File size: 2,706 Bytes
243b13c
 
 
 
 
 
46a55f5
243b13c
 
 
46a55f5
243b13c
 
 
46a55f5
243b13c
 
 
 
 
 
 
 
 
 
 
46a55f5
243b13c
 
 
 
 
 
 
46a55f5
243b13c
 
 
 
 
 
 
 
 
 
 
 
46a55f5
243b13c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46a55f5
243b13c
 
 
46a55f5
 
243b13c
 
 
 
 
 
 
46a55f5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import os
import time
from lightrag import LightRAG, QueryParam
from lightrag.llm import ollama_model_complete, ollama_embedding
from lightrag.utils import EmbeddingFunc

# Working directory and the directory path for text files
WORKING_DIR = "./dickens"
TEXT_FILES_DIR = "/llm/mt"

# Create the working directory if it doesn't exist
if not os.path.exists(WORKING_DIR):
    os.mkdir(WORKING_DIR)

# Initialize LightRAG
rag = LightRAG(
    working_dir=WORKING_DIR,
    llm_model_func=ollama_model_complete,
    llm_model_name="qwen2.5:3b-instruct-max-context",
    embedding_func=EmbeddingFunc(
        embedding_dim=768,
        max_token_size=8192,
        func=lambda texts: ollama_embedding(texts, embed_model="nomic-embed-text"),
    ),
)

# Read all .txt files from the TEXT_FILES_DIR directory
texts = []
for filename in os.listdir(TEXT_FILES_DIR):
    if filename.endswith('.txt'):
        file_path = os.path.join(TEXT_FILES_DIR, filename)
        with open(file_path, 'r', encoding='utf-8') as file:
            texts.append(file.read())

# Batch insert texts into LightRAG with a retry mechanism
def insert_texts_with_retry(rag, texts, retries=3, delay=5):
    for _ in range(retries):
        try:
            rag.insert(texts)
            return
        except Exception as e:
            print(f"Error occurred during insertion: {e}. Retrying in {delay} seconds...")
            time.sleep(delay)
    raise RuntimeError("Failed to insert texts after multiple retries.")

insert_texts_with_retry(rag, texts)

# Perform different types of queries and handle potential errors
try:
    print(rag.query("What are the top themes in this story?", param=QueryParam(mode="naive")))
except Exception as e:
    print(f"Error performing naive search: {e}")

try:
    print(rag.query("What are the top themes in this story?", param=QueryParam(mode="local")))
except Exception as e:
    print(f"Error performing local search: {e}")

try:
    print(rag.query("What are the top themes in this story?", param=QueryParam(mode="global")))
except Exception as e:
    print(f"Error performing global search: {e}")

try:
    print(rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid")))
except Exception as e:
    print(f"Error performing hybrid search: {e}")

# Function to clear VRAM resources
def clear_vram():
    os.system("sudo nvidia-smi --gpu-reset")

# Regularly clear VRAM to prevent overflow
clear_vram_interval = 3600  # Clear once every hour
start_time = time.time()

while True:
    current_time = time.time()
    if current_time - start_time > clear_vram_interval:
        clear_vram()
        start_time = current_time
    time.sleep(60)  # Check the time every minute