File size: 13,405 Bytes
a5325c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
from fastapi import FastAPI, HTTPException, File, UploadFile, Form
from pydantic import BaseModel
import logging
import argparse
from lightrag import LightRAG, QueryParam
from lightrag.llm import lollms_model_complete, lollms_embed
from lightrag.utils import EmbeddingFunc
from typing import Optional, List
from enum import Enum
from pathlib import Path
import shutil
import aiofiles
from ascii_colors import trace_exception


def parse_args():
    parser = argparse.ArgumentParser(
        description="LightRAG FastAPI Server with separate working and input directories"
    )

    # Server configuration
    parser.add_argument(
        "--host", default="0.0.0.0", help="Server host (default: 0.0.0.0)"
    )
    parser.add_argument(
        "--port", type=int, default=9621, help="Server port (default: 9621)"
    )

    # Directory configuration
    parser.add_argument(
        "--working-dir",
        default="./rag_storage",
        help="Working directory for RAG storage (default: ./rag_storage)",
    )
    parser.add_argument(
        "--input-dir",
        default="./inputs",
        help="Directory containing input documents (default: ./inputs)",
    )

    # Model configuration
    parser.add_argument(
        "--model",
        default="mistral-nemo:latest",
        help="LLM model name (default: mistral-nemo:latest)",
    )
    parser.add_argument(
        "--embedding-model",
        default="bge-m3:latest",
        help="Embedding model name (default: bge-m3:latest)",
    )
    parser.add_argument(
        "--lollms-host",
        default="http://localhost:11434",
        help="lollms host URL (default: http://localhost:11434)",
    )

    # RAG configuration
    parser.add_argument(
        "--max-async", type=int, default=4, help="Maximum async operations (default: 4)"
    )
    parser.add_argument(
        "--max-tokens",
        type=int,
        default=32768,
        help="Maximum token size (default: 32768)",
    )
    parser.add_argument(
        "--embedding-dim",
        type=int,
        default=1024,
        help="Embedding dimensions (default: 1024)",
    )
    parser.add_argument(
        "--max-embed-tokens",
        type=int,
        default=8192,
        help="Maximum embedding token size (default: 8192)",
    )

    # Logging configuration
    parser.add_argument(
        "--log-level",
        default="INFO",
        choices=["DEBUG", "INFO", "WARNING", "ERROR", "CRITICAL"],
        help="Logging level (default: INFO)",
    )

    return parser.parse_args()


class DocumentManager:
    """Handles document operations and tracking"""

    def __init__(self, input_dir: str, supported_extensions: tuple = (".txt", ".md")):
        self.input_dir = Path(input_dir)
        self.supported_extensions = supported_extensions
        self.indexed_files = set()

        # Create input directory if it doesn't exist
        self.input_dir.mkdir(parents=True, exist_ok=True)

    def scan_directory(self) -> List[Path]:
        """Scan input directory for new files"""
        new_files = []
        for ext in self.supported_extensions:
            for file_path in self.input_dir.rglob(f"*{ext}"):
                if file_path not in self.indexed_files:
                    new_files.append(file_path)
        return new_files

    def mark_as_indexed(self, file_path: Path):
        """Mark a file as indexed"""
        self.indexed_files.add(file_path)

    def is_supported_file(self, filename: str) -> bool:
        """Check if file type is supported"""
        return any(filename.lower().endswith(ext) for ext in self.supported_extensions)


# Pydantic models
class SearchMode(str, Enum):
    naive = "naive"
    local = "local"
    global_ = "global"
    hybrid = "hybrid"


class QueryRequest(BaseModel):
    query: str
    mode: SearchMode = SearchMode.hybrid
    stream: bool = False


class QueryResponse(BaseModel):
    response: str


class InsertTextRequest(BaseModel):
    text: str
    description: Optional[str] = None


class InsertResponse(BaseModel):
    status: str
    message: str
    document_count: int


def create_app(args):
    # Setup logging
    logging.basicConfig(
        format="%(levelname)s:%(message)s", level=getattr(logging, args.log_level)
    )

    # Initialize FastAPI app
    app = FastAPI(
        title="LightRAG API",
        description="API for querying text using LightRAG with separate storage and input directories",
    )

    # Create working directory if it doesn't exist
    Path(args.working_dir).mkdir(parents=True, exist_ok=True)

    # Initialize document manager
    doc_manager = DocumentManager(args.input_dir)

    # Initialize RAG
    rag = LightRAG(
        working_dir=args.working_dir,
        llm_model_func=lollms_model_complete,
        llm_model_name=args.model,
        llm_model_max_async=args.max_async,
        llm_model_max_token_size=args.max_tokens,
        llm_model_kwargs={
            "host": args.lollms_host,
            "options": {"num_ctx": args.max_tokens},
        },
        embedding_func=EmbeddingFunc(
            embedding_dim=args.embedding_dim,
            max_token_size=args.max_embed_tokens,
            func=lambda texts: lollms_embed(
                texts, embed_model=args.embedding_model, host=args.lollms_host
            ),
        ),
    )

    @app.on_event("startup")
    async def startup_event():
        """Index all files in input directory during startup"""
        try:
            new_files = doc_manager.scan_directory()
            for file_path in new_files:
                try:
                    # Use async file reading
                    async with aiofiles.open(file_path, "r", encoding="utf-8") as f:
                        content = await f.read()
                        # Use the async version of insert directly
                        await rag.ainsert(content)
                        doc_manager.mark_as_indexed(file_path)
                        logging.info(f"Indexed file: {file_path}")
                except Exception as e:
                    trace_exception(e)
                    logging.error(f"Error indexing file {file_path}: {str(e)}")

            logging.info(f"Indexed {len(new_files)} documents from {args.input_dir}")

        except Exception as e:
            logging.error(f"Error during startup indexing: {str(e)}")

