Spaces:
Sleeping
Sleeping
File size: 12,390 Bytes
fed12ea 266b7e4 fed12ea 985f660 fed12ea 985f660 fed12ea 4ad7176 fed12ea f631e06 fed12ea 1d9503c c28178f 1d9503c c28178f fed12ea 985f660 aa4daf2 fed12ea 4ad7176 bba29f0 266b7e4 fed12ea f631e06 4ad7176 fed12ea 4ad7176 fed12ea 4ad7176 fed12ea 4ad7176 fed12ea bba29f0 fed12ea 4ad7176 fed12ea a29ba29 fed12ea a29ba29 f631e06 fed12ea f631e06 4ad7176 fed12ea 4ad7176 fed12ea f631e06 4ad7176 f631e06 4ad7176 fed12ea 4ad7176 80fc523 4ad7176 fed12ea 4ad7176 fed12ea 80fc523 985f660 fed12ea 4ad7176 fed12ea 4ad7176 fed12ea 985f660 98451b8 fed12ea 31eb794 aa4daf2 bf95bdb aa4daf2 31eb794 fed12ea 98451b8 fed12ea 31eb794 98451b8 31eb794 6cf56db 31eb794 4ad7176 98451b8 31eb794 98451b8 01e1c54 98451b8 bf95bdb 98451b8 01e1c54 98451b8 66f1888 98451b8 bf95bdb 98451b8 505802f 98451b8 31eb794 98451b8 7eb9bbf 31eb794 7eb9bbf 31eb794 7924ae6 31eb794 2e60899 985f660 aa4daf2 98451b8 31eb794 fed12ea 4ad7176 fed12ea 4ad7176 fed12ea 4ad7176 fed12ea 4ad7176 fed12ea 4ad7176 fed12ea 4ad7176 fed12ea 4ad7176 fed12ea 985f660 fed12ea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 |
import os
import sys
import asyncio
from pathlib import Path
from core.utils.translations import translations
from datetime import datetime
from typing import Tuple
import gradio as gr
# Add parent directory to path for imports
sys.path.append(str(Path(__file__).parent.parent))
from core.ai_engine import OptimizedGazaRAGSystem
from ui.components import (
get_custom_css,
create_header_section,
create_query_input_section,
create_response_output_section,
create_quick_access_section,
create_example_scenarios,
gradio_user_selector,
gradio_sidebar_controls,
gradio_show_response
)
# import logging
# logger = logging.getLogger(__name__)
# logging.basicConfig(level=logging.INFO)
from core.utils.translator import ArabicTranslator
from core.utils.logger import logger
# Global system instance
optimized_rag_system = None
def initialize_optimized_system(vector_store_dir: str = "./vector_store"):
global optimized_rag_system
if optimized_rag_system is None:
try:
optimized_rag_system = OptimizedGazaRAGSystem(vector_store_dir)
optimized_rag_system.initialize()
logger.info("β
Optimized Gaza RAG System initialized successfully")
except Exception as e:
logger.error(f"β Failed to initialize optimized system: {e}")
raise
return optimized_rag_system
def process_medical_query_with_progress(query: str,language, progress=gr.Progress()) -> Tuple[str, str, str, str, str]:
from core.utils.translations import translations
t = translations.get(language, translations["English"])
if not query.strip():
return "Please enter a medical question.", "", "β οΈ No query provided", {}, {}
try:
progress(0.05, desc="π§ Initializing optimized system...")
