Qodo / main.py
rkihacker's picture
Update main.py
75ccbb2 verified
"""
FastAPI application providing OpenAI-compatible API endpoints using QodoAI.
"""
import json
import time
import uuid
import logging
import asyncio
from typing import List, Dict, Optional, Union, Generator, Any, AsyncGenerator
from contextlib import asynccontextmanager
from fastapi import FastAPI, HTTPException, Depends, Request, status
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import StreamingResponse, JSONResponse
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
from pydantic import BaseModel, Field, validator
import uvicorn
from curl_cffi.requests import Session
from curl_cffi import CurlError
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
security = HTTPBearer(auto_error=False)
# ============================================================================
# Exception Classes
# ============================================================================
class FailedToGenerateResponseError(Exception):
"""Exception raised when response generation fails."""
pass
# ============================================================================
# Utility Functions
# ============================================================================
def sanitize_stream(data, intro_value="", to_json=True, skip_markers=None, content_extractor=None, yield_raw_on_error=True, raw=False):
"""Sanitize stream data and extract content."""
if skip_markers is None:
skip_markers = []
for chunk in data:
if chunk:
try:
chunk_str = chunk.decode('utf-8') if isinstance(chunk, bytes) else str(chunk)
if any(marker in chunk_str for marker in skip_markers):
continue
if to_json:
try:
json_obj = json.loads(chunk_str)
if content_extractor:
content = content_extractor(json_obj)
if content:
yield content
except json.JSONDecodeError:
if yield_raw_on_error:
yield chunk_str
else:
yield chunk_str
except Exception as e:
if yield_raw_on_error:
yield str(chunk)
# ============================================================================
# Pydantic Models for OpenAI API Compatibility
# ============================================================================
class ChatMessage(BaseModel):
role: str = Field(..., description="The role of the message author")
content: str = Field(..., description="The content of the message")
name: Optional[str] = Field(None, description="The name of the author")
class ChatCompletionRequest(BaseModel):
model: str = Field(..., description="ID of the model to use")
messages: List[ChatMessage] = Field(..., description="List of messages comprising the conversation")
max_tokens: Optional[int] = Field(2049, description="Maximum number of tokens to generate")
temperature: Optional[float] = Field(None, ge=0, le=2, description="Sampling temperature")
top_p: Optional[float] = Field(None, ge=0, le=1, description="Nucleus sampling parameter")
stream: Optional[bool] = Field(False, description="Whether to stream back partial progress")
stop: Optional[Union[str, List[str]]] = Field(None, description="Stop sequences")
presence_penalty: Optional[float] = Field(None, ge=-2, le=2, description="Presence penalty")
frequency_penalty: Optional[float] = Field(None, ge=-2, le=2, description="Frequency penalty")
class Usage(BaseModel):
prompt_tokens: int
completion_tokens: int
total_tokens: int
class ChatCompletionMessage(BaseModel):
role: str
content: str
class Choice(BaseModel):
index: int
message: Optional[ChatCompletionMessage] = None
delta: Optional[Dict[str, Any]] = None
finish_reason: Optional[str] = None
class ChatCompletionResponse(BaseModel):
id: str
object: str = "chat.completion"
created: int
model: str
choices: List[Choice]
usage: Usage
class ChatCompletionChunk(BaseModel):
id: str
object: str = "chat.completion.chunk"
created: int
model: str
choices: List[Choice]
class ModelInfo(BaseModel):
id: str
object: str = "model"
created: int
owned_by: str = "qodo"
class ModelListResponse(BaseModel):
object: str = "list"
data: List[ModelInfo]
class HealthResponse(BaseModel):
status: str
timestamp: int
# ============================================================================
# QodoAI Implementation
# ============================================================================
class QodoAI:
"""OpenAI-compatible client for Qodo AI API."""
