File size: 4,584 Bytes
5dcb28f
 
8d66028
 
 
 
 
 
 
 
bf0dfbd
 
 
8d66028
 
 
 
 
 
 
 
 
 
 
 
 
 
5dcb28f
8d66028
94cd4d3
8d66028
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5dcb28f
 
 
 
 
 
 
 
 
8d66028
5dcb28f
8d66028
 
 
 
 
 
7cf01b2
8d66028
 
 
 
 
 
 
 
 
5dcb28f
 
 
0923c61
8d66028
 
 
 
 
 
f9fed52
 
8d66028
 
 
5dcb28f
8d66028
 
 
 
5dcb28f
 
 
 
 
 
 
 
8d66028
 
 
 
 
 
5dcb28f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import sys
import os
from pathlib import Path
import asyncio
from lightrag import LightRAG, QueryParam
from lightrag.llm import openai_complete_if_cache, openai_embedding
from lightrag.utils import EmbeddingFunc
import numpy as np
from lightrag.kg.oracle_impl import OracleDB

print(os.getcwd())
script_directory = Path(__file__).resolve().parent.parent
sys.path.append(os.path.abspath(script_directory))

WORKING_DIR = "./dickens"

# We use OpenAI compatible API to call LLM on Oracle Cloud
# More docs here https://github.com/jin38324/OCI_GenAI_access_gateway
BASE_URL = "http://xxx.xxx.xxx.xxx:8088/v1/"
APIKEY = "ocigenerativeai"
CHATMODEL = "cohere.command-r-plus"
EMBEDMODEL = "cohere.embed-multilingual-v3.0"


if not os.path.exists(WORKING_DIR):
    os.mkdir(WORKING_DIR)


async def llm_model_func(
    prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
) -> str:
    return await openai_complete_if_cache(
        CHATMODEL,
        prompt,
        system_prompt=system_prompt,
        history_messages=history_messages,
        api_key=APIKEY,
        base_url=BASE_URL,
        **kwargs,
    )


async def embedding_func(texts: list[str]) -> np.ndarray:
    return await openai_embedding(
        texts,
        model=EMBEDMODEL,
        api_key=APIKEY,
        base_url=BASE_URL,
    )


async def get_embedding_dim():
    test_text = ["This is a test sentence."]
    embedding = await embedding_func(test_text)
    embedding_dim = embedding.shape[1]
    return embedding_dim


async def main():
    try:
        # Detect embedding dimension
        embedding_dimension = await get_embedding_dim()
        print(f"Detected embedding dimension: {embedding_dimension}")

        # Create Oracle DB connection
        # The `config` parameter is the connection configuration of Oracle DB
        # More docs here https://python-oracledb.readthedocs.io/en/latest/user_guide/connection_handling.html
        # We storage data in unified tables, so we need to set a `workspace` parameter to specify which docs we want to store and query
        # Below is an example of how to connect to Oracle Autonomous Database on Oracle Cloud
        oracle_db = OracleDB(
            config={
                "user": "username",
                "password": "xxxxxxxxx",
                "dsn": "xxxxxxx_medium",
                "config_dir": "dir/path/to/oracle/config",
                "wallet_location": "dir/path/to/oracle/wallet",
                "wallet_password": "xxxxxxxxx",
                "workspace": "company",  # specify which docs you want to store and query
            }
        )

        # Check if Oracle DB tables exist, if not, tables will be created
        await oracle_db.check_tables()

        # Initialize LightRAG
        # We use Oracle DB as the KV/vector/graph storage
        # You can add `addon_params={"example_number": 1, "language": "Simplfied Chinese"}` to control the prompt
        rag = LightRAG(
            enable_llm_cache=False,
            working_dir=WORKING_DIR,
            chunk_token_size=512,
            llm_model_func=llm_model_func,
            embedding_func=EmbeddingFunc(
                embedding_dim=embedding_dimension,
                max_token_size=512,
                func=embedding_func,
            ),
            graph_storage="OracleGraphStorage",
            kv_storage="OracleKVStorage",
            vector_storage="OracleVectorDBStorage",
        )

        # Setthe KV/vector/graph storage's `db` property, so all operation will use same connection pool
        rag.graph_storage_cls.db = oracle_db
        rag.key_string_value_json_storage_cls.db = oracle_db
        rag.vector_db_storage_cls.db = oracle_db
        # add embedding_func for graph database, it's deleted in commit 5661d76860436f7bf5aef2e50d9ee4a59660146c
        rag.chunk_entity_relation_graph.embedding_func = rag.embedding_func

        # Extract and Insert into LightRAG storage
        with open("./dickens/demo.txt", "r", encoding="utf-8") as f:
            await rag.ainsert(f.read())

        # Perform search in different modes
        modes = ["naive", "local", "global", "hybrid"]
        for mode in modes:
            print("=" * 20, mode, "=" * 20)
            print(
                await rag.aquery(
                    "What are the top themes in this story?",
                    param=QueryParam(mode=mode),
                )
            )
            print("-" * 100, "\n")

    except Exception as e:
        print(f"An error occurred: {e}")


if __name__ == "__main__":
    asyncio.run(main())