|
from fastapi import FastAPI, HTTPException, File, UploadFile, Form |
|
from pydantic import BaseModel |
|
import asyncio |
|
import logging |
|
import argparse |
|
from lightrag import LightRAG, QueryParam |
|
from lightrag.llm import ( |
|
azure_openai_complete_if_cache, |
|
azure_openai_embedding, |
|
) |
|
from lightrag.utils import EmbeddingFunc |
|
from typing import Optional, List |
|
from enum import Enum |
|
from pathlib import Path |
|
import shutil |
|
import aiofiles |
|
from ascii_colors import trace_exception |
|
import os |
|
from dotenv import load_dotenv |
|
import inspect |
|
import json |
|
from fastapi.responses import StreamingResponse |
|
|
|
load_dotenv() |
|
|
|
AZURE_OPENAI_API_VERSION = os.getenv("AZURE_OPENAI_API_VERSION") |
|
AZURE_OPENAI_DEPLOYMENT = os.getenv("AZURE_OPENAI_DEPLOYMENT") |
|
AZURE_OPENAI_API_KEY = os.getenv("AZURE_OPENAI_API_KEY") |
|
AZURE_OPENAI_ENDPOINT = os.getenv("AZURE_OPENAI_ENDPOINT") |
|
|
|
AZURE_EMBEDDING_DEPLOYMENT = os.getenv("AZURE_EMBEDDING_DEPLOYMENT") |
|
AZURE_EMBEDDING_API_VERSION = os.getenv("AZURE_EMBEDDING_API_VERSION") |
|
|
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser( |
|
description="LightRAG FastAPI Server with OpenAI integration" |
|
) |
|
|
|
|
|
parser.add_argument( |
|
"--host", default="0.0.0.0", help="Server host (default: 0.0.0.0)" |
|
) |
|
parser.add_argument( |
|
"--port", type=int, default=9621, help="Server port (default: 9621)" |
|
) |
|
|
|
|
|
parser.add_argument( |
|
"--working-dir", |
|
default="./rag_storage", |
|
help="Working directory for RAG storage (default: ./rag_storage)", |
|
) |
|
parser.add_argument( |
|
"--input-dir", |
|
default="./inputs", |
|
help="Directory containing input documents (default: ./inputs)", |
|
) |
|
|
|
|
|
parser.add_argument( |
|
"--model", default="gpt-4o", help="OpenAI model name (default: gpt-4o)" |
|
) |
|
parser.add_argument( |
|
"--embedding-model", |
|
default="text-embedding-3-large", |
|
help="OpenAI embedding model (default: text-embedding-3-large)", |
|
) |
|
|
|
|
|
parser.add_argument( |
|
"--max-tokens", |
|
type=int, |
|
default=32768, |
|
help="Maximum token size (default: 32768)", |
|
) |
|
parser.add_argument( |
|
"--max-embed-tokens", |
|
type=int, |
|
default=8192, |
|
help="Maximum embedding token size (default: 8192)", |
|
) |
|
parser.add_argument( |
|
"--enable-cache", |
|
default=True, |
|
help="Enable response cache (default: True)", |
|
) |
|
|
|
parser.add_argument( |
|
"--log-level", |
|
default="INFO", |
|
choices=["DEBUG", "INFO", "WARNING", "ERROR", "CRITICAL"], |
|
help="Logging level (default: INFO)", |
|
) |
|
|
|
return parser.parse_args() |
|
|
|
|
|
class DocumentManager: |
|
"""Handles document operations and tracking""" |
|
|
|
def __init__(self, input_dir: str, supported_extensions: tuple = (".txt", ".md")): |
|
self.input_dir = Path(input_dir) |
|
self.supported_extensions = supported_extensions |
|
self.indexed_files = set() |
|
|
|
|
|
self.input_dir.mkdir(parents=True, exist_ok=True) |
|
|
|
def scan_directory(self) -> List[Path]: |
|
"""Scan input directory for new files""" |
|
new_files = [] |
|
for ext in self.supported_extensions: |
|
for file_path in self.input_dir.rglob(f"*{ext}"): |
|
if file_path not in self.indexed_files: |
|
new_files.append(file_path) |
|
return new_files |
|
|
|
def mark_as_indexed(self, file_path: Path): |
|
"""Mark a file as indexed""" |
|
self.indexed_files.add(file_path) |
|
|
|
def is_supported_file(self, filename: str) -> bool: |
|
"""Check if file type is supported""" |
|
return any(filename.lower().endswith(ext) for ext in self.supported_extensions) |
|
|
|
|
|
|
|
class SearchMode(str, Enum): |
|
naive = "naive" |
|
local = "local" |
|
global_ = "global" |
|
hybrid = "hybrid" |
|
|
|
|
|
class QueryRequest(BaseModel): |
|
query: str |
|
mode: SearchMode = SearchMode.hybrid |
|
|
|
|
|
|
|
class QueryResponse(BaseModel): |
|
response: str |
|
|
|
|
|
class InsertTextRequest(BaseModel): |
|
text: str |
|
description: Optional[str] = None |
|
|
|
|
|
class InsertResponse(BaseModel): |
|
status: str |
|
message: str |
|
document_count: int |
|
|
|
|
|
async def get_embedding_dim(embedding_model: str) -> int: |
|
