lightrag / examples /unofficial-sample /lightrag_cloudflare_demo.py
al1kss
fix: apply automatic ruff formatting
930b9bd
raw
history blame
11.3 kB
import asyncio
import os
import inspect
import logging
import logging.config
from lightrag import LightRAG, QueryParam
from lightrag.utils import EmbeddingFunc, logger, set_verbose_debug
from lightrag.kg.shared_storage import initialize_pipeline_status
import requests
import numpy as np
from dotenv import load_dotenv
"""This code is a modified version of lightrag_openai_demo.py"""
# ideally, as always, env!
load_dotenv(dotenv_path=".env", override=False)
""" ----========= IMPORTANT CHANGE THIS! =========---- """
cloudflare_api_key = "YOUR_API_KEY"
account_id = "YOUR_ACCOUNT ID" # This is unique to your Cloudflare account
# Authomatically changes
api_base_url = f"https://api.cloudflare.com/client/v4/accounts/{account_id}/ai/run/"
# choose an embedding model
EMBEDDING_MODEL = "@cf/baai/bge-m3"
# choose a generative model
LLM_MODEL = "@cf/meta/llama-3.2-3b-instruct"
WORKING_DIR = "../dickens" # you can change output as desired
# Cloudflare init
class CloudflareWorker:
def __init__(
self,
cloudflare_api_key: str,
api_base_url: str,
llm_model_name: str,
embedding_model_name: str,
max_tokens: int = 4080,
max_response_tokens: int = 4080,
):
self.cloudflare_api_key = cloudflare_api_key
self.api_base_url = api_base_url
self.llm_model_name = llm_model_name
self.embedding_model_name = embedding_model_name
self.max_tokens = max_tokens
self.max_response_tokens = max_response_tokens
async def _send_request(self, model_name: str, input_: dict, debug_log: str):
headers = {"Authorization": f"Bearer {self.cloudflare_api_key}"}
print(f"""
data sent to Cloudflare
~~~~~~~~~~~
{debug_log}
""")
try:
response_raw = requests.post(
f"{self.api_base_url}{model_name}", headers=headers, json=input_
).json()
print(f"""
Cloudflare worker responded with:
~~~~~~~~~~~
{str(response_raw)}
""")
result = response_raw.get("result", {})
if "data" in result: # Embedding case
return np.array(result["data"])
if "response" in result: # LLM response
return result["response"]
raise ValueError("Unexpected Cloudflare response format")
except Exception as e:
print(f"""
Cloudflare API returned:
~~~~~~~~~
Error: {e}
""")
input("Press Enter to continue...")
return None
async def query(self, prompt, system_prompt: str = "", **kwargs) -> str:
# since no caching is used and we don't want to mess with everything lightrag, pop the kwarg it is
kwargs.pop("hashing_kv", None)
message = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": prompt},
]
input_ = {
"messages": message,
"max_tokens": self.max_tokens,
"response_token_limit": self.max_response_tokens,
}
return await self._send_request(
self.llm_model_name,
input_,
debug_log=f"\n- model used {self.llm_model_name}\n- system prompt: {system_prompt}\n- query: {prompt}",
)
async def embedding_chunk(self, texts: list[str]) -> np.ndarray:
print(f"""
TEXT inputted
~~~~~
{texts}
""")
input_ = {
"text": texts,
"max_tokens": self.max_tokens,
"response_token_limit": self.max_response_tokens,
}
return await self._send_request(
self.embedding_model_name,
input_,
debug_log=f"\n-llm model name {self.embedding_model_name}\n- texts: {texts}",
)
def configure_logging():
"""Configure logging for the application"""
# Reset any existing handlers to ensure clean configuration
for logger_name in ["uvicorn", "uvicorn.access", "uvicorn.error", "lightrag"]:
logger_instance = logging.getLogger(logger_name)
logger_instance.handlers = []
logger_instance.filters = []
# Get log directory path from environment variable or use current directory
log_dir = os.getenv("LOG_DIR", os.getcwd())
log_file_path = os.path.abspath(
os.path.join(log_dir, "lightrag_cloudflare_worker_demo.log")
)
print(f"\nLightRAG compatible demo log file: {log_file_path}\n")
os.makedirs(os.path.dirname(log_file_path), exist_ok=True)
# Get log file max size and backup count from environment variables
log_max_bytes = int(os.getenv("LOG_MAX_BYTES", 10485760)) # Default 10MB
log_backup_count = int(os.getenv("LOG_BACKUP_COUNT", 5)) # Default 5 backups
logging.config.dictConfig(
{
"version": 1,
"disable_existing_loggers": False,
"formatters": {
"default": {
"format": "%(levelname)s: %(message)s",
},
"detailed": {
"format": "%(asctime)s - %(name)s - %(levelname)s - %(message)s",
},
},
"handlers": {
"console": {
"formatter": "default",
