|
import asyncio |
|
import html |
|
import os |
|
from tqdm.asyncio import tqdm as tqdm_async |
|
from dataclasses import dataclass |
|
from typing import Any, Union, cast, Dict |
|
import networkx as nx |
|
import numpy as np |
|
from nano_vectordb import NanoVectorDB |
|
import time |
|
|
|
from .utils import ( |
|
logger, |
|
load_json, |
|
write_json, |
|
compute_mdhash_id, |
|
) |
|
|
|
from .base import ( |
|
BaseGraphStorage, |
|
BaseKVStorage, |
|
BaseVectorStorage, |
|
DocStatus, |
|
DocProcessingStatus, |
|
DocStatusStorage, |
|
) |
|
|
|
|
|
@dataclass |
|
class JsonKVStorage(BaseKVStorage): |
|
def __post_init__(self): |
|
working_dir = self.global_config["working_dir"] |
|
self._file_name = os.path.join(working_dir, f"kv_store_{self.namespace}.json") |
|
self._data = load_json(self._file_name) or {} |
|
self._lock = asyncio.Lock() |
|
logger.info(f"Load KV {self.namespace} with {len(self._data)} data") |
|
|
|
async def all_keys(self) -> list[str]: |
|
return list(self._data.keys()) |
|
|
|
async def index_done_callback(self): |
|
write_json(self._data, self._file_name) |
|
|
|
async def get_by_id(self, id): |
|
return self._data.get(id, None) |
|
|
|
async def get_by_ids(self, ids, fields=None): |
|
if fields is None: |
|
return [self._data.get(id, None) for id in ids] |
|
return [ |
|
( |
|
{k: v for k, v in self._data[id].items() if k in fields} |
|
if self._data.get(id, None) |
|
else None |
|
) |
|
for id in ids |
|
] |
|
|
|
async def filter_keys(self, data: list[str]) -> set[str]: |
|
return set([s for s in data if s not in self._data]) |
|
|
|
async def upsert(self, data: dict[str, dict]): |
|
left_data = {k: v for k, v in data.items() if k not in self._data} |
|
self._data.update(left_data) |
|
return left_data |
|
|
|
async def drop(self): |
|
self._data = {} |
|
|
|
async def filter(self, filter_func): |
|
"""Filter key-value pairs based on a filter function |
|
|
|
Args: |
|
filter_func: The filter function, which takes a value as an argument and returns a boolean value |
|
|
|
Returns: |
|
Dict: Key-value pairs that meet the condition |
|
""" |
|
result = {} |
|
async with self._lock: |
|
for key, value in self._data.items(): |
|
if filter_func(value): |
|
result[key] = value |
|
return result |
|
|
|
async def delete(self, ids: list[str]): |
|
"""Delete data with specified IDs |
|
|
|
Args: |
|
ids: List of IDs to delete |
|
""" |
|
async with self._lock: |
|
for id in ids: |
|
if id in self._data: |
|
del self._data[id] |
|
await self.index_done_callback() |
|
logger.info(f"Successfully deleted {len(ids)} items from {self.namespace}") |
|
|
|
|
|
@dataclass |
|
class NanoVectorDBStorage(BaseVectorStorage): |
|
cosine_better_than_threshold: float = 0.2 |
|
|
|
def __post_init__(self): |
|
self._client_file_name = os.path.join( |
|
self.global_config["working_dir"], f"vdb_{self.namespace}.json" |
|
) |
|
self._max_batch_size = self.global_config["embedding_batch_num"] |
|
self._client = NanoVectorDB( |
|
self.embedding_func.embedding_dim, storage_file=self._client_file_name |
|
) |
|
self.cosine_better_than_threshold = self.global_config.get( |
|
"cosine_better_than_threshold", self.cosine_better_than_threshold |
|
) |
|
|
|
async def upsert(self, data: dict[str, dict]): |
|
