File size: 10,965 Bytes
c6de7de
 
 
e6098af
c6de7de
e6098af
d09c742
 
 
 
 
 
 
 
 
 
 
 
c6de7de
 
d2e0e19
 
c6de7de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
146956b
c6de7de
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
# LightRAG: Simple and Fast Retrieval-Augmented Generation


![θ―·ζ·»εŠ ε›Ύη‰‡ζθΏ°](https://i-blog.csdnimg.cn/direct/567139f1a36e4564abc63ce5c12b6271.jpeg)

<div align='center'>
     <p>
        <a href='https://github.com/HKUDS/LightRAG'><img src='https://img.shields.io/badge/Project-Page-Green'></a>
        <a href='https://arxiv.org/abs/2410.05779'><img src='https://img.shields.io/badge/arXiv-2410.05779-b31b1b'></a>
        <img src="https://badges.pufler.dev/visits/hkuds/lightrag?style=flat-square&logo=github">
        <img src='https://img.shields.io/github/stars/hkuds/lightrag?color=green&style=social' />
    </p>
    <p>
        <img src="https://img.shields.io/badge/python->=3.9.11-blue">
        <a href="https://pypi.org/project/lightrag-hku/"><img src="https://img.shields.io/pypi/v/lightrag-hku.svg"></a>
        <a href="https://pepy.tech/project/lightrag-hku"><img src="https://static.pepy.tech/badge/lightrag-hku/month"></a>
    </p>
    
This repository hosts the code of LightRAG. The structure of this code is based on [nano-graphrag](https://github.com/gusye1234/nano-graphrag).
![θ―·ζ·»εŠ ε›Ύη‰‡ζθΏ°](https://i-blog.csdnimg.cn/direct/b2aaf634151b4706892693ffb43d9093.png)
</div>

## Install

* Install from source

```bash
cd LightRAG
pip install -e .
```
* Install from PyPI
```bash
pip install lightrag-hku
```

## Quick Start

* Set OpenAI API key in environment: `export OPENAI_API_KEY="sk-...".`
* Download the demo text "A Christmas Carol by Charles Dickens" 
```bash
curl https://raw.githubusercontent.com/gusye1234/nano-graphrag/main/tests/mock_data.txt > ./book.txt
```
Use the below python snippet:

```python
from lightrag import LightRAG, QueryParam

rag = LightRAG(working_dir="./dickens")

with open("./book.txt") as f:
    rag.insert(f.read())

# Perform naive search
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="naive")))

# Perform local search
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="local")))

# Perform global search
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="global")))

# Perform hybird search
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="hybird")))
```
Batch Insert
```python
rag.insert(["TEXT1", "TEXT2",...])
```
Incremental Insert

```python
rag = LightRAG(working_dir="./dickens")

with open("./newText.txt") as f:
    rag.insert(f.read())
```
## Evaluation
### Dataset
The dataset used in LightRAG can be download from [TommyChien/UltraDomain](https://huggingface.co/datasets/TommyChien/UltraDomain).

### Generate Query
LightRAG uses the following prompt to generate high-level queries, with the corresponding code located in `example/generate_query.py`.
```python
Given the following description of a dataset:

{description}

Please identify 5 potential users who would engage with this dataset. For each user, list 5 tasks they would perform with this dataset. Then, for each (user, task) combination, generate 5 questions that require a high-level understanding of the entire dataset.

Output the results in the following structure:
- User 1: [user description]
    - Task 1: [task description]
        - Question 1:
        - Question 2:
        - Question 3:
        - Question 4:
        - Question 5:
    - Task 2: [task description]
        ...
    - Task 5: [task description]
- User 2: [user description]
    ...
- User 5: [user description]
    ...
```
 
