|
import os |
|
from lightrag import LightRAG, QueryParam |
|
from lightrag.llm.openai import openai_complete_if_cache, openai_embed |
|
from lightrag.utils import EmbeddingFunc |
|
import numpy as np |
|
import asyncio |
|
import nest_asyncio |
|
|
|
|
|
nest_asyncio.apply() |
|
|
|
DEFAULT_RAG_DIR = "index_default" |
|
|
|
|
|
WORKING_DIR = os.environ.get("RAG_DIR", f"{DEFAULT_RAG_DIR}") |
|
print(f"WORKING_DIR: {WORKING_DIR}") |
|
LLM_MODEL = os.environ.get("LLM_MODEL", "gpt-4o-mini") |
|
print(f"LLM_MODEL: {LLM_MODEL}") |
|
EMBEDDING_MODEL = os.environ.get("EMBEDDING_MODEL", "text-embedding-3-small") |
|
print(f"EMBEDDING_MODEL: {EMBEDDING_MODEL}") |
|
EMBEDDING_MAX_TOKEN_SIZE = int(os.environ.get("EMBEDDING_MAX_TOKEN_SIZE", 8192)) |
|
print(f"EMBEDDING_MAX_TOKEN_SIZE: {EMBEDDING_MAX_TOKEN_SIZE}") |
|
BASE_URL = os.environ.get("BASE_URL", "https://api.openai.com/v1") |
|
print(f"BASE_URL: {BASE_URL}") |
|
API_KEY = os.environ.get("API_KEY", "xxxxxxxx") |
|
print(f"API_KEY: {API_KEY}") |
|
|
|
if not os.path.exists(WORKING_DIR): |
|
os.mkdir(WORKING_DIR) |
|
|
|
|
|
|
|
|
|
|
|
async def llm_model_func( |
|
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs |
|
) -> str: |
|
return await openai_complete_if_cache( |
|
model=LLM_MODEL, |
|
prompt=prompt, |
|
system_prompt=system_prompt, |
|
history_messages=history_messages, |
|
base_url=BASE_URL, |
|
api_key=API_KEY, |
|
**kwargs, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
async def embedding_func(texts: list[str]) -> np.ndarray: |
|
return await openai_embed( |
|
texts=texts, |
|
model=EMBEDDING_MODEL, |
|
base_url=BASE_URL, |
|
api_key=API_KEY, |
|
) |
|
|
|
|
|
async def get_embedding_dim(): |
|
test_text = ["This is a test sentence."] |
|
embedding = await embedding_func(test_text) |
|
embedding_dim = embedding.shape[1] |
|
print(f"{embedding_dim=}") |
|
return embedding_dim |
|
|
|
|
|
|
|
rag = LightRAG( |
|
working_dir=WORKING_DIR, |
|
llm_model_func=llm_model_func, |
|
embedding_func=EmbeddingFunc( |
|
embedding_dim=asyncio.run(get_embedding_dim()), |
|
max_token_size=EMBEDDING_MAX_TOKEN_SIZE, |
|
func=embedding_func, |
|
), |
|
) |
|
|
|
with open("./book.txt", "r", encoding="utf-8") as f: |
|
rag.insert(f.read()) |
|
|
|
|
|
print( |
|
rag.query("What are the top themes in this story?", param=QueryParam(mode="naive")) |
|
) |
|
|
|
|
|
print( |
|
rag.query("What are the top themes in this story?", param=QueryParam(mode="local")) |
|
) |
|
|
|
|
|
print( |
|
rag.query("What are the top themes in this story?", param=QueryParam(mode="global")) |
|
) |
|
|
|
|
|
print( |
|
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid")) |
|
) |
|
|