system = initialize_optimized_system()
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
def progress_callback(value, desc):
progress(value, desc=desc)
try:
result = loop.run_until_complete(
system.generate_response_async(query, progress_callback, language=language)
)
finally:
loop.close()
response = result["response"]
metadata_parts = [
f"π― Confidence: {result.get('confidence', 0):.1%}",
f"β±οΈ Response: {result.get('response_time', 0)}s",
f"π Sources: {result.get('search_results_count', 0)} found"
]
if result.get("cached"):
metadata_parts.append("πΎ Cached")
if result.get("sources"):
metadata_parts.append(f"π Refs: {', '.join(result['sources'][:2])}")
metadata = " | ".join(metadata_parts)
status_parts = []
if result.get("safety_warnings"):
status_parts.append(f"β οΈ {len(result['safety_warnings'])} warnings")
if result.get("safety_issues"):
status_parts.append(f"π¨ {len(result['safety_issues'])} issues")
if not status_parts:
status_parts.append("β
Safe response")
status = " | ".join(status_parts)
return (response, metadata, status, gr.Markdown(f"### AI Response\n{response}"), gr.Markdown(f"### Metadata\n{metadata}"), gr.Markdown(f"### Safety Check\n{status}"))
except Exception as e:
logger.error(f"β Error processing query: {e}")
error_response = f"β οΈ Error processing your query: {str(e)}\n\nπ¨ For medical emergencies, seek immediate professional help."
error_metadata = f"β Error at {datetime.now().strftime('%H:%M:%S')}"
error_status = "π¨ System error occurred"
return (error_response, error_metadata, error_status, gr.update(value=""), gr.update(value=""), gr.update(value=""))
def get_system_stats() -> str:
try:
system = initialize_optimized_system()
stats = system.knowledge_base.get_stats()
if stats["status"] == "initialized":
return f"""
π **System Statistics:**
- Status: β
Initialized
- Total Chunks: {stats['total_chunks']:,}
- Vector Dimension: {stats['embedding_dimension']}
- Index Type: {stats['index_type']}
- Sources: {len(stats['sources'])} documents
- Available Sources: {', '.join(stats['sources'][:5])}{'...' if len(stats['sources']) > 5 else ''}
"""
else:
return "π System Status: β Not Initialized"
except Exception as e:
return f"π System Status: β Error - {str(e)}"
def create_optimized_gradio_interface():
with gr.Blocks(
css=get_custom_css() + """
#role-selection-box {
display: flex;
flex-direction: column;
align-items: center;
justify-content: center;
height: 90vh;
gap: 1rem;
}
.gr-button {
width: 350px;
font-size: 1.1rem;
}
..highlight-flash {
animation: flash-highlight 1.6s ease-in-out;
}
""",
title="π₯ Optimized Gaza First Aid Assistant",
theme=gr.themes.Soft(primary_hue="blue", secondary_hue="green", neutral_hue="slate")
) as interface:
user_role = gr.State()
# Role Selection UI
with gr.Column(elem_id="role-selection-box", visible=True) as role_selection_group:
role_title = gr.Markdown("### π§ββοΈ Select Your Role to Begin")
volunteer_btn = gr.Button("π― I'm a Volunteer")
organizer_btn = gr.Button("π I'm an Event Organizer")
divider = gr.Markdown("---")
# Main UI (Hidden at first)
with gr.Column(visible=False) as main_ui:
with gr.Row(elem_classes=["main-container"]):
create_header_section()
with gr.Row(elem_classes=["main-container"]):
with gr.Group(elem_classes=["stats-container"]):
stats_display = gr.Markdown(
value=get_system_stats(),
label="π System Status"
)
with gr.Row(elem_classes=["main-container"]):
with gr.Column(scale=2):
query_input, submit_btn, clear_btn = create_query_input_section()
create_example_scenarios(query_input)
with gr.Column(scale=1):
create_quick_access_section()
user_type_dropdown = gradio_user_selector()
language_dropdown = gradio_sidebar_controls()
with gr.Row(elem_classes=["main-container"]):
with gr.Column():
response_output, metadata_output, status_output = create_response_output_section()
