Spaces:
Runtime error
Runtime error
added comments
Browse files
app.py
CHANGED
|
@@ -1,3 +1,4 @@
|
|
|
|
|
| 1 |
import os
|
| 2 |
from pathlib import Path
|
| 3 |
|
|
@@ -16,9 +17,11 @@ from langchain.vectorstores import Chroma
|
|
| 16 |
import gradio as gr
|
| 17 |
import time
|
| 18 |
from transformers import AutoTokenizer, GenerationConfig, TextStreamer, pipeline
|
|
|
|
| 19 |
questions_dir=Path("Microsoft_QA")
|
| 20 |
questions_dir.mkdir(exist_ok=True, parents=True)
|
| 21 |
|
|
|
|
| 22 |
def write_file(question, answer, file_path):
|
| 23 |
text = f"""
|
| 24 |
Q: {question}
|
|
@@ -237,22 +240,26 @@ write_file(
|
|
| 237 |
answer="""Microsoft Q&A doesn't move or store customer data out of the region it's deployed in.""".strip(),
|
| 238 |
file_path="question_40.txt",
|
| 239 |
)
|
|
|
|
| 240 |
model_name = "TheBloke/Nous-Hermes-13B-GPTQ"
|
| 241 |
model_basename = "nous-hermes-13b-GPTQ-4bit-128g.no-act.order"
|
|
|
|
| 242 |
|
| 243 |
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast= True)
|
| 244 |
-
|
| 245 |
model = AutoGPTQForCausalLM.from_quantized(
|
| 246 |
model_name,
|
| 247 |
model_basename= model_basename,
|
| 248 |
use_safetensors=True,
|
| 249 |
Trust_remote_code=True,
|
| 250 |
)
|
| 251 |
-
|
| 252 |
generation_config = GenerationConfig.from_pretrained(model_name)
|
|
|
|
| 253 |
streamer = TextStreamer(
|
| 254 |
tokenizer, skip_prompt = True, skip_special_tokens=True, use_multiprocessing = False
|
| 255 |
)
|
|
|
|
| 256 |
pipe = pipeline(
|
| 257 |
"text-generation",
|
| 258 |
model=model,
|
|
@@ -266,17 +273,23 @@ pipe = pipeline(
|
|
| 266 |
batch_size=1,
|
| 267 |
|
| 268 |
)
|
|
|
|
| 269 |
llm=HuggingFacePipeline(pipeline=pipe)
|
|
|
|
| 270 |
embeddings = HuggingFaceEmbeddings(
|
| 271 |
model_name= 'embaas/sentence-transformers-multilingual-e5-base'
|
| 272 |
|
| 273 |
)
|
|
|
|
| 274 |
loader = DirectoryLoader("./Microsoft_QA/", glob="**/*txt")
|
| 275 |
documents = loader.load()
|
| 276 |
-
|
|
|
|
| 277 |
text_splitter = CharacterTextSplitter(chunk_size=512, chunk_overlap=0)
|
| 278 |
texts = text_splitter.split_documents(documents)
|
|
|
|
| 279 |
db = Chroma.from_documents(texts, embeddings)
|
|
|
|
| 280 |
template = """
|
| 281 |
### Instruction: You're a microsoft QA platform support agent who is talking to user giving them information about the platform. Use only the chat history and the following information
|
| 282 |
{context}
|
|
@@ -288,9 +301,10 @@ Keep your replies short, compassionate and informative.
|
|
| 288 |
### Responses:
|
| 289 |
""".strip()
|
| 290 |
prompt = PromptTemplate(input_variables=["context","question","chat_history"], template=template)
|
| 291 |
-
|
| 292 |
|
| 293 |
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
|
|
|
|
| 294 |
qa = ConversationalRetrievalChain.from_llm(
|
| 295 |
llm,
|
| 296 |
db.as_retriever(),
|
|
@@ -302,15 +316,15 @@ qa = ConversationalRetrievalChain.from_llm(
|
|
| 302 |
|
| 303 |
import gradio as gr
|
| 304 |
import time
|
| 305 |
-
|
| 306 |
with gr.Blocks() as demo:
|
| 307 |
chatbot = gr.Chatbot()
|
| 308 |
msg = gr.Textbox()
|
| 309 |
clear = gr.ClearButton([msg, chatbot])
|
| 310 |
-
|
| 311 |
def user(user_message, history):
|
| 312 |
return gr.update(value="", interactive=False), history + [[user_message, None]]
|
| 313 |
-
|
| 314 |
def bot(history):
|
| 315 |
response = qa(history[-1][0])
|
| 316 |
response = response['answer']
|
|
@@ -320,10 +334,12 @@ with gr.Blocks() as demo:
|
|
| 320 |
history[-1][1] += character
|
| 321 |
time.sleep(0.05)
|
| 322 |
yield history
|
| 323 |
-
|
| 324 |
response = msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
|
| 325 |
bot, chatbot, chatbot
|
| 326 |
)
|
|
|
|
| 327 |
response.then(lambda: gr.update(interactive=True), None, [msg], queue=False)
|
|
|
|
| 328 |
demo.queue()
|
| 329 |
demo.launch(share=True)
|
|
|
|
| 1 |
+
# Import necessary libraries
|
| 2 |
import os
|
| 3 |
from pathlib import Path
|
| 4 |
|
|
|
|
| 17 |
import gradio as gr
|
| 18 |
import time
|
| 19 |
from transformers import AutoTokenizer, GenerationConfig, TextStreamer, pipeline
|
| 20 |
+
# Defining directory for storing questions
|
| 21 |
questions_dir=Path("Microsoft_QA")
|
| 22 |
questions_dir.mkdir(exist_ok=True, parents=True)
|
| 23 |
|
| 24 |
+
# Define function for writing question and answer to file
|
| 25 |
def write_file(question, answer, file_path):
|
| 26 |
text = f"""
|
| 27 |
Q: {question}
|
|
|
|
| 240 |
