File size: 11,279 Bytes
6415615 ec53c0d 6415615 ec53c0d 930b9bd ec53c0d 6415615 930b9bd 6415615 930b9bd 6415615 6882065 6415615 930b9bd 6415615 930b9bd 6415615 930b9bd 6415615 930b9bd 6415615 930b9bd 6415615 930b9bd 6415615 930b9bd 6415615 930b9bd 6415615 930b9bd 6415615 930b9bd 6415615 930b9bd 6415615 930b9bd 6415615 930b9bd 6415615 930b9bd 6415615 930b9bd 6415615 930b9bd 6415615 34d2852 930b9bd 6415615 ec53c0d 6415615 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 |
import asyncio
import os
import inspect
import logging
import logging.config
from lightrag import LightRAG, QueryParam
from lightrag.utils import EmbeddingFunc, logger, set_verbose_debug
from lightrag.kg.shared_storage import initialize_pipeline_status
import requests
import numpy as np
from dotenv import load_dotenv
"""This code is a modified version of lightrag_openai_demo.py"""
# ideally, as always, env!
load_dotenv(dotenv_path=".env", override=False)
""" ----========= IMPORTANT CHANGE THIS! =========---- """
cloudflare_api_key = "YOUR_API_KEY"
account_id = "YOUR_ACCOUNT ID" # This is unique to your Cloudflare account
# Authomatically changes
api_base_url = f"https://api.cloudflare.com/client/v4/accounts/{account_id}/ai/run/"
# choose an embedding model
EMBEDDING_MODEL = "@cf/baai/bge-m3"
# choose a generative model
LLM_MODEL = "@cf/meta/llama-3.2-3b-instruct"
WORKING_DIR = "../dickens" # you can change output as desired
# Cloudflare init
class CloudflareWorker:
def __init__(
self,
cloudflare_api_key: str,
api_base_url: str,
llm_model_name: str,
embedding_model_name: str,
max_tokens: int = 4080,
max_response_tokens: int = 4080,
):
self.cloudflare_api_key = cloudflare_api_key
self.api_base_url = api_base_url
self.llm_model_name = llm_model_name
self.embedding_model_name = embedding_model_name
self.max_tokens = max_tokens
self.max_response_tokens = max_response_tokens
async def _send_request(self, model_name: str, input_: dict, debug_log: str):
headers = {"Authorization": f"Bearer {self.cloudflare_api_key}"}
print(f"""
data sent to Cloudflare
~~~~~~~~~~~
{debug_log}
""")
try:
response_raw = requests.post(
f"{self.api_base_url}{model_name}", headers=headers, json=input_
).json()
print(f"""
Cloudflare worker responded with:
~~~~~~~~~~~
{str(response_raw)}
""")
result = response_raw.get("result", {})
if "data" in result: # Embedding case
return np.array(result["data"])
if "response" in result: # LLM response
return result["response"]
raise ValueError("Unexpected Cloudflare response format")
except Exception as e:
print(f"""
Cloudflare API returned:
~~~~~~~~~
Error: {e}
""")
input("Press Enter to continue...")
return None
async def query(self, prompt, system_prompt: str = "", **kwargs) -> str:
# since no caching is used and we don't want to mess with everything lightrag, pop the kwarg it is
kwargs.pop("hashing_kv", None)
message = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": prompt},
]
input_ = {
"messages": message,
"max_tokens": self.max_tokens,
"response_token_limit": self.max_response_tokens,
}
return await self._send_request(
self.llm_model_name,
input_,
debug_log=f"\n- model used {self.llm_model_name}\n- system prompt: {system_prompt}\n- query: {prompt}",
)
async def embedding_chunk(self, texts: list[str]) -> np.ndarray:
print(f"""
TEXT inputted
~~~~~
{texts}
""")
input_ = {
"text": texts,
"max_tokens": self.max_tokens,
"response_token_limit": self.max_response_tokens,
}
return await self._send_request(
self.embedding_model_name,
input_,
debug_log=f"\n-llm model name {self.embedding_model_name}\n- texts: {texts}",
)
def configure_logging():
"""Configure logging for the application"""
# Reset any existing handlers to ensure clean configuration
for logger_name in ["uvicorn", "uvicorn.access", "uvicorn.error", "lightrag"]:
logger_instance = logging.getLogger(logger_name)
logger_instance.handlers = []
logger_instance.filters = []
# Get log directory path from environment variable or use current directory
log_dir = os.getenv("LOG_DIR", os.getcwd())
log_file_path = os.path.abspath(
os.path.join(log_dir, "lightrag_cloudflare_worker_demo.log")
)
print(f"\nLightRAG compatible demo log file: {log_file_path}\n")
os.makedirs(os.path.dirname(log_file_path), exist_ok=True)
# Get log file max size and backup count from environment variables
log_max_bytes = int(os.getenv("LOG_MAX_BYTES", 10485760)) # Default 10MB
log_backup_count = int(os.getenv("LOG_BACKUP_COUNT", 5)) # Default 5 backups
logging.config.dictConfig(
{
"version": 1,
"disable_existing_loggers": False,
"formatters": {
"default": {