show_response_output = gr.Markdown(label="AI Response", elem_classes=["highlight-flash"])
show_metadata_output = gr.Markdown(label="Metadata")
show_safety_output = gr.Markdown(label="Safety Check")
# with gr.Row(elem_classes=["main-container"]):
# create_example_scenarios(query_input)
submit_btn.click(
process_medical_query_with_progress,
inputs=[query_input, language_dropdown],
outputs=[
response_output,
metadata_output,
status_output,
show_response_output,
show_metadata_output,
show_safety_output
],
show_progress=True
)
query_input.submit(
process_medical_query_with_progress,
inputs=[query_input, language_dropdown] ,
outputs=[
response_output,
metadata_output,
status_output,
show_response_output,
show_metadata_output,
show_safety_output
],
show_progress=True
)
clear_btn.click(
lambda: ("", "", "", gr.update(value=""), gr.update(value=""), gr.update(value="")),
outputs=[
query_input,
response_output,
metadata_output,
status_output,
show_response_output,
show_metadata_output,
show_safety_output
]
)
refresh_stats_btn = gr.Button("π Refresh System Stats", variant="secondary")
refresh_stats_btn.click(
fn=lambda: get_system_stats(),
outputs=stats_display
)
# Button Logic
def set_user_role(role):
return (
role,
gr.update(visible=True), # show main UI
gr.update(visible=False), # hide role title
gr.update(visible=False), # hide volunteer_btn
gr.update(visible=False), # hide organizer_btn
gr.update(visible=False) # hide full group
)
volunteer_btn.click(
lambda: set_user_role("volunteer"),
outputs=[
user_role,
main_ui,
role_title,
volunteer_btn,
organizer_btn,
role_selection_group
]
)
organizer_btn.click(
lambda: set_user_role("organizer"),
outputs=[
user_role,
main_ui,
role_title,
volunteer_btn,
organizer_btn,
role_selection_group
]
)
return interface
gr.HTML("""
<script>
function scrollToResponse() {
const target = document.getElementById('ai-response-output');
if (target) {
target.scrollIntoView({ behavior: 'smooth', block: 'start' });
target.classList.add('highlight-flash');
setTimeout(() => target.classList.remove('highlight-flash'), 1600);
}
}
</script>
""")
def main():
logger.info("π Starting Optimized Gaza First Aid Assistant")
try:
vector_store_dir = "./vector_store"
if not Path(vector_store_dir).exists():
alt_paths = ["./results/vector_store", "./results/vector_store_extracted"]
for alt_path in alt_paths:
if Path(alt_path).exists():
vector_store_dir = alt_path
logger.info(f"π Found vector store at: {vector_store_dir}")
break
else:
raise FileNotFoundError("Vector store directory not found. Please ensure pre-made assets are available.")
logger.info(f"π§ Loading optimized system from: {vector_store_dir}")
system = initialize_optimized_system(vector_store_dir)
stats = system.knowledge_base.get_stats()
logger.info(f"β
Knowledge base loaded: {stats['total_chunks']} chunks, {stats['embedding_dimension']}D")
logger.info(f"β
Sources: {len(stats['sources'])} documents")
logger.info("β
Medical fact checker ready")
logger.info("β
Optimized FAISS indexing active")
logger.info("π¨ Creating optimized Gradio interface...")
interface = create_optimized_gradio_interface()
logger.info("π Launching optimized interface...")
interface.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
max_threads=6,
show_error=True,
quiet=False
)
except Exception as e:
logger.error(f"β Failed to start Optimized Gaza First Aid Assistant: {e}")
print(f"\nπ¨ STARTUP ERROR: {e}")
print("\nπ§ Troubleshooting Steps:")
print("1. Ensure vector_store directory exists with index.faiss, chunks.txt, and metadata.pkl")
print("2. Check if all dependencies are installed: pip install -r requirements.txt")
print("3. Verify sufficient memory is available (minimum 4GB RAM recommended)")
print("4. Check system logs for detailed error information")
print("\nπ For technical support, check the application logs above..")
sys.exit(1)
if __name__ == "__main__":
main()
|