Spaces:
Sleeping
Sleeping
Update finetune_flan_t5.py
Browse files- finetune_flan_t5.py +14 -19
finetune_flan_t5.py
CHANGED
@@ -3,19 +3,12 @@ from transformers import (
|
|
3 |
AutoTokenizer,
|
4 |
AutoModelForSeq2SeqLM,
|
5 |
TrainingArguments,
|
6 |
-
DataCollatorForSeq2Seq
|
|
|
7 |
)
|
8 |
from trl import SFTTrainer
|
9 |
import torch
|
10 |
|
11 |
-
# First check and update packages if needed
|
12 |
-
def check_versions():
|
13 |
-
import subprocess
|
14 |
-
import sys
|
15 |
-
subprocess.run([sys.executable, "-m", "pip", "install", "--upgrade", "transformers", "accelerate", "trl"])
|
16 |
-
|
17 |
-
check_versions()
|
18 |
-
|
19 |
# 1. Load and prepare dataset
|
20 |
dataset = load_dataset("json", data_files="data/med_q_n_a_converted.jsonl", split="train")
|
21 |
|
@@ -24,12 +17,19 @@ dataset = dataset.map(lambda x: {
|
|
24 |
"text": f"### Instruction:\n{x['input']}\n\n### Response:\n{x['output']}"
|
25 |
})
|
26 |
|
27 |
-
# 2. Load model and tokenizer
|
28 |
model_name = "google/flan-t5-base"
|
29 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
30 |
-
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
31 |
|
32 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
training_args = TrainingArguments(
|
34 |
output_dir="./flan-t5-medical-finetuned",
|
35 |
per_device_train_batch_size=4,
|
@@ -41,12 +41,10 @@ training_args = TrainingArguments(
|
|
41 |
evaluation_strategy="no",
|
42 |
fp16=torch.cuda.is_available(),
|
43 |
report_to="none",
|
44 |
-
# Add these to avoid version conflicts
|
45 |
-
use_cpu=not torch.cuda.is_available(),
|
46 |
remove_unused_columns=False
|
47 |
)
|
48 |
|
49 |
-
# 4. Initialize trainer
|
50 |
trainer = SFTTrainer(
|
51 |
model=model,
|
52 |
tokenizer=tokenizer,
|
@@ -57,10 +55,7 @@ trainer = SFTTrainer(
|
|
57 |
tokenizer,
|
58 |
model=model,
|
59 |
padding=True
|
60 |
-
)
|
61 |
-
# Remove deprecated parameters
|
62 |
-
max_seq_length=None,
|
63 |
-
formatting_func=None
|
64 |
)
|
65 |
|
66 |
# 5. Start training
|
|
|
3 |
AutoTokenizer,
|
4 |
AutoModelForSeq2SeqLM,
|
5 |
TrainingArguments,
|
6 |
+
DataCollatorForSeq2Seq,
|
7 |
+
FlaxAutoModelForSeq2SeqLM # Added for explicit model loading
|
8 |
)
|
9 |
from trl import SFTTrainer
|
10 |
import torch
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
# 1. Load and prepare dataset
|
13 |
dataset = load_dataset("json", data_files="data/med_q_n_a_converted.jsonl", split="train")
|
14 |
|
|
|
17 |
"text": f"### Instruction:\n{x['input']}\n\n### Response:\n{x['output']}"
|
18 |
})
|
19 |
|
20 |
+
# 2. Load model and tokenizer - METHOD 1: Explicit FLAN-T5 loading
|
21 |
model_name = "google/flan-t5-base"
|
22 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
23 |
|
24 |
+
# METHOD 1: Load model directly without AutoModel
|
25 |
+
from transformers import T5ForConditionalGeneration
|
26 |
+
model = T5ForConditionalGeneration.from_pretrained(model_name)
|
27 |
+
|
28 |
+
# METHOD 2: Or install Japanese support (if needed)
|
29 |
+
# pip install transformers[ja]
|
30 |
+
# Then use AutoModel as before
|
31 |
+
|
32 |
+
# 3. Training arguments
|
33 |
training_args = TrainingArguments(
|
34 |
output_dir="./flan-t5-medical-finetuned",
|
35 |
per_device_train_batch_size=4,
|
|
|
41 |
evaluation_strategy="no",
|
42 |
fp16=torch.cuda.is_available(),
|
43 |
report_to="none",
|
|
|
|
|
44 |
remove_unused_columns=False
|
45 |
)
|
46 |
|
47 |
+
# 4. Initialize trainer
|
48 |
trainer = SFTTrainer(
|
49 |
model=model,
|
50 |
tokenizer=tokenizer,
|
|
|
55 |
tokenizer,
|
56 |
model=model,
|
57 |
padding=True
|
58 |
+
)
|
|
|
|
|
|
|
59 |
)
|
60 |
|
61 |
# 5. Start training
|