rickxzo's picture
Create app.py
170350e verified
raw
history blame
432 Bytes
import streamlit as st
from transformers import pipeline
# Load the custom model and tokenizer
pipe = pipeline("sentiment-analysis", model="rickxzo/review-sentiment-analysis", tokenizer="rickxzo/review-sentiment-analysis")
# Streamlit UI
st.title("Sentiment Analysis with Transformer Model")
text = st.text_area("Enter some text:")
# Perform sentiment analysis when text is provided
if text:
out = pipe(text)
st.json(out)