File size: 5,012 Bytes
17c13db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2819245
17c13db
 
 
 
 
 
 
 
 
 
2819245
17c13db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2819245
17c13db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2819245
17c13db
 
 
 
 
 
 
2819245
17c13db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
from fastapi import FastAPI, HTTPException, File, UploadFile
from pydantic import BaseModel
import os
from lightrag import LightRAG, QueryParam
from lightrag.llm import ollama_embedding, ollama_model_complete
from lightrag.utils import EmbeddingFunc
from typing import Optional
import asyncio
import nest_asyncio
import aiofiles

# Apply nest_asyncio to solve event loop issues
nest_asyncio.apply()

DEFAULT_RAG_DIR = "index_default"
app = FastAPI(title="LightRAG API", description="API for RAG operations")

DEFAULT_INPUT_FILE = "book.txt"
INPUT_FILE = os.environ.get("INPUT_FILE", f"{DEFAULT_INPUT_FILE}")
print(f"INPUT_FILE: {INPUT_FILE}")

# Configure working directory
WORKING_DIR = os.environ.get("RAG_DIR", f"{DEFAULT_RAG_DIR}")
print(f"WORKING_DIR: {WORKING_DIR}")


if not os.path.exists(WORKING_DIR):
    os.mkdir(WORKING_DIR)


rag = LightRAG(
    working_dir=WORKING_DIR,
    llm_model_func=ollama_model_complete,
    llm_model_name="gemma2:9b",
    llm_model_max_async=4,
    llm_model_max_token_size=8192,
    llm_model_kwargs={"host": "http://localhost:11434", "options": {"num_ctx": 8192}},
    embedding_func=EmbeddingFunc(
        embedding_dim=768,
        max_token_size=8192,
        func=lambda texts: ollama_embedding(
            texts, embed_model="nomic-embed-text", host="http://localhost:11434"
        ),
    ),
)


# Data models
class QueryRequest(BaseModel):
    query: str
    mode: str = "hybrid"
    only_need_context: bool = False


class InsertRequest(BaseModel):
    text: str


class Response(BaseModel):
    status: str
    data: Optional[str] = None
    message: Optional[str] = None


# API routes
@app.post("/query", response_model=Response)
async def query_endpoint(request: QueryRequest):
    try:
        loop = asyncio.get_event_loop()
        result = await loop.run_in_executor(
            None,
            lambda: rag.query(
                request.query,
                param=QueryParam(
                    mode=request.mode, only_need_context=request.only_need_context
                ),
            ),
        )
        return Response(status="success", data=result)
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))


# insert by text
@app.post("/insert", response_model=Response)
async def insert_endpoint(request: InsertRequest):
    try:
        loop = asyncio.get_event_loop()
        await loop.run_in_executor(None, lambda: rag.insert(request.text))
        return Response(status="success", message="Text inserted successfully")
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))


# insert by file in payload
@app.post("/insert_file", response_model=Response)
async def insert_file(file: UploadFile = File(...)):
    try:
        file_content = await file.read()
        # Read file content
        try:
            content = file_content.decode("utf-8")
        except UnicodeDecodeError:
            # If UTF-8 decoding fails, try other encodings
            content = file_content.decode("gbk")
        # Insert file content
        loop = asyncio.get_event_loop()
        await loop.run_in_executor(None, lambda: rag.insert(content))

        return Response(
            status="success",
            message=f"File content from {file.filename} inserted successfully",
        )
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))


# insert by local default file
@app.post("/insert_default_file", response_model=Response)
@app.get("/insert_default_file", response_model=Response)
async def insert_default_file():
    try:
        # Read file content from book.txt
        async with aiofiles.open(INPUT_FILE, "r", encoding="utf-8") as file:
            content = await file.read()
        print(f"read input file {INPUT_FILE} successfully")
        # Insert file content
        loop = asyncio.get_event_loop()
        await loop.run_in_executor(None, lambda: rag.insert(content))

        return Response(
            status="success",
            message=f"File content from {INPUT_FILE} inserted successfully",
        )
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))


@app.get("/health")
async def health_check():
    return {"status": "healthy"}


if __name__ == "__main__":
    import uvicorn

    uvicorn.run(app, host="0.0.0.0", port=8020)

# Usage example
# To run the server, use the following command in your terminal:
# python lightrag_api_openai_compatible_demo.py

# Example requests:
# 1. Query:
# curl -X POST "http://127.0.0.1:8020/query" -H "Content-Type: application/json" -d '{"query": "your query here", "mode": "hybrid"}'

# 2. Insert text:
# curl -X POST "http://127.0.0.1:8020/insert" -H "Content-Type: application/json" -d '{"text": "your text here"}'

# 3. Insert file:
# curl -X POST "http://127.0.0.1:8020/insert_file" -H "Content-Type: application/json" -d '{"file_path": "path/to/your/file.txt"}'

# 4. Health check:
# curl -X GET "http://127.0.0.1:8020/health"