answer="""Microsoft Q&A doesn't move or store customer data out of the region it's deployed in.""".strip(),
|
| 241 |
file_path="question_40.txt",
|
| 242 |
)
|
| 243 |
+
# Define model and tokenizer names
|
| 244 |
model_name = "TheBloke/Nous-Hermes-13B-GPTQ"
|
| 245 |
model_basename = "nous-hermes-13b-GPTQ-4bit-128g.no-act.order"
|
| 246 |
+
# Load tokenizer from model name
|
| 247 |
|
| 248 |
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast= True)
|
| 249 |
+
# Load quantized model from model name and basename
|
| 250 |
model = AutoGPTQForCausalLM.from_quantized(
|
| 251 |
model_name,
|
| 252 |
model_basename= model_basename,
|
| 253 |
use_safetensors=True,
|
| 254 |
Trust_remote_code=True,
|
| 255 |
)
|
| 256 |
+
# Load generation configuration from model name
|
| 257 |
generation_config = GenerationConfig.from_pretrained(model_name)
|
| 258 |
+
# Create TextStreamer object with specified tokenizer and settings
|
| 259 |
streamer = TextStreamer(
|
| 260 |
tokenizer, skip_prompt = True, skip_special_tokens=True, use_multiprocessing = False
|
| 261 |
)
|
| 262 |
+
# Create text generation pipeline with specified model, tokenizer, and generation parameters
|
| 263 |
pipe = pipeline(
|
| 264 |
"text-generation",
|
| 265 |
model=model,
|
|
|
|
| 273 |
batch_size=1,
|
| 274 |
|
| 275 |
)
|
| 276 |
+
# Create huggingfacepipeline object with specified pipeline
|
| 277 |
llm=HuggingFacePipeline(pipeline=pipe)
|
| 278 |
+
# Create HuggingFaceEmbeddings object with specified model name
|
| 279 |
embeddings = HuggingFaceEmbeddings(
|
| 280 |
model_name= 'embaas/sentence-transformers-multilingual-e5-base'
|
| 281 |
|
| 282 |
)
|
| 283 |
+
# Load documents from directory using DirectoryLoader class
|
| 284 |
loader = DirectoryLoader("./Microsoft_QA/", glob="**/*txt")
|
| 285 |
documents = loader.load()
|
| 286 |
+
|
| 287 |
+
# Split documents into chunks using CharacterTextSplitter class
|
| 288 |
text_splitter = CharacterTextSplitter(chunk_size=512, chunk_overlap=0)
|
| 289 |
texts = text_splitter.split_documents(documents)
|
| 290 |
+
# Create Chroma database from documents and embeddings
|
| 291 |
db = Chroma.from_documents(texts, embeddings)
|
| 292 |
+
# Define prompt template for generating responses
|
| 293 |
template = """
|
| 294 |
### Instruction: You're a microsoft QA platform support agent who is talking to user giving them information about the platform. Use only the chat history and the following information
|
| 295 |
{context}
|
|
|
|
| 301 |
### Responses:
|
| 302 |
""".strip()
|
| 303 |
prompt = PromptTemplate(input_variables=["context","question","chat_history"], template=template)
|
| 304 |
+
# Create ConversationBufferMemory object to store chat history
|
| 305 |
|
| 306 |
memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
|
| 307 |
+
# Create ConversationalRetrievalChain object from LLM, database retriever, memory, and prompt
|
| 308 |
qa = ConversationalRetrievalChain.from_llm(
|
| 309 |
llm,
|
| 310 |
db.as_retriever(),
|
|
|
|
| 316 |
|
| 317 |
import gradio as gr
|
| 318 |
import time
|
| 319 |
+
# Create Gradio user interface with Chatbot and Textbox components and ClearButton for clearing input/output
|
| 320 |
with gr.Blocks() as demo:
|
| 321 |
chatbot = gr.Chatbot()
|
| 322 |
msg = gr.Textbox()
|
| 323 |
clear = gr.ClearButton([msg, chatbot])
|
| 324 |
+
# Define function for handling user input and updating chat history
|
| 325 |
def user(user_message, history):
|
| 326 |
return gr.update(value="", interactive=False), history + [[user_message, None]]
|
| 327 |
+
# Define function for generating bot response using ConversationalRetrievalChain object and updating chat history
|
| 328 |
def bot(history):
|
| 329 |
response = qa(history[-1][0])
|
| 330 |
response = response['answer']
|
|
|
|
| 334 |
history[-1][1] += character
|
| 335 |
time.sleep(0.05)
|
| 336 |
yield history
|
| 337 |
+
# Submit user input to user function and update chat history, then generate bot response using bot function and update chat history
|
| 338 |
response = msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
|
| 339 |
bot, chatbot, chatbot
|
| 340 |
)
|
| 341 |
+
# Update Gradio interface to be interactive after bot response is generated
|
| 342 |
response.then(lambda: gr.update(interactive=True), None, [msg], queue=False)
|
| 343 |
+
# Launch Gradio interface with sharing enabled
|
| 344 |
demo.queue()
|
| 345 |
demo.launch(share=True)
|