"format": "%(levelname)s: %(message)s",
},
"detailed": {
"format": "%(asctime)s - %(name)s - %(levelname)s - %(message)s",
},
},
"handlers": {
"console": {
"formatter": "default",
"class": "logging.StreamHandler",
"stream": "ext://sys.stderr",
},
"file": {
"formatter": "detailed",
"class": "logging.handlers.RotatingFileHandler",
"filename": log_file_path,
"maxBytes": log_max_bytes,
"backupCount": log_backup_count,
"encoding": "utf-8",
},
},
"loggers": {
"lightrag": {
"handlers": ["console", "file"],
"level": "INFO",
"propagate": False,
},
},
}
)
# Set the logger level to INFO
logger.setLevel(logging.INFO)
# Enable verbose debug if needed
set_verbose_debug(os.getenv("VERBOSE_DEBUG", "false").lower() == "true")
if not os.path.exists(WORKING_DIR):
os.mkdir(WORKING_DIR)
async def initialize_rag():
cloudflare_worker = CloudflareWorker(
cloudflare_api_key=cloudflare_api_key,
api_base_url=api_base_url,
embedding_model_name=EMBEDDING_MODEL,
llm_model_name=LLM_MODEL,
)
rag = LightRAG(
working_dir=WORKING_DIR,
max_parallel_insert=2,
llm_model_func=cloudflare_worker.query,
llm_model_name=os.getenv("LLM_MODEL", LLM_MODEL),
llm_model_max_token_size=4080,
embedding_func=EmbeddingFunc(
embedding_dim=int(os.getenv("EMBEDDING_DIM", "1024")),
max_token_size=int(os.getenv("MAX_EMBED_TOKENS", "2048")),
func=lambda texts: cloudflare_worker.embedding_chunk(
texts,
),
),
)
await rag.initialize_storages()
await initialize_pipeline_status()
return rag
async def print_stream(stream):
async for chunk in stream:
print(chunk, end="", flush=True)
async def main():
try:
# Clear old data files
files_to_delete = [
"graph_chunk_entity_relation.graphml",
"kv_store_doc_status.json",
"kv_store_full_docs.json",
"kv_store_text_chunks.json",
"vdb_chunks.json",
"vdb_entities.json",
"vdb_relationships.json",
]
for file in files_to_delete:
file_path = os.path.join(WORKING_DIR, file)
if os.path.exists(file_path):
os.remove(file_path)
print(f"Deleting old file:: {file_path}")
# Initialize RAG instance
rag = await initialize_rag()
# Test embedding function
test_text = ["This is a test string for embedding."]
embedding = await rag.embedding_func(test_text)
embedding_dim = embedding.shape[1]
print("\n=======================")
print("Test embedding function")
print("========================")
print(f"Test dict: {test_text}")
print(f"Detected embedding dimension: {embedding_dim}\n\n")
# Locate the location of what is needed to be added to the knowledge
# Can add several simultaneously by modifying code
with open("./book.txt", "r", encoding="utf-8") as f:
await rag.ainsert(f.read())
# Perform naive search
print("\n=====================")
print("Query mode: naive")
print("=====================")
resp = await rag.aquery(
"What are the top themes in this story?",
param=QueryParam(mode="naive", stream=True),
)
if inspect.isasyncgen(resp):
await print_stream(resp)
else:
print(resp)
# Perform local search
print("\n=====================")
print("Query mode: local")
print("=====================")
resp = await rag.aquery(
"What are the top themes in this story?",
param=QueryParam(mode="local", stream=True),
)
if inspect.isasyncgen(resp):
await print_stream(resp)
else:
print(resp)
# Perform global search
print("\n=====================")
print("Query mode: global")
print("=====================")
resp = await rag.aquery(
"What are the top themes in this story?",
param=QueryParam(mode="global", stream=True),
)
if inspect.isasyncgen(resp):
await print_stream(resp)
else:
print(resp)
# Perform hybrid search
print("\n=====================")
print("Query mode: hybrid")
print("=====================")
resp = await rag.aquery(
"What are the top themes in this story?",
param=QueryParam(mode="hybrid", stream=True),
)
if inspect.isasyncgen(resp):
await print_stream(resp)
else:
print(resp)
""" FOR TESTING (if you want to test straight away, after building. Uncomment this part"""
"""
print("\n" + "=" * 60)
print("AI ASSISTANT READY!")
print("Ask questions about (your uploaded) regulations")
print("Type 'quit' to exit")
print("=" * 60)
while True:
question = input("\n🔥 Your question: ")
if question.lower() in ['quit', 'exit', 'bye']:
break
print("\nThinking...")
response = await rag.aquery(question, param=QueryParam(mode="hybrid"))
print(f"\nAnswer: {response}")
"""
except Exception as e:
print(f"An error occurred: {e}")
finally:
if rag:
await rag.llm_response_cache.index_done_callback()
await rag.finalize_storages()
if __name__ == "__main__":
# Configure logging before running the main function
configure_logging()
asyncio.run(main())
print("\nDone!")
|