|
import os |
|
import inspect |
|
from lightrag import LightRAG |
|
from lightrag.llm import openai_complete, openai_embedding |
|
from lightrag.utils import EmbeddingFunc |
|
from lightrag.lightrag import always_get_an_event_loop |
|
from lightrag import QueryParam |
|
|
|
|
|
ROOT_DIR = os.path.dirname(os.path.abspath(__file__)) |
|
WORKING_DIR = os.path.join(ROOT_DIR, "dickens") |
|
if not os.path.exists(WORKING_DIR): |
|
os.mkdir(WORKING_DIR) |
|
print(f"WorkingDir: {WORKING_DIR}") |
|
|
|
api_key = "empty" |
|
rag = LightRAG( |
|
working_dir=WORKING_DIR, |
|
llm_model_func=openai_complete, |
|
llm_model_name="qwen2.5-14b-instruct@4bit", |
|
llm_model_max_async=4, |
|
llm_model_max_token_size=32768, |
|
llm_model_kwargs={"base_url": "http://127.0.0.1:1234/v1", "api_key": api_key}, |
|
embedding_func=EmbeddingFunc( |
|
embedding_dim=1024, |
|
max_token_size=8192, |
|
func=lambda texts: openai_embedding( |
|
texts=texts, |
|
model="text-embedding-bge-m3", |
|
base_url="http://127.0.0.1:1234/v1", |
|
api_key=api_key, |
|
), |
|
), |
|
) |
|
|
|
with open("./book.txt", "r", encoding="utf-8") as f: |
|
rag.insert(f.read()) |
|
|
|
resp = rag.query( |
|
"What are the top themes in this story?", |
|
param=QueryParam(mode="hybrid", stream=True), |
|
) |
|
|
|
|
|
async def print_stream(stream): |
|
async for chunk in stream: |
|
if chunk: |
|
print(chunk, end="", flush=True) |
|
|
|
|
|
loop = always_get_an_event_loop() |
|
if inspect.isasyncgen(resp): |
|
loop.run_until_complete(print_stream(resp)) |
|
else: |
|
print(resp) |
|
|