firstaid / finetune_flan_t5.py
rivapereira123's picture
Update finetune_flan_t5.py
c6a9cc3 verified
from datasets import load_dataset
from transformers import (
T5ForConditionalGeneration, # Using specific model class
AutoTokenizer,
TrainingArguments,
DataCollatorForSeq2Seq
)
from trl import SFTTrainer
import torch
# 2. Load and prepare dataset
dataset = load_dataset("json", data_files="data/med_q_n_a_converted.jsonl", split="train")
# Create properly formatted text field
def format_example(example):
return {
"text": f"Instruction: {example['input']}\nResponse: {example['output']}",
"input": example["input"],
"output": example["output"]
}
dataset = dataset.map(format_example)
# 3. Load model and tokenizer
model_name = "google/flan-t5-base"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = T5ForConditionalGeneration.from_pretrained(model_name)
# 4. Configure training
training_args = TrainingArguments(
output_dir="./flan-t5-medical-finetuned",
per_device_train_batch_size=4,
gradient_accumulation_steps=2,
num_train_epochs=3,
learning_rate=5e-5,
logging_dir="./logs",
save_strategy="epoch",
evaluation_strategy="no",
fp16=torch.cuda.is_available(),
report_to="none",
remove_unused_columns=False,
# Add these to prevent version conflicts
dataloader_pin_memory=False,
dataloader_num_workers=0
)
# 5. Initialize trainer with proper config
trainer = SFTTrainer(
model=model,
tokenizer=tokenizer,
train_dataset=dataset,
args=training_args,
dataset_text_field="text",
max_seq_length=512, # Explicitly set to avoid warning
data_collator=DataCollatorForSeq2Seq(
tokenizer,
model=model,
padding="longest"
)
)
# 6. Start training
trainer.train()