File size: 4,584 Bytes
5dcb28f 8d66028 bf0dfbd 8d66028 5dcb28f 8d66028 94cd4d3 8d66028 5dcb28f 8d66028 5dcb28f 8d66028 7cf01b2 8d66028 5dcb28f 0923c61 8d66028 f9fed52 8d66028 5dcb28f 8d66028 5dcb28f 8d66028 5dcb28f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
import sys
import os
from pathlib import Path
import asyncio
from lightrag import LightRAG, QueryParam
from lightrag.llm import openai_complete_if_cache, openai_embedding
from lightrag.utils import EmbeddingFunc
import numpy as np
from lightrag.kg.oracle_impl import OracleDB
print(os.getcwd())
script_directory = Path(__file__).resolve().parent.parent
sys.path.append(os.path.abspath(script_directory))
WORKING_DIR = "./dickens"
# We use OpenAI compatible API to call LLM on Oracle Cloud
# More docs here https://github.com/jin38324/OCI_GenAI_access_gateway
BASE_URL = "http://xxx.xxx.xxx.xxx:8088/v1/"
APIKEY = "ocigenerativeai"
CHATMODEL = "cohere.command-r-plus"
EMBEDMODEL = "cohere.embed-multilingual-v3.0"
if not os.path.exists(WORKING_DIR):
os.mkdir(WORKING_DIR)
async def llm_model_func(
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
) -> str:
return await openai_complete_if_cache(
CHATMODEL,
prompt,
system_prompt=system_prompt,
history_messages=history_messages,
api_key=APIKEY,
base_url=BASE_URL,
**kwargs,
)
async def embedding_func(texts: list[str]) -> np.ndarray:
return await openai_embedding(
texts,
model=EMBEDMODEL,
api_key=APIKEY,
base_url=BASE_URL,
)
async def get_embedding_dim():
test_text = ["This is a test sentence."]
embedding = await embedding_func(test_text)
embedding_dim = embedding.shape[1]
return embedding_dim
async def main():
try:
# Detect embedding dimension
embedding_dimension = await get_embedding_dim()
print(f"Detected embedding dimension: {embedding_dimension}")
# Create Oracle DB connection
# The `config` parameter is the connection configuration of Oracle DB
# More docs here https://python-oracledb.readthedocs.io/en/latest/user_guide/connection_handling.html
# We storage data in unified tables, so we need to set a `workspace` parameter to specify which docs we want to store and query
# Below is an example of how to connect to Oracle Autonomous Database on Oracle Cloud
oracle_db = OracleDB(
config={
"user": "username",
"password": "xxxxxxxxx",
"dsn": "xxxxxxx_medium",
"config_dir": "dir/path/to/oracle/config",
"wallet_location": "dir/path/to/oracle/wallet",
"wallet_password": "xxxxxxxxx",
"workspace": "company", # specify which docs you want to store and query
}
)
# Check if Oracle DB tables exist, if not, tables will be created
await oracle_db.check_tables()
# Initialize LightRAG
# We use Oracle DB as the KV/vector/graph storage
# You can add `addon_params={"example_number": 1, "language": "Simplfied Chinese"}` to control the prompt
rag = LightRAG(
enable_llm_cache=False,
working_dir=WORKING_DIR,
chunk_token_size=512,
llm_model_func=llm_model_func,
embedding_func=EmbeddingFunc(
embedding_dim=embedding_dimension,
max_token_size=512,
func=embedding_func,
),
graph_storage="OracleGraphStorage",
kv_storage="OracleKVStorage",
vector_storage="OracleVectorDBStorage",
)
# Setthe KV/vector/graph storage's `db` property, so all operation will use same connection pool
rag.graph_storage_cls.db = oracle_db
rag.key_string_value_json_storage_cls.db = oracle_db
rag.vector_db_storage_cls.db = oracle_db
# add embedding_func for graph database, it's deleted in commit 5661d76860436f7bf5aef2e50d9ee4a59660146c
rag.chunk_entity_relation_graph.embedding_func = rag.embedding_func
# Extract and Insert into LightRAG storage
with open("./dickens/demo.txt", "r", encoding="utf-8") as f:
await rag.ainsert(f.read())
# Perform search in different modes
modes = ["naive", "local", "global", "hybrid"]
for mode in modes:
print("=" * 20, mode, "=" * 20)
print(
await rag.aquery(
"What are the top themes in this story?",
param=QueryParam(mode=mode),
)
)
print("-" * 100, "\n")
except Exception as e:
print(f"An error occurred: {e}")
if __name__ == "__main__":
asyncio.run(main())
|