 ### Batch Eval
To evaluate the performance of two RAG systems on high-level queries, LightRAG uses the following prompt, with the specific code available in `example/batch_eval.py`.
```python
---Role---
You are an expert tasked with evaluating two answers to the same question based on three criteria: **Comprehensiveness**, **Diversity**, and **Empowerment**.
---Goal---
You will evaluate two answers to the same question based on three criteria: **Comprehensiveness**, **Diversity**, and **Empowerment**. 

- **Comprehensiveness**: How much detail does the answer provide to cover all aspects and details of the question?
- **Diversity**: How varied and rich is the answer in providing different perspectives and insights on the question?
- **Empowerment**: How well does the answer help the reader understand and make informed judgments about the topic?

For each criterion, choose the better answer (either Answer 1 or Answer 2) and explain why. Then, select an overall winner based on these three categories.

Here is the question:
{query}

Here are the two answers:

**Answer 1:**
{answer1}

**Answer 2:**
{answer2}

Evaluate both answers using the three criteria listed above and provide detailed explanations for each criterion.

Output your evaluation in the following JSON format:

{{
    "Comprehensiveness": {{
        "Winner": "[Answer 1 or Answer 2]",
        "Explanation": "[Provide explanation here]"
    }},
    "Empowerment": {{
        "Winner": "[Answer 1 or Answer 2]",
        "Explanation": "[Provide explanation here]"
    }},
    "Overall Winner": {{
        "Winner": "[Answer 1 or Answer 2]",
        "Explanation": "[Summarize why this answer is the overall winner based on the three criteria]"
    }}
}}
```
### Overall Performance Table
### Overall Performance Table
|                      | **Agriculture**             |                       | **CS**                    |                       | **Legal**                 |                       | **Mix**                   |                       |
|----------------------|-------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
|                      | NaiveRAG                | **LightRAG**           | NaiveRAG              | **LightRAG**           | NaiveRAG              | **LightRAG**           | NaiveRAG              | **LightRAG**           |
| **Comprehensiveness** | 32.69%                  | **67.31%**             | 35.44%                | **64.56%**             | 19.05%                | **80.95%**             | 36.36%                | **63.64%**             |
| **Diversity**         | 24.09%                  | **75.91%**             | 35.24%                | **64.76%**             | 10.98%                | **89.02%**             | 30.76%                | **69.24%**             |
| **Empowerment**       | 31.35%                  | **68.65%**             | 35.48%                | **64.52%**             | 17.59%                | **82.41%**             | 40.95%                | **59.05%**             |
| **Overall**           | 33.30%                  | **66.70%**             | 34.76%                | **65.24%**             | 17.46%                | **82.54%**             | 37.59%                | **62.40%**             |
|                      | RQ-RAG                  | **LightRAG**           | RQ-RAG                | **LightRAG**           | RQ-RAG                | **LightRAG**           | RQ-RAG                | **LightRAG**           |
| **Comprehensiveness** | 32.05%                  | **67.95%**             | 39.30%                | **60.70%**             | 18.57%                | **81.43%**             | 38.89%                | **61.11%**             |
| **Diversity**         | 29.44%                  | **70.56%**             | 38.71%                | **61.29%**             | 15.14%                | **84.86%**             | 28.50%                | **71.50%**             |
| **Empowerment**       | 32.51%                  | **67.49%**             | 37.52%                | **62.48%**             | 17.80%                | **82.20%**             | 43.96%                | **56.04%**             |
| **Overall**           | 33.29%                  | **66.71%**             | 39.03%                | **60.97%**             | 17.80%                | **82.20%**             | 39.61%                | **60.39%**             |
|                      | HyDE                    | **LightRAG**           | HyDE                  | **LightRAG**           | HyDE                  | **LightRAG**           | HyDE                  | **LightRAG**           |
| **Comprehensiveness** | 24.39%                  | **75.61%**             | 36.49%                | **63.51%**             | 27.68%                | **72.32%**             | 42.17%                | **57.83%**             |
| **Diversity**         | 24.96%                  | **75.34%**             | 37.41%                | **62.59%**             | 18.79%                | **81.21%**             | 30.88%                | **69.12%**             |
| **Empowerment**       | 24.89%                  | **75.11%**             | 34.99%                | **65.01%**             | 26.99%                | **73.01%**             | **45.61%**            | **54.39%**             |
| **Overall**           | 23.17%                  | **76.83%**             | 35.67%                | **64.33%**             | 27.68%                | **72.32%**             | 42.72%                | **57.28%**             |
|                      | GraphRAG                | **LightRAG**           | GraphRAG              | **LightRAG**           | GraphRAG              | **LightRAG**           | GraphRAG              | **LightRAG**           |
| **Comprehensiveness** | 45.56%                  | **54.44%**             | 45.98%                | **54.02%**             | 47.13%                | **52.87%**             | **51.86%**            | 48.14%                |
| **Diversity**         | 19.65%                  | **80.35%**             | 39.64%                | **60.36%**             | 25.55%                | **74.45%**             | 35.87%                | **64.13%**             |
| **Empowerment**       | 36.69%                  | **63.31%**             | 45.09%                | **54.91%**             | 42.81%                | **57.19%**             | **52.94%**            | 47.06%                |
| **Overall**           | 43.62%                  | **56.38%**             | 45.98%                | **54.02%**             | 45.70%                | **54.30%**             | **51.86%**            | 48.14%                |

## Code Structure

```python
.
β”œβ”€β”€ examples
β”‚   β”œβ”€β”€ batch_eval.py
β”‚   β”œβ”€β”€ generate_query.py
β”‚   β”œβ”€β”€ insert.py
β”‚   └── query.py
β”œβ”€β”€ lightrag
β”‚   β”œβ”€β”€ __init__.py
β”‚   β”œβ”€β”€ base.py
β”‚   β”œβ”€β”€ lightrag.py
β”‚   β”œβ”€β”€ llm.py
β”‚   β”œβ”€β”€ operate.py
β”‚   β”œβ”€β”€ prompt.py
β”‚   β”œβ”€β”€ storage.py
β”‚   └── utils.jpeg
β”œβ”€β”€ LICENSE
β”œβ”€β”€ README.md
β”œβ”€β”€ requirements.txt
└── setup.py
```
## Citation

```python
@article{guo2024lightrag,
title={LightRAG: Simple and Fast Retrieval-Augmented Generation}, 
author={Zirui Guo and Lianghao Xia and Yanhua Yu and Tu Ao and Chao Huang},
year={2024},
eprint={2410.05779},
archivePrefix={arXiv},
primaryClass={cs.IR}
}
```