Spaces:
Sleeping
Sleeping
Create finetune_flan_t5.py
Browse files- finetune_flan_t5.py +60 -0
finetune_flan_t5.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datasets import load_dataset
|
2 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, TrainingArguments
|
3 |
+
from trl import SFTTrainer, DataCollatorForSeq2Seq
|
4 |
+
import torch
|
5 |
+
|
6 |
+
# Load your dataset (from the converted JSONL file)
|
7 |
+
dataset = load_dataset("json", data_files="data/med_q_n_a_converted.jsonl", split="train")
|
8 |
+
|
9 |
+
# Load tokenizer and model
|
10 |
+
model_name = "google/flan-t5-base"
|
11 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
12 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
13 |
+
|
14 |
+
# Preprocess dataset
|
15 |
+
def preprocess(example):
|
16 |
+
input_text = example["instruction"]
|
17 |
+
target_text = example["output"]
|
18 |
+
tokenized = tokenizer(
|
19 |
+
input_text,
|
20 |
+
max_length=512,
|
21 |
+
truncation=True,
|
22 |
+
padding="max_length"
|
23 |
+
)
|
24 |
+
with tokenizer.as_target_tokenizer():
|
25 |
+
tokenized["labels"] = tokenizer(
|
26 |
+
target_text,
|
27 |
+
max_length=128,
|
28 |
+
truncation=True,
|
29 |
+
padding="max_length"
|
30 |
+
)["input_ids"]
|
31 |
+
return tokenized
|
32 |
+
|
33 |
+
tokenized_dataset = dataset.map(preprocess, remove_columns=dataset.column_names)
|
34 |
+
|
35 |
+
# Define training arguments
|
36 |
+
training_args = TrainingArguments(
|
37 |
+
output_dir="./flan-t5-medical",
|
38 |
+
per_device_train_batch_size=4,
|
39 |
+
gradient_accumulation_steps=2,
|
40 |
+
num_train_epochs=3,
|
41 |
+
logging_dir="./logs",
|
42 |
+
save_strategy="epoch",
|
43 |
+
evaluation_strategy="no",
|
44 |
+
fp16=torch.cuda.is_available()
|
45 |
+
)
|
46 |
+
|
47 |
+
# Define data collator
|
48 |
+
data_collator = DataCollatorForSeq2Seq(tokenizer, model=model)
|
49 |
+
|
50 |
+
# Initialize trainer
|
51 |
+
trainer = SFTTrainer(
|
52 |
+
model=model,
|
53 |
+
args=training_args,
|
54 |
+
train_dataset=tokenized_dataset,
|
55 |
+
tokenizer=tokenizer,
|
56 |
+
data_collator=data_collator,
|
57 |
+
)
|
58 |
+
|
59 |
+
# Start training
|
60 |
+
trainer.train()
|