AVAILABLE_MODELS = [
"gpt-4.1",
"gpt-4o",
"o3",
"o4-mini",
"claude-4-sonnet",
"gemini-2.5-pro"
]
def __init__(self, api_key: Optional[str] = None, timeout: int = 30):
self.url = "https://api.cli.qodo.ai/v2/agentic/start-task"
self.info_url = "https://api.cli.qodo.ai/v2/info/get-things"
self.timeout = timeout
self.api_key = api_key
# Generate fingerprint
self.fingerprint = {"user_agent": "axios/1.10.0", "browser_type": "chrome"}
# Generate session ID
self.session_id = self._get_session_id()
self.request_id = str(uuid.uuid4())
# Setup headers
self.headers = {
"Accept": "text/plain",
"Accept-Encoding": "gzip, deflate, br, zstd",
"Accept-Language": "en-US,en;q=0.9",
"Authorization": f"Bearer {self.api_key}",
"Connection": "close",
"Content-Type": "application/json",
"host": "api.cli.qodo.ai",
"Request-id": self.request_id,
"Session-id": self.session_id,
"User-Agent": self.fingerprint["user_agent"],
}
# Initialize session
self.session = Session()
self.session.headers.update(self.headers)
def _get_session_id(self) -> str:
"""Get session ID from Qodo API."""
try:
temp_session = Session()
temp_headers = {
"Accept": "text/plain",
"Authorization": f"Bearer {self.api_key}",
"Content-Type": "application/json",
"User-Agent": "axios/1.10.0",
}
temp_session.headers.update(temp_headers)
response = temp_session.get(self.info_url, timeout=self.timeout, impersonate="chrome110")
if response.status_code == 200:
data = response.json()
session_id = data.get("session-id")
if session_id:
return session_id
return f"20250630-{str(uuid.uuid4())}"
except Exception:
return f"20250630-{str(uuid.uuid4())}"
@staticmethod
def _qodo_extractor(chunk: Union[str, Dict[str, Any]]) -> Optional[str]:
"""Extracts content from Qodo stream JSON objects."""
if isinstance(chunk, dict):
data = chunk.get("data", {})
if isinstance(data, dict):
tool_args = data.get("tool_args", {})
if isinstance(tool_args, dict):
content = tool_args.get("content")
if content:
return content
if "content" in data:
return data["content"]
if "choices" in chunk:
choices = chunk["choices"]
if isinstance(choices, list) and len(choices) > 0:
choice = choices[0]
if isinstance(choice, dict):
delta = choice.get("delta", {})
if isinstance(delta, dict) and "content" in delta:
return delta["content"]
message = choice.get("message", {})
if isinstance(message, dict) and "content" in message:
return message["content"]
elif isinstance(chunk, str):
try:
parsed = json.loads(chunk)
return QodoAI._qodo_extractor(parsed)
except json.JSONDecodeError:
if chunk.strip():
return chunk.strip()
return None
def _build_payload(self, prompt: str, model: str = "claude-4-sonnet"):
"""Build the payload for Qodo AI API."""
return {
"agent_type": "cli",
"session_id": self.session_id,
"user_data": {
"extension_version": "0.7.2",
"os_platform": "win32",
"os_version": "v23.9.0",
"editor_type": "cli"
},
"tools": {
"web_search": [
{
"name": "web_search",
"description": "Searches the web and returns results based on the user's query (Powered by Nimble).",
"inputSchema": {
"type": "object",
"properties": {
"query": {
"description": "The search query to execute",
"title": "Query",
"type": "string"
}
},
"required": ["query"]
},
"be_tool": True,
"autoApproved": True
}
]
},
"user_request": prompt,
"execution_strategy": "act",
"custom_model": model,
"stream": True
}
async def create_chat_completion(self, request: ChatCompletionRequest) -> Union[ChatCompletionResponse, AsyncGenerator]:
"""Create a chat completion response."""
