File size: 7,709 Bytes
0228302 6c0bb1c 0228302 6c0bb1c 0228302 6c0bb1c 0228302 6c0bb1c 0228302 6c0bb1c 0228302 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
# pip install -q -U google-genai to use gemini as a client
import os
from typing import Optional
import dataclasses
from pathlib import Path
import hashlib
import numpy as np
from google import genai
from google.genai import types
from dotenv import load_dotenv
from lightrag.utils import EmbeddingFunc, Tokenizer
from lightrag import LightRAG, QueryParam
from sentence_transformers import SentenceTransformer
from lightrag.kg.shared_storage import initialize_pipeline_status
import sentencepiece as spm
import requests
import asyncio
import nest_asyncio
# Apply nest_asyncio to solve event loop issues
nest_asyncio.apply()
load_dotenv()
gemini_api_key = os.getenv("GEMINI_API_KEY")
WORKING_DIR = "./dickens"
if os.path.exists(WORKING_DIR):
import shutil
shutil.rmtree(WORKING_DIR)
os.mkdir(WORKING_DIR)
class GemmaTokenizer(Tokenizer):
# adapted from google-cloud-aiplatform[tokenization]
@dataclasses.dataclass(frozen=True)
class _TokenizerConfig:
tokenizer_model_url: str
tokenizer_model_hash: str
_TOKENIZERS = {
"google/gemma2": _TokenizerConfig(
tokenizer_model_url="https://raw.githubusercontent.com/google/gemma_pytorch/33b652c465537c6158f9a472ea5700e5e770ad3f/tokenizer/tokenizer.model",
tokenizer_model_hash="61a7b147390c64585d6c3543dd6fc636906c9af3865a5548f27f31aee1d4c8e2",
),
"google/gemma3": _TokenizerConfig(
tokenizer_model_url="https://raw.githubusercontent.com/google/gemma_pytorch/cb7c0152a369e43908e769eb09e1ce6043afe084/tokenizer/gemma3_cleaned_262144_v2.spiece.model",
tokenizer_model_hash="1299c11d7cf632ef3b4e11937501358ada021bbdf7c47638d13c0ee982f2e79c",
),
}
def __init__(
self, model_name: str = "gemini-2.0-flash", tokenizer_dir: Optional[str] = None
):
# https://github.com/google/gemma_pytorch/tree/main/tokenizer
if "1.5" in model_name or "1.0" in model_name:
# up to gemini 1.5 gemma2 is a comparable local tokenizer
# https://github.com/googleapis/python-aiplatform/blob/main/vertexai/tokenization/_tokenizer_loading.py
tokenizer_name = "google/gemma2"
else:
# for gemini > 2.0 gemma3 was used
tokenizer_name = "google/gemma3"
file_url = self._TOKENIZERS[tokenizer_name].tokenizer_model_url
tokenizer_model_name = file_url.rsplit("/", 1)[1]
expected_hash = self._TOKENIZERS[tokenizer_name].tokenizer_model_hash
tokenizer_dir = Path(tokenizer_dir)
if tokenizer_dir.is_dir():
file_path = tokenizer_dir / tokenizer_model_name
model_data = self._maybe_load_from_cache(
file_path=file_path, expected_hash=expected_hash
)
else:
model_data = None
if not model_data:
model_data = self._load_from_url(
file_url=file_url, expected_hash=expected_hash
)
self.save_tokenizer_to_cache(cache_path=file_path, model_data=model_data)
tokenizer = spm.SentencePieceProcessor()
tokenizer.LoadFromSerializedProto(model_data)
super().__init__(model_name=model_name, tokenizer=tokenizer)
def _is_valid_model(self, model_data: bytes, expected_hash: str) -> bool:
"""Returns true if the content is valid by checking the hash."""
return hashlib.sha256(model_data).hexdigest() == expected_hash
def _maybe_load_from_cache(self, file_path: Path, expected_hash: str) -> bytes:
"""Loads the model data from the cache path."""
if not file_path.is_file():
return
with open(file_path, "rb") as f:
content = f.read()
if self._is_valid_model(model_data=content, expected_hash=expected_hash):
return content
# Cached file corrupted.
self._maybe_remove_file(file_path)
def _load_from_url(self, file_url: str, expected_hash: str) -> bytes:
"""Loads model bytes from the given file url."""
resp = requests.get(file_url)
resp.raise_for_status()
content = resp.content
if not self._is_valid_model(model_data=content, expected_hash=expected_hash):
actual_hash = hashlib.sha256(content).hexdigest()
raise ValueError(
f"Downloaded model file is corrupted."
f" Expected hash {expected_hash}. Got file hash {actual_hash}."
)
return content
@staticmethod
def save_tokenizer_to_cache(cache_path: Path, model_data: bytes) -> None:
"""Saves the model data to the cache path."""
try:
if not cache_path.is_file():
cache_dir = cache_path.parent
cache_dir.mkdir(parents=True, exist_ok=True)
with open(cache_path, "wb") as f:
f.write(model_data)
except OSError:
# Don't raise if we cannot write file.
pass
@staticmethod
def _maybe_remove_file(file_path: Path) -> None:
"""Removes the file if exists."""
if not file_path.is_file():
return
try:
file_path.unlink()
except OSError:
# Don't raise if we cannot remove file.
pass
# def encode(self, content: str) -> list[int]:
# return self.tokenizer.encode(content)
# def decode(self, tokens: list[int]) -> str:
# return self.tokenizer.decode(tokens)
async def llm_model_func(
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
) -> str:
# 1. Initialize the GenAI Client with your Gemini API Key
client = genai.Client(api_key=gemini_api_key)
# 2. Combine prompts: system prompt, history, and user prompt
if history_messages is None:
history_messages = []
combined_prompt = ""
if system_prompt:
combined_prompt += f"{system_prompt}\n"
for msg in history_messages:
# Each msg is expected to be a dict: {"role": "...", "content": "..."}
combined_prompt += f"{msg['role']}: {msg['content']}\n"
# Finally, add the new user prompt
combined_prompt += f"user: {prompt}"
# 3. Call the Gemini model
response = client.models.generate_content(
model="gemini-1.5-flash",
contents=[combined_prompt],
config=types.GenerateContentConfig(max_output_tokens=500, temperature=0.1),
)
# 4. Return the response text
return response.text
async def embedding_func(texts: list[str]) -> np.ndarray:
model = SentenceTransformer("all-MiniLM-L6-v2")
embeddings = model.encode(texts, convert_to_numpy=True)
return embeddings
async def initialize_rag():
rag = LightRAG(
working_dir=WORKING_DIR,
# tiktoken_model_name="gpt-4o-mini",
tokenizer=GemmaTokenizer(
tokenizer_dir=(Path(WORKING_DIR) / "vertexai_tokenizer_model"),
model_name="gemini-2.0-flash",
),
llm_model_func=llm_model_func,
embedding_func=EmbeddingFunc(
embedding_dim=384,
max_token_size=8192,
func=embedding_func,
),
)
await rag.initialize_storages()
await initialize_pipeline_status()
return rag
def main():
# Initialize RAG instance
rag = asyncio.run(initialize_rag())
file_path = "story.txt"
with open(file_path, "r") as file:
text = file.read()
rag.insert(text)
response = rag.query(
query="What is the main theme of the story?",
param=QueryParam(mode="hybrid", top_k=5, response_type="single line"),
)
print(response)
if __name__ == "__main__":
main()
|