logger.info(f"Inserting {len(data)} vectors to {self.namespace}") |
|
if not len(data): |
|
logger.warning("You insert an empty data to vector DB") |
|
return [] |
|
|
|
current_time = time.time() |
|
list_data = [ |
|
{ |
|
"__id__": k, |
|
"__created_at__": current_time, |
|
**{k1: v1 for k1, v1 in v.items() if k1 in self.meta_fields}, |
|
} |
|
for k, v in data.items() |
|
] |
|
contents = [v["content"] for v in data.values()] |
|
batches = [ |
|
contents[i : i + self._max_batch_size] |
|
for i in range(0, len(contents), self._max_batch_size) |
|
] |
|
|
|
async def wrapped_task(batch): |
|
result = await self.embedding_func(batch) |
|
pbar.update(1) |
|
return result |
|
|
|
embedding_tasks = [wrapped_task(batch) for batch in batches] |
|
pbar = tqdm_async( |
|
total=len(embedding_tasks), desc="Generating embeddings", unit="batch" |
|
) |
|
embeddings_list = await asyncio.gather(*embedding_tasks) |
|
|
|
embeddings = np.concatenate(embeddings_list) |
|
if len(embeddings) == len(list_data): |
|
for i, d in enumerate(list_data): |
|
d["__vector__"] = embeddings[i] |
|
results = self._client.upsert(datas=list_data) |
|
return results |
|
else: |
|
|
|
logger.error( |
|
f"embedding is not 1-1 with data, {len(embeddings)} != {len(list_data)}" |
|
) |
|
|
|
async def query(self, query: str, top_k=5): |
|
embedding = await self.embedding_func([query]) |
|
embedding = embedding[0] |
|
results = self._client.query( |
|
query=embedding, |
|
top_k=top_k, |
|
better_than_threshold=self.cosine_better_than_threshold, |
|
) |
|
results = [ |
|
{ |
|
**dp, |
|
"id": dp["__id__"], |
|
"distance": dp["__metrics__"], |
|
"created_at": dp.get("__created_at__"), |
|
} |
|
for dp in results |
|
] |
|
return results |
|
|
|
@property |
|
def client_storage(self): |
|
return getattr(self._client, "_NanoVectorDB__storage") |
|
|
|
async def delete(self, ids: list[str]): |
|
"""Delete vectors with specified IDs |
|
|
|
Args: |
|
ids: List of vector IDs to be deleted |
|
""" |
|
try: |
|
self._client.delete(ids) |
|
logger.info( |
|
f"Successfully deleted {len(ids)} vectors from {self.namespace}" |
|
) |
|
except Exception as e: |
|
logger.error(f"Error while deleting vectors from {self.namespace}: {e}") |
|
|
|
async def delete_entity(self, entity_name: str): |
|
try: |
|
entity_id = compute_mdhash_id(entity_name, prefix="ent-") |
|
logger.debug( |
|
f"Attempting to delete entity {entity_name} with ID {entity_id}" |
|
) |
|
|
|
if self._client.get([entity_id]): |
|
await self.delete([entity_id]) |
|
logger.debug(f"Successfully deleted entity {entity_name}") |
|
else: |
|
logger.debug(f"Entity {entity_name} not found in storage") |
|
except Exception as e: |
|
logger.error(f"Error deleting entity {entity_name}: {e}") |
|
|
|
async def delete_entity_relation(self, entity_name: str): |
|
try: |
|
relations = [ |
|
dp |
|
for dp in self.client_storage["data"] |
|
if dp["src_id"] == entity_name or dp["tgt_id"] == entity_name |
|
] |
|
logger.debug(f"Found {len(relations)} relations for entity {entity_name}") |
|
ids_to_delete = [relation["__id__"] for relation in relations] |
|
|
|
if ids_to_delete: |
|
await self.delete(ids_to_delete) |
|
logger.debug( |
|
f"Deleted {len(ids_to_delete)} relations for {entity_name}" |
|
) |
|
else: |
|
logger.debug(f"No relations found for entity {entity_name}") |