"""Get embedding dimensions for the specified model""" |
|
test_text = ["This is a test sentence."] |
|
embedding = await azure_openai_embedding(test_text, model=embedding_model) |
|
return embedding.shape[1] |
|
|
|
|
|
def create_app(args): |
|
|
|
logging.basicConfig( |
|
format="%(levelname)s:%(message)s", level=getattr(logging, args.log_level) |
|
) |
|
|
|
|
|
app = FastAPI( |
|
title="LightRAG API", |
|
description="API for querying text using LightRAG with OpenAI integration", |
|
) |
|
|
|
|
|
Path(args.working_dir).mkdir(parents=True, exist_ok=True) |
|
|
|
|
|
doc_manager = DocumentManager(args.input_dir) |
|
|
|
|
|
embedding_dim = asyncio.run(get_embedding_dim(args.embedding_model)) |
|
|
|
async def async_openai_complete( |
|
prompt, system_prompt=None, history_messages=[], **kwargs |
|
): |
|
"""Async wrapper for OpenAI completion""" |
|
kwargs.pop("keyword_extraction", None) |
|
|
|
return await azure_openai_complete_if_cache( |
|
args.model, |
|
prompt, |
|
system_prompt=system_prompt, |
|
history_messages=history_messages, |
|
base_url=AZURE_OPENAI_ENDPOINT, |
|
api_key=AZURE_OPENAI_API_KEY, |
|
api_version=AZURE_OPENAI_API_VERSION, |
|
**kwargs, |
|
) |
|
|
|
|
|
rag = LightRAG( |
|
enable_llm_cache=args.enable_cache, |
|
working_dir=args.working_dir, |
|
llm_model_func=async_openai_complete, |
|
llm_model_name=args.model, |
|
llm_model_max_token_size=args.max_tokens, |
|
embedding_func=EmbeddingFunc( |
|
embedding_dim=embedding_dim, |
|
max_token_size=args.max_embed_tokens, |
|
func=lambda texts: azure_openai_embedding( |
|
texts, model=args.embedding_model |
|
), |
|
), |
|
) |
|
|
|
@app.on_event("startup") |
|
async def startup_event(): |
|
"""Index all files in input directory during startup""" |
|
try: |
|
new_files = doc_manager.scan_directory() |
|
for file_path in new_files: |
|
try: |
|
|
|
async with aiofiles.open(file_path, "r", encoding="utf-8") as f: |
|
content = await f.read() |
|
|
|
await rag.ainsert(content) |
|
doc_manager.mark_as_indexed(file_path) |
|
logging.info(f"Indexed file: {file_path}") |
|
except Exception as e: |
|
trace_exception(e) |
|
logging.error(f"Error indexing file {file_path}: {str(e)}") |
|
|
|
logging.info(f"Indexed {len(new_files)} documents from {args.input_dir}") |
|
|
|
except Exception as e: |
|
logging.error(f"Error during startup indexing: {str(e)}") |
|
|
|
@app.post("/documents/scan") |
|
async def scan_for_new_documents(): |
|
"""Manually trigger scanning for new documents""" |
|
try: |
|
new_files = doc_manager.scan_directory() |
|
indexed_count = 0 |
|
|
|
for file_path in new_files: |
|
try: |
|
with open(file_path, "r", encoding="utf-8") as f: |
|
content = f.read() |
|
await rag.ainsert(content) |
|
doc_manager.mark_as_indexed(file_path) |
|
indexed_count += 1 |
|
except Exception as e: |
|
logging.error(f"Error indexing file {file_path}: {str(e)}") |
|
|
|
return { |
|
"status": "success", |
|
"indexed_count": indexed_count, |
|
"total_documents": len(doc_manager.indexed_files), |
|
} |
|
except Exception as e: |
|
raise HTTPException(status_code=500, detail=str(e)) |
|
|
|
@app.post("/resetcache") |
|
async def reset_cache(): |
|
"""Manually reset cache""" |
|
try: |
|
cachefile = args.working_dir + "/kv_store_llm_response_cache.json" |
|
if os.path.exists(cachefile): |
|
with open(cachefile, "w") as f: |
|
f.write("{}") |
|
return {"status": "success"} |
|
except Exception as e: |
|
raise HTTPException(status_code=500, detail=str(e)) |
|
|
|
@app.post("/documents/upload") |
|
async def upload_to_input_dir(file: UploadFile = File(...)): |
|
"""Upload a file to the input directory""" |
|
try: |
|
if not doc_manager.is_supported_file(file.filename): |
|
raise HTTPException( |
|
status_code=400, |
|
detail=f"Unsupported file type. Supported types: {doc_manager.supported_extensions}", |
|
) |
|
|
|
file_path = doc_manager.input_dir / file.filename |
|
with open(file_path, "wb") as buffer: |
|
shutil.copyfileobj(file.file, buffer) |
|
|
|
|
|
with open(file_path, "r", encoding="utf-8") as f: |
|
content = f.read() |
|
await rag.ainsert(content) |
|
doc_manager.mark_as_indexed(file_path) |
|
|
|
return { |
|
"status": "success", |
|
"message": f"File uploaded and indexed: {file.filename}", |
|