# Get the last user message
user_prompt = ""
for message in reversed(request.messages):
if message.role == "user":
user_prompt = message.content
break
if not user_prompt:
raise HTTPException(status_code=400, detail="No user message found in messages")
payload = self._build_payload(user_prompt, request.model)
payload["stream"] = request.stream
request_id = f"chatcmpl-{uuid.uuid4()}"
created_time = int(time.time())
if request.stream:
return self._create_stream_response(request_id, created_time, request.model, payload, user_prompt)
else:
return await self._create_non_stream_response(request_id, created_time, request.model, payload, user_prompt)
async def _create_stream_response(self, request_id: str, created_time: int, model: str, payload: Dict[str, Any], user_prompt: str):
"""Create streaming response."""
try:
response = self.session.post(
self.url,
json=payload,
stream=True,
timeout=self.timeout,
impersonate="chrome110"
)
if response.status_code == 401:
raise HTTPException(status_code=401, detail="Invalid API key")
elif response.status_code != 200:
raise HTTPException(status_code=500, detail=f"Qodo request failed: {response.text}")
async def generate():
try:
processed_stream = sanitize_stream(
data=response.iter_content(chunk_size=None),
intro_value="",
to_json=True,
skip_markers=["[DONE]"],
content_extractor=QodoAI._qodo_extractor,
yield_raw_on_error=True,
raw=False
)
for content_chunk in processed_stream:
if content_chunk:
chunk_data = {
"id": request_id,
"object": "chat.completion.chunk",
"created": created_time,
"model": model,
"choices": [{
"index": 0,
"delta": {"content": content_chunk, "role": "assistant"},
"finish_reason": None
}]
}
yield f"data: {json.dumps(chunk_data)}\n\n"
# Send final chunk
final_chunk = {
"id": request_id,
"object": "chat.completion.chunk",
"created": created_time,
"model": model,
"choices": [{
"index": 0,
"delta": {},
"finish_reason": "stop"
}]
}
yield f"data: {json.dumps(final_chunk)}\n\n"
yield "data: [DONE]\n\n"
except Exception as e:
logger.error(f"Streaming error: {e}")
error_chunk = {
"id": request_id,
"object": "chat.completion.chunk",
"created": created_time,
"model": model,
"choices": [{
"index": 0,
"delta": {},
"finish_reason": "stop"
}]
}
yield f"data: {json.dumps(error_chunk)}\n\n"
yield "data: [DONE]\n\n"
return generate()
except Exception as e:
logger.error(f"Stream creation error: {e}")
raise HTTPException(status_code=500, detail=str(e))
async def _create_non_stream_response(self, request_id: str, created_time: int, model: str, payload: Dict[str, Any], user_prompt: str) -> ChatCompletionResponse:
"""Create non-streaming response."""
try:
payload["stream"] = False
response = self.session.post(
self.url,
json=payload,
timeout=self.timeout,
impersonate="chrome110"
)
if response.status_code == 401:
raise HTTPException(status_code=401, detail="Invalid API key")
elif response.status_code != 200:
raise HTTPException(status_code=500, detail=f"Qodo request failed: {response.text}")
response_text = response.text
full_response = ""
# Parse multiple JSON objects from the response
lines = response_text.replace('}\n{', '}\n{').split('\n')
json_objects = []
current_json = ""
brace_count = 0
for line in lines:
line = line.strip()
if line:
current_json += line
brace_count += line.count('{') - line.count('}')
if brace_count == 0 and current_json:
json_objects.append(current_json)
current_json = ""
if current_json and brace_count == 0:
json_objects.append(current_json)
for json_str in json_objects:
if json_str.strip():
try:
json_obj = json.loads(json_str)
content = QodoAI._qodo_extractor(json_obj)
if content:
full_response += content
except json.JSONDecodeError:
pass
# Calculate token usage
prompt_tokens = len(user_prompt.split())
completion_tokens = len(full_response.split())
total_tokens = prompt_tokens + completion_tokens
return ChatCompletionResponse(
id=request_id,
created=created_time,
model=model,
choices=[Choice(
index=0,
message=ChatCompletionMessage(role="assistant", content=full_response),
finish_reason="stop"
)],
usage=Usage(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=total_tokens
)
)
except Exception as e:
logger.error(f"Non-stream response error: {e}")
raise HTTPException(status_code=500, detail=str(e))
# ============================================================================
# FastAPI Application
# ============================================================================
# Global QodoAI client
qodo_client = None
@asynccontextmanager
async def lifespan(app: FastAPI):
"""Application lifespan manager."""
global qodo_client
logger.info("Starting FastAPI application...")
qodo_client = QodoAI()
yield
logger.info("Shutting down FastAPI application...")
