import re from typing import Dict, Any, List def clean_ocr_artifacts(text: str) -> str: text = re.sub(r'\s{2,}', ' ', text) text = re.sub(r'(?<=[\.\?!]\s)([eEoO])([A-Z][a-z]+)', r'\2', text) # eFlood → Flood, oSeek → Seek text = re.sub(r'\b[Aa]love\b', 'aloe', text) text = re.sub(r'\bRelevanci\b', 'Relevance', text) text = re.sub(r'\bAlove\b', 'Aloe', text) text = re.sub(r'\b[aA]dvice\b', 'advice', text) return text.strip() class MedicalFactChecker: """Enhanced medical fact checker with faster validation""" def __init__(self): self.medical_facts = self._load_medical_facts() self.contraindications = self._load_contraindications() self.dosage_patterns = self._compile_dosage_patterns() self.definitive_patterns = [ re.compile(r, re.IGNORECASE) for r in [ r'always\s+(?:use|take|apply)', r'never\s+(?:use|take|apply)', r'will\s+(?:cure|heal|fix)', r'guaranteed\s+to', r'completely\s+(?:safe|effective)' ] ] def _load_medical_facts(self) -> Dict[str, Any]: """Pre-loaded medical facts for Gaza context""" return { "burn_treatment": { "cool_water": "Use clean, cool (not ice-cold) water for 10-20 minutes", "no_ice": "Never apply ice directly to burns", "clean_cloth": "Cover with clean, dry cloth if available" }, "wound_care": { "pressure": "Apply direct pressure to control bleeding", "elevation": "Elevate injured limb if possible", "clean_hands": "Clean hands before treating wounds when possible" }, "infection_signs": { "redness": "Increasing redness around wound", "warmth": "Increased warmth at wound site", "pus": "Yellow or green discharge", "fever": "Fever may indicate systemic infection" } } def _load_contraindications(self) -> Dict[str, List[str]]: """Pre-loaded contraindications for common treatments""" return { "aspirin": ["children under 16", "bleeding disorders", "stomach ulcers"], "ibuprofen": ["kidney disease", "heart failure", "stomach bleeding"], "hydrogen_peroxide": ["deep wounds", "closed wounds", "eyes"], "tourniquets": ["non-life-threatening bleeding", "without proper training"] } def _compile_dosage_patterns(self) -> List[re.Pattern]: """Pre-compiled dosage patterns""" patterns = [ r'\d+\s*mg\b', # milligrams r'\d+\s*g\b', # grams r'\d+\s*ml\b', # milliliters r'\d+\s*tablets?\b', # tablets r'\d+\s*times?\s+(?:per\s+)?day\b', # frequency r'every\s+\d+\s+hours?\b' # intervals ] return [re.compile(pattern, re.IGNORECASE) for pattern in patterns] def check_medical_accuracy(self, response: str, context: str) -> Dict[str, Any]: """Enhanced medical accuracy check with Gaza-specific considerations""" if response is None: response = "" issues = [] warnings = [] accuracy_score = 0.0 # Check for contraindications (faster keyword matching) response_lower = response.lower() for medication, contra_list in self.contraindications.items(): if medication in response_lower: for contra in contra_list: if any(word in response_lower for word in contra.split()): issues.append(f"Potential contraindication: {medication} with {contra}") accuracy_score -= 0.3 break # Context alignment using Jaccard similarity if context: resp_words = set(response_lower.split()) ctx_words = set(context.lower().split()) context_similarity = len(resp_words & ctx_words) / len(resp_words | ctx_words) if ctx_words else 0.0 if context_similarity < 0.5: # Lowered threshold for Gaza context warnings.append(f"Low context similarity: {context_similarity:.2f}") accuracy_score -= 0.1 else: context_similarity = 0.0 # Gaza-specific resource checks gaza_resources = ["clean water", "sterile", "hospital", "ambulance", "electricity"] if any(resource in response_lower for resource in gaza_resources): warnings.append("Consider resource limitations in Gaza context") accuracy_score -= 0.05 # Unsupported claims check for pattern in self.definitive_patterns: if pattern.search(response): issues.append(f"Unsupported definitive claim detected") accuracy_score -= 0.4 break # Dosage validation for pattern in self.dosage_patterns: if pattern.search(response): warnings.append("Dosage detected - verify with professional") accuracy_score -= 0.1 break confidence_score = max(0.0, min(1.0, 0.8 + accuracy_score)) return { "confidence_score": confidence_score, "issues": issues, "warnings": warnings, "context_similarity": context_similarity, "is_safe": len(issues) == 0 and confidence_score > 0.5 }