"total_documents": len(doc_manager.indexed_files), |
|
} |
|
except Exception as e: |
|
raise HTTPException(status_code=500, detail=str(e)) |
|
|
|
@app.post("/query", response_model=QueryResponse) |
|
async def query_text(request: QueryRequest): |
|
try: |
|
response = await rag.aquery( |
|
request.query, |
|
param=QueryParam(mode=request.mode, stream=False), |
|
) |
|
return QueryResponse(response=response) |
|
except Exception as e: |
|
raise HTTPException(status_code=500, detail=str(e)) |
|
|
|
@app.post("/query/stream") |
|
async def query_text_stream(request: QueryRequest): |
|
try: |
|
response = await rag.aquery( |
|
request.query, |
|
param=QueryParam(mode=request.mode, stream=True), |
|
) |
|
if inspect.isasyncgen(response): |
|
|
|
async def stream_generator(): |
|
async for chunk in response: |
|
yield json.dumps({"data": chunk}) + "\n" |
|
|
|
return StreamingResponse( |
|
stream_generator(), media_type="application/json" |
|
) |
|
else: |
|
return QueryResponse(response=response) |
|
|
|
except Exception as e: |
|
raise HTTPException(status_code=500, detail=str(e)) |
|
|
|
@app.post("/documents/text", response_model=InsertResponse) |
|
async def insert_text(request: InsertTextRequest): |
|
try: |
|
rag.insert(request.text) |
|
return InsertResponse( |
|
status="success", |
|
message="Text successfully inserted", |
|
document_count=len(rag), |
|
) |
|
except Exception as e: |
|
raise HTTPException(status_code=500, detail=str(e)) |
|
|
|
@app.post("/documents/file", response_model=InsertResponse) |
|
async def insert_file(file: UploadFile = File(...), description: str = Form(None)): |
|
try: |
|
content = await file.read() |
|
|
|
if file.filename.endswith((".txt", ".md")): |
|
text = content.decode("utf-8") |
|
rag.insert(text) |
|
else: |
|
raise HTTPException( |
|
status_code=400, |
|
detail="Unsupported file type. Only .txt and .md files are supported", |
|
) |
|
|
|
return InsertResponse( |
|
status="success", |
|
message=f"File '{file.filename}' successfully inserted", |
|
document_count=len(rag), |
|
) |
|
except UnicodeDecodeError: |
|
raise HTTPException(status_code=400, detail="File encoding not supported") |
|
except Exception as e: |
|
raise HTTPException(status_code=500, detail=str(e)) |
|
|
|
@app.post("/documents/batch", response_model=InsertResponse) |
|
async def insert_batch(files: List[UploadFile] = File(...)): |
|
try: |
|
inserted_count = 0 |
|
failed_files = [] |
|
|
|
for file in files: |
|
try: |
|
content = await file.read() |
|
if file.filename.endswith((".txt", ".md")): |
|
text = content.decode("utf-8") |
|
rag.insert(text) |
|
inserted_count += 1 |
|
else: |
|
failed_files.append(f"{file.filename} (unsupported type)") |
|
except Exception as e: |
|
failed_files.append(f"{file.filename} ({str(e)})") |
|
|
|
status_message = f"Successfully inserted {inserted_count} documents" |
|
if failed_files: |
|
status_message += f". Failed files: {', '.join(failed_files)}" |
|
|
|
return InsertResponse( |
|
status="success" if inserted_count > 0 else "partial_success", |
|
message=status_message, |
|
document_count=len(rag), |
|
) |
|
except Exception as e: |
|
raise HTTPException(status_code=500, detail=str(e)) |
|
|
|
@app.delete("/documents", response_model=InsertResponse) |
|
async def clear_documents(): |
|
try: |
|
rag.text_chunks = [] |
|
rag.entities_vdb = None |
|
rag.relationships_vdb = None |
|
return InsertResponse( |
|
status="success", |
|
message="All documents cleared successfully", |
|
document_count=0, |
|
) |
|
except Exception as e: |
|
raise HTTPException(status_code=500, detail=str(e)) |
|
|
|
@app.get("/health") |
|
async def get_status(): |
|
"""Get current system status""" |
|
return { |
|
"status": "healthy", |
|
"working_directory": str(args.working_dir), |
|
"input_directory": str(args.input_dir), |
|
"indexed_files": len(doc_manager.indexed_files), |
|
"configuration": { |
|
"model": args.model, |
|
"embedding_model": args.embedding_model, |
|
"max_tokens": args.max_tokens, |
|
"embedding_dim": embedding_dim, |
|
}, |
|
} |
|
|
|
return app |
|
|
|
|
|
if __name__ == "__main__": |
|
args = parse_args() |
|
import uvicorn |
|
|
|
app = create_app(args) |
|
uvicorn.run(app, host=args.host, port=args.port) |
|
|