# Create FastAPI app
app = FastAPI(
title="QodoAI OpenAI-Compatible API",
description="FastAPI application providing OpenAI-compatible endpoints using QodoAI",
version="1.0.0",
lifespan=lifespan
)
# Add CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Authentication dependency
async def verify_api_key(credentials: HTTPAuthorizationCredentials = Depends(security)):
"""Verify API key from Authorization header."""
if not credentials:
raise HTTPException(
status_code=status.HTTP_401_UNAUTHORIZED,
detail="Missing API key",
headers={"WWW-Authenticate": "Bearer"},
)
# In a production environment, you would validate the API key here
# For now, we accept any non-empty key
if not credentials.credentials:
raise HTTPException(
status_code=status.HTTP_401_UNAUTHORIZED,
detail="Invalid API key",
headers={"WWW-Authenticate": "Bearer"},
)
return credentials.credentials
# ============================================================================
# API Endpoints
# ============================================================================
@app.get("/health", response_model=HealthResponse)
async def health_check():
"""Health check endpoint."""
return HealthResponse(
status="healthy",
timestamp=int(time.time())
)
@app.get("/v1/models", response_model=ModelListResponse)
async def list_models(api_key: str = Depends(verify_api_key)):
"""List available models."""
try:
models = []
for model_id in QodoAI.AVAILABLE_MODELS:
models.append(ModelInfo(
id=model_id,
created=int(time.time()),
owned_by="qodo"
))
return ModelListResponse(data=models)
except Exception as e:
logger.error(f"Error listing models: {e}")
raise HTTPException(status_code=500, detail="Failed to list models")
@app.post("/v1/chat/completions")
async def create_chat_completion(
request: ChatCompletionRequest,
api_key: str = Depends(verify_api_key)
):
"""Create a chat completion."""
try:
# Validate model
if request.model not in QodoAI.AVAILABLE_MODELS:
raise HTTPException(
status_code=400,
detail=f"Model '{request.model}' is not available. Available models: {QodoAI.AVAILABLE_MODELS}"
)
# Create chat completion
result = await qodo_client.create_chat_completion(request)
if request.stream:
# Return streaming response
return StreamingResponse(
result,
media_type="text/plain",
headers={
"Cache-Control": "no-cache",
"Connection": "keep-alive",
"Content-Type": "text/plain; charset=utf-8"
}
)
else:
# Return non-streaming response
return result
except HTTPException:
raise
except Exception as e:
logger.error(f"Error creating chat completion: {e}")
raise HTTPException(status_code=500, detail="Failed to create chat completion")
@app.exception_handler(Exception)
async def global_exception_handler(request: Request, exc: Exception):
"""Global exception handler."""
logger.error(f"Unhandled exception: {exc}")
return JSONResponse(
status_code=500,
content={"error": {"message": "Internal server error", "type": "internal_error"}}
)
@app.middleware("http")
async def log_requests(request: Request, call_next):
"""Log all requests."""
start_time = time.time()
# Log request
logger.info(f"{request.method} {request.url.path} - Start")
response = await call_next(request)
# Log response
process_time = time.time() - start_time
logger.info(f"{request.method} {request.url.path} - {response.status_code} - {process_time:.3f}s")
return response
# ============================================================================
# Main Application Entry Point
# ============================================================================
if __name__ == "__main__":
uvicorn.run(
"main:app",
host="0.0.0.0",
port=8000,
reload=True,
log_level="info"
)