) -> str:
|
| 14 |
response: RunResponse = await agent.arun(answer_text)
|
| 15 |
return response.content
|
|
|
|
| 17 |
|
| 18 |
class BasicAgent:
|
| 19 |
def __init__(self):
|
| 20 |
+
pass
|
| 21 |
|
| 22 |
def __call__(self, question: str) -> str:
|
| 23 |
+
return asyncio.run(_async_answer(question))
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
|
| 26 |
+
def run_agent(profile: gr.OAuthProfile | None, task_id: str | None = None, submit: bool = True):
|
| 27 |
+
space_id = os.getenv("SPACE_ID")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
if profile:
|
| 29 |
username = f"{profile.username}"
|
|
|
|
| 30 |
else:
|
| 31 |
+
return "Please log in to Hugging Face.", None
|
|
|
|
| 32 |
|
| 33 |
api_url = DEFAULT_API_URL
|
| 34 |
questions_url = f"{api_url}/questions"
|
| 35 |
submit_url = f"{api_url}/submit"
|
| 36 |
|
|
|
|
| 37 |
try:
|
| 38 |
+
agent_instance = BasicAgent()
|
| 39 |
except Exception as e:
|
|
|
|
| 40 |
return f"Error initializing agent: {e}", None
|
| 41 |
+
|
| 42 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
|
|
|
| 43 |
|
|
|
|
|
|
|
| 44 |
try:
|
| 45 |
response = requests.get(questions_url, timeout=15)
|
| 46 |
response.raise_for_status()
|
| 47 |
questions_data = response.json()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
except Exception as e:
|
| 49 |
+
return f"Error fetching questions: {e}", None
|
| 50 |
+
|
| 51 |
+
if task_id:
|
| 52 |
+
questions_data = [q for q in questions_data if str(q.get("task_id")) == str(task_id)]
|
| 53 |
+
if not questions_data:
|
| 54 |
+
return f"Task {task_id} not found.", None
|
| 55 |
|
|
|
|
| 56 |
results_log = []
|
| 57 |
answers_payload = []
|
|
|
|
| 58 |
for item in questions_data:
|
| 59 |
+
tid = item.get("task_id")
|
| 60 |
+
qtext = item.get("question")
|
| 61 |
+
if not tid or qtext is None:
|
|
|
|
| 62 |
continue
|
| 63 |
try:
|
| 64 |
+
submitted_answer = agent_instance(qtext)
|
| 65 |
+
answers_payload.append({"task_id": tid, "submitted_answer": submitted_answer})
|
| 66 |
+
results_log.append({"Task ID": tid, "Question": qtext, "Submitted Answer": submitted_answer})
|
| 67 |
except Exception as e:
|
| 68 |
+
results_log.append({"Task ID": tid, "Question": qtext, "Submitted Answer": f"AGENT ERROR: {e}"})
|
|
|
|
| 69 |
|
| 70 |
if not answers_payload:
|
| 71 |
+
return "No answers produced.", pd.DataFrame(results_log)
|
| 72 |
+
|
| 73 |
+
if not submit:
|
| 74 |
+
return "Test mode: nothing submitted.", pd.DataFrame(results_log)
|
| 75 |
|
| 76 |
+
submission_data = {
|
| 77 |
+
"username": username.strip(),
|
| 78 |
+
"agent_code": agent_code,
|
| 79 |
+
"answers": answers_payload,
|
| 80 |
+
}
|
| 81 |
|
|
|
|
|
|
|
| 82 |
try:
|
| 83 |
response = requests.post(submit_url, json=submission_data, timeout=60)
|
| 84 |
response.raise_for_status()
|
| 85 |
result_data = response.json()
|
| 86 |
final_status = (
|
| 87 |
+
f"Submission Successful\n"
|
| 88 |
f"User: {result_data.get('username')}\n"
|
| 89 |
+
f"Score: {result_data.get('score', 'N/A')}% "
|
| 90 |
+
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')})\n"
|
| 91 |
+
f"Message: {result_data.get('message', '')}"
|
| 92 |
)
|
| 93 |
+
return final_status, pd.DataFrame(results_log)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
except Exception as e:
|
| 95 |
+
return f"Submission failed: {e}", pd.DataFrame(results_log)
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
def run_agent_single(profile: gr.OAuthProfile | None, task_id: str):
|
| 99 |
+
return run_agent(profile, task_id or None, submit=False)
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
def run_agent_all(profile: gr.OAuthProfile | None, task_id: str):
|
| 103 |
+
return run_agent(profile, task_id or None, submit=True)
|
| 104 |
|
| 105 |
|
|
|
|
| 106 |
with gr.Blocks() as demo:
|
| 107 |
gr.Markdown("# Basic Agent Evaluation Runner")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
|
| 109 |
gr.LoginButton()
|
| 110 |
|
| 111 |
+
task_id_input = gr.Textbox(label="Task ID (optional)", placeholder="e.g. 2023060607")
|
| 112 |
+
run_test_button = gr.Button("Test Single Task (no submit)")
|
| 113 |
+
run_all_button = gr.Button("Run & Submit All")
|
| 114 |
|
| 115 |
+
status_output = gr.Textbox(label="Status", lines=5, interactive=False)
|
| 116 |
+
results_table = gr.DataFrame(label="Results", wrap=True)
|
|
|
|
| 117 |
|
| 118 |
+
run_test_button.click(
|
| 119 |
+
fn=run_agent_single,
|
| 120 |
+
inputs=[task_id_input],
|
| 121 |
+
outputs=[status_output, results_table],
|
| 122 |
)
|
| 123 |
|
| 124 |
+
run_all_button.click(
|
| 125 |
+
fn=run_agent_all,
|
| 126 |
+
inputs=[task_id_input],
|
| 127 |
+
outputs=[status_output, results_table],
|
| 128 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
|
| 130 |
+
gr.Markdown(
|
| 131 |
+
"Running all tasks may take time. Use the single‑task button to debug quickly."
|
| 132 |
+
)
|
| 133 |
|
| 134 |
+
if __name__ == "__main__":
|
| 135 |
+
space_host = os.getenv("SPACE_HOST")
|
| 136 |
+
space_id = os.getenv("SPACE_ID")
|
| 137 |
+
if space_host:
|
| 138 |
+
print(f"SPACE_HOST: {space_host}")
|
| 139 |
+
if space_id:
|
| 140 |
+
print(f"SPACE_ID: {space_id}")
|
| 141 |
+
|
| 142 |
+
parser = argparse.ArgumentParser()
|
| 143 |
+
parser.add_argument("--task-id", help="Run a single task locally without submission")
|
| 144 |
+
args, _ = parser.parse_known_args()
|
| 145 |
+
|
| 146 |
+
if args.task_id:
|
| 147 |
+
status, table = run_agent(profile=None, task_id=args.task_id, submit=False)
|
| 148 |
+
print(status)
|
| 149 |
+
if table is not None:
|
| 150 |
+
print(table)
|
| 151 |
+
else:
|
| 152 |
+
demo.launch(debug=True, share=False)
|