|
except Exception as e: |
|
logger.error(f"Error deleting relations for {entity_name}: {e}") |
|
|
|
async def index_done_callback(self): |
|
self._client.save() |
|
|
|
|
|
@dataclass |
|
class NetworkXStorage(BaseGraphStorage): |
|
@staticmethod |
|
def load_nx_graph(file_name) -> nx.Graph: |
|
if os.path.exists(file_name): |
|
return nx.read_graphml(file_name) |
|
return None |
|
|
|
@staticmethod |
|
def write_nx_graph(graph: nx.Graph, file_name): |
|
logger.info( |
|
f"Writing graph with {graph.number_of_nodes()} nodes, {graph.number_of_edges()} edges" |
|
) |
|
nx.write_graphml(graph, file_name) |
|
|
|
@staticmethod |
|
def stable_largest_connected_component(graph: nx.Graph) -> nx.Graph: |
|
"""Refer to https://github.com/microsoft/graphrag/index/graph/utils/stable_lcc.py |
|
Return the largest connected component of the graph, with nodes and edges sorted in a stable way. |
|
""" |
|
from graspologic.utils import largest_connected_component |
|
|
|
graph = graph.copy() |
|
graph = cast(nx.Graph, largest_connected_component(graph)) |
|
node_mapping = { |
|
node: html.unescape(node.upper().strip()) for node in graph.nodes() |
|
} |
|
graph = nx.relabel_nodes(graph, node_mapping) |
|
return NetworkXStorage._stabilize_graph(graph) |
|
|
|
@staticmethod |
|
def _stabilize_graph(graph: nx.Graph) -> nx.Graph: |
|
"""Refer to https://github.com/microsoft/graphrag/index/graph/utils/stable_lcc.py |
|
Ensure an undirected graph with the same relationships will always be read the same way. |
|
""" |
|
fixed_graph = nx.DiGraph() if graph.is_directed() else nx.Graph() |
|
|
|
sorted_nodes = graph.nodes(data=True) |
|
sorted_nodes = sorted(sorted_nodes, key=lambda x: x[0]) |
|
|
|
fixed_graph.add_nodes_from(sorted_nodes) |
|
edges = list(graph.edges(data=True)) |
|
|
|
if not graph.is_directed(): |
|
|
|
def _sort_source_target(edge): |
|
source, target, edge_data = edge |
|
if source > target: |
|
temp = source |
|
source = target |
|
target = temp |
|
return source, target, edge_data |
|
|
|
edges = [_sort_source_target(edge) for edge in edges] |
|
|
|
def _get_edge_key(source: Any, target: Any) -> str: |
|
return f"{source} -> {target}" |
|
|
|
edges = sorted(edges, key=lambda x: _get_edge_key(x[0], x[1])) |
|
|
|
fixed_graph.add_edges_from(edges) |
|
return fixed_graph |
|
|
|
def __post_init__(self): |
|
self._graphml_xml_file = os.path.join( |
|
self.global_config["working_dir"], f"graph_{self.namespace}.graphml" |
|
) |
|
preloaded_graph = NetworkXStorage.load_nx_graph(self._graphml_xml_file) |
|
if preloaded_graph is not None: |
|
logger.info( |
|
f"Loaded graph from {self._graphml_xml_file} with {preloaded_graph.number_of_nodes()} nodes, {preloaded_graph.number_of_edges()} edges" |
|
) |
|
self._graph = preloaded_graph or nx.Graph() |
|
self._node_embed_algorithms = { |
|
"node2vec": self._node2vec_embed, |
|
} |
|
|
|
async def index_done_callback(self): |
|
NetworkXStorage.write_nx_graph(self._graph, self._graphml_xml_file) |
|
|
|
async def has_node(self, node_id: str) -> bool: |
|
return self._graph.has_node(node_id) |
|
|
|
async def has_edge(self, source_node_id: str, target_node_id: str) -> bool: |
|
return self._graph.has_edge(source_node_id, target_node_id) |
|
|
|
