import streamlit as st import torch from transformers import AutoModelForSequenceClassification as ASC from transformers import AutoTokenizer as AT model = ASC.from_pretrained("rickxzo/albert-large-v2-s.a.m-nli") tokenizer = AT.from_pretrained("rickxzo/albert-large-v2-s.a.m-nli") def infer(sentence1, sentence2): inputs = tokenizer(sentence1, sentence2, return_tensors="pt", truncation=True, padding=True) with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits probs = torch.nn.functional.softmax(logits, dim=-1) return torch.argmax(probs).item() st.title("Contradiction Detector using AlBERT model") premise = st.text_area("Enter the premise: ") hypothesis = st.text_area("Enter the hypothesis: ") if premise and hypothesis: k = infer(premise, hypothesis) if k == 2: st.write("#### **Contradicting Statements Detected!**") elif k == 1: st.write("#### **Neutral Statements Detected.**") elif k == 0: st.write("#### **Entailing Statements Detected.**")