    @app.post("/documents/scan")
    async def scan_for_new_documents():
        """Manually trigger scanning for new documents"""
        try:
            new_files = doc_manager.scan_directory()
            indexed_count = 0

            for file_path in new_files:
                try:
                    with open(file_path, "r", encoding="utf-8") as f:
                        content = f.read()
                        rag.insert(content)
                        doc_manager.mark_as_indexed(file_path)
                        indexed_count += 1
                except Exception as e:
                    logging.error(f"Error indexing file {file_path}: {str(e)}")

            return {
                "status": "success",
                "indexed_count": indexed_count,
                "total_documents": len(doc_manager.indexed_files),
            }
        except Exception as e:
            raise HTTPException(status_code=500, detail=str(e))

    @app.post("/documents/upload")
    async def upload_to_input_dir(file: UploadFile = File(...)):
        """Upload a file to the input directory"""
        try:
            if not doc_manager.is_supported_file(file.filename):
                raise HTTPException(
                    status_code=400,
                    detail=f"Unsupported file type. Supported types: {doc_manager.supported_extensions}",
                )

            file_path = doc_manager.input_dir / file.filename
            with open(file_path, "wb") as buffer:
                shutil.copyfileobj(file.file, buffer)

            # Immediately index the uploaded file
            with open(file_path, "r", encoding="utf-8") as f:
                content = f.read()
                rag.insert(content)
                doc_manager.mark_as_indexed(file_path)

            return {
                "status": "success",
                "message": f"File uploaded and indexed: {file.filename}",
                "total_documents": len(doc_manager.indexed_files),
            }
        except Exception as e:
            raise HTTPException(status_code=500, detail=str(e))

    @app.post("/query", response_model=QueryResponse)
    async def query_text(request: QueryRequest):
        try:
            response = await rag.aquery(
                request.query,
                param=QueryParam(mode=request.mode, stream=request.stream),
            )

            if request.stream:
                result = ""
                async for chunk in response:
                    result += chunk
                return QueryResponse(response=result)
            else:
                return QueryResponse(response=response)
        except Exception as e:
            raise HTTPException(status_code=500, detail=str(e))

    @app.post("/query/stream")
    async def query_text_stream(request: QueryRequest):
        try:
            response = rag.query(
                request.query, param=QueryParam(mode=request.mode, stream=True)
            )

            async def stream_generator():
                async for chunk in response:
                    yield chunk

            return stream_generator()
        except Exception as e:
            raise HTTPException(status_code=500, detail=str(e))

    @app.post("/documents/text", response_model=InsertResponse)
    async def insert_text(request: InsertTextRequest):
        try:
            rag.insert(request.text)
            return InsertResponse(
                status="success",
                message="Text successfully inserted",
                document_count=len(rag),
            )
        except Exception as e:
            raise HTTPException(status_code=500, detail=str(e))

    @app.post("/documents/file", response_model=InsertResponse)
    async def insert_file(file: UploadFile = File(...), description: str = Form(None)):
        try:
            content = await file.read()

            if file.filename.endswith((".txt", ".md")):
                text = content.decode("utf-8")
                rag.insert(text)
            else:
                raise HTTPException(
                    status_code=400,
                    detail="Unsupported file type. Only .txt and .md files are supported",
                )

            return InsertResponse(
                status="success",
                message=f"File '{file.filename}' successfully inserted",
                document_count=len(rag),
            )
        except UnicodeDecodeError:
            raise HTTPException(status_code=400, detail="File encoding not supported")
        except Exception as e:
            raise HTTPException(status_code=500, detail=str(e))

    @app.post("/documents/batch", response_model=InsertResponse)
    async def insert_batch(files: List[UploadFile] = File(...)):
        try:
            inserted_count = 0
            failed_files = []

            for file in files:
                try:
                    content = await file.read()
                    if file.filename.endswith((".txt", ".md")):
                        text = content.decode("utf-8")
                        rag.insert(text)
                        inserted_count += 1
                    else:
                        failed_files.append(f"{file.filename} (unsupported type)")
                except Exception as e:
                    failed_files.append(f"{file.filename} ({str(e)})")

            status_message = f"Successfully inserted {inserted_count} documents"
            if failed_files:
                status_message += f". Failed files: {', '.join(failed_files)}"

            return InsertResponse(
                status="success" if inserted_count > 0 else "partial_success",
                message=status_message,
                document_count=len(rag),
            )
        except Exception as e:
            raise HTTPException(status_code=500, detail=str(e))

    @app.delete("/documents", response_model=InsertResponse)
    async def clear_documents():
        try:
            rag.text_chunks = []
            rag.entities_vdb = None
            rag.relationships_vdb = None
            return InsertResponse(
                status="success",
                message="All documents cleared successfully",
                document_count=0,
            )
        except Exception as e:
            raise HTTPException(status_code=500, detail=str(e))

    @app.get("/health")
    async def get_status():
        """Get current system status"""
        return {
            "status": "healthy",
            "working_directory": str(args.working_dir),
            "input_directory": str(args.input_dir),
            "indexed_files": len(doc_manager.indexed_files),
            "configuration": {
                "model": args.model,
                "embedding_model": args.embedding_model,
                "max_tokens": args.max_tokens,
                "lollms_host": args.lollms_host,
            },
        }

    return app


if __name__ == "__main__":
    args = parse_args()
    import uvicorn

    app = create_app(args)
    uvicorn.run(app, host=args.host, port=args.port)