"class": "logging.StreamHandler",
"stream": "ext://sys.stderr",
},
"file": {
"formatter": "detailed",
"class": "logging.handlers.RotatingFileHandler",
"filename": log_file_path,
"maxBytes": log_max_bytes,
"backupCount": log_backup_count,
"encoding": "utf-8",
},
},
"loggers": {
"lightrag": {
"handlers": ["console", "file"],
"level": "INFO",
"propagate": False,
},
},
}
)
# Set the logger level to INFO
logger.setLevel(logging.INFO)
# Enable verbose debug if needed
set_verbose_debug(os.getenv("VERBOSE_DEBUG", "false").lower() == "true")
if not os.path.exists(WORKING_DIR):
os.mkdir(WORKING_DIR)
async def initialize_rag():
cloudflare_worker = CloudflareWorker(
cloudflare_api_key=cloudflare_api_key,
api_base_url=api_base_url,
embedding_model_name=EMBEDDING_MODEL,
llm_model_name=LLM_MODEL,
)
rag = LightRAG(
working_dir=WORKING_DIR,
max_parallel_insert=2,
llm_model_func=cloudflare_worker.query,
llm_model_name=os.getenv("LLM_MODEL", LLM_MODEL),
llm_model_max_token_size=4080,
embedding_func=EmbeddingFunc(
embedding_dim=int(os.getenv("EMBEDDING_DIM", "1024")),
max_token_size=int(os.getenv("MAX_EMBED_TOKENS", "2048")),
func=lambda texts: cloudflare_worker.embedding_chunk(
texts,
),
),
)
await rag.initialize_storages()
await initialize_pipeline_status()
return rag
async def print_stream(stream):
async for chunk in stream:
print(chunk, end="", flush=True)
async def main():
try:
# Clear old data files
files_to_delete = [
"graph_chunk_entity_relation.graphml",
"kv_store_doc_status.json",
"kv_store_full_docs.json",
"kv_store_text_chunks.json",
"vdb_chunks.json",
"vdb_entities.json",
"vdb_relationships.json",
]
for file in files_to_delete:
file_path = os.path.join(WORKING_DIR, file)
if os.path.exists(file_path):
os.remove(file_path)
print(f"Deleting old file:: {file_path}")
# Initialize RAG instance
rag = await initialize_rag()
# Test embedding function
test_text = ["This is a test string for embedding."]
embedding = await rag.embedding_func(test_text)
embedding_dim = embedding.shape[1]
print("\n=======================")
print("Test embedding function")
print("========================")
print(f"Test dict: {test_text}")
print(f"Detected embedding dimension: {embedding_dim}\n\n")
# Locate the location of what is needed to be added to the knowledge
# Can add several simultaneously by modifying code
with open("./book.txt", "r", encoding="utf-8") as f:
await rag.ainsert(f.read())
# Perform naive search
print("\n=====================")
print("Query mode: naive")
print("=====================")
resp = await rag.aquery(
"What are the top themes in this story?",
param=QueryParam(mode="naive", stream=True),
)
if inspect.isasyncgen(resp):
await print_stream(resp)
else:
print(resp)
# Perform local search
print("\n=====================")
print("Query mode: local")
print("=====================")
resp = await rag.aquery(
"What are the top themes in this story?",
param=QueryParam(mode="local", stream=True),
)
if inspect.isasyncgen(resp):
await print_stream(resp)
else:
print(resp)
# Perform global search
print("\n=====================")
print("Query mode: global")
print("=====================")
resp = await rag.aquery(
"What are the top themes in this story?",
param=QueryParam(mode="global", stream=True),
)
if inspect.isasyncgen(resp):
await print_stream(resp)
else:
print(resp)
# Perform hybrid search
print("\n=====================")
print("Query mode: hybrid")
print("=====================")
resp = await rag.aquery(
"What are the top themes in this story?",
param=QueryParam(mode="hybrid", stream=True),
)
if inspect.isasyncgen(resp):
await print_stream(resp)
else:
print(resp)
""" FOR TESTING (if you want to test straight away, after building. Uncomment this part"""
"""
print("\n" + "=" * 60)
print("AI ASSISTANT READY!")
print("Ask questions about (your uploaded) regulations")
print("Type 'quit' to exit")
print("=" * 60)
while True:
question = input("\n🔥 Your question: ")
if question.lower() in ['quit', 'exit', 'bye']:
break
print("\nThinking...")
response = await rag.aquery(question, param=QueryParam(mode="hybrid"))
print(f"\nAnswer: {response}")
"""
except Exception as e:
print(f"An error occurred: {e}")
finally:
if rag:
await rag.llm_response_cache.index_done_callback()
await rag.finalize_storages()
if __name__ == "__main__":
# Configure logging before running the main function
configure_logging()
asyncio.run(main())
print("\nDone!")