async def get_node(self, node_id: str) -> Union[dict, None]: |
|
return self._graph.nodes.get(node_id) |
|
|
|
async def node_degree(self, node_id: str) -> int: |
|
return self._graph.degree(node_id) |
|
|
|
async def edge_degree(self, src_id: str, tgt_id: str) -> int: |
|
return self._graph.degree(src_id) + self._graph.degree(tgt_id) |
|
|
|
async def get_edge( |
|
self, source_node_id: str, target_node_id: str |
|
) -> Union[dict, None]: |
|
return self._graph.edges.get((source_node_id, target_node_id)) |
|
|
|
async def get_node_edges(self, source_node_id: str): |
|
if self._graph.has_node(source_node_id): |
|
return list(self._graph.edges(source_node_id)) |
|
return None |
|
|
|
async def upsert_node(self, node_id: str, node_data: dict[str, str]): |
|
self._graph.add_node(node_id, **node_data) |
|
|
|
async def upsert_edge( |
|
self, source_node_id: str, target_node_id: str, edge_data: dict[str, str] |
|
): |
|
self._graph.add_edge(source_node_id, target_node_id, **edge_data) |
|
|
|
async def delete_node(self, node_id: str): |
|
""" |
|
Delete a node from the graph based on the specified node_id. |
|
|
|
:param node_id: The node_id to delete |
|
""" |
|
if self._graph.has_node(node_id): |
|
self._graph.remove_node(node_id) |
|
logger.info(f"Node {node_id} deleted from the graph.") |
|
else: |
|
logger.warning(f"Node {node_id} not found in the graph for deletion.") |
|
|
|
async def embed_nodes(self, algorithm: str) -> tuple[np.ndarray, list[str]]: |
|
if algorithm not in self._node_embed_algorithms: |
|
raise ValueError(f"Node embedding algorithm {algorithm} not supported") |
|
return await self._node_embed_algorithms[algorithm]() |
|
|
|
|
|
async def _node2vec_embed(self): |
|
from graspologic import embed |
|
|
|
embeddings, nodes = embed.node2vec_embed( |
|
self._graph, |
|
**self.global_config["node2vec_params"], |
|
) |
|
|
|
nodes_ids = [self._graph.nodes[node_id]["id"] for node_id in nodes] |
|
return embeddings, nodes_ids |
|
|
|
def remove_nodes(self, nodes: list[str]): |
|
"""Delete multiple nodes |
|
|
|
Args: |
|
nodes: List of node IDs to be deleted |
|
""" |
|
for node in nodes: |
|
if self._graph.has_node(node): |
|
self._graph.remove_node(node) |
|
|
|
def remove_edges(self, edges: list[tuple[str, str]]): |
|
"""Delete multiple edges |
|
|
|
Args: |
|
edges: List of edges to be deleted, each edge is a (source, target) tuple |
|
""" |
|
for source, target in edges: |
|
if self._graph.has_edge(source, target): |
|
self._graph.remove_edge(source, target) |
|
|
|
|
|
@dataclass |
|
class JsonDocStatusStorage(DocStatusStorage): |
|
"""JSON implementation of document status storage""" |
|
|
|
def __post_init__(self): |
|
working_dir = self.global_config["working_dir"] |
|
self._file_name = os.path.join(working_dir, f"kv_store_{self.namespace}.json") |
|
self._data = load_json(self._file_name) or {} |
|
logger.info(f"Loaded document status storage with {len(self._data)} records") |
|
|
|
async def filter_keys(self, data: list[str]) -> set[str]: |
|
"""Return keys that should be processed (not in storage or not successfully processed)""" |
|
return set( |
|
[ |
|
k |
|
for k in data |
|
if k not in self._data or self._data[k]["status"] != DocStatus.PROCESSED |
|
] |
|
) |
|
|
|
async def get_status_counts(self) -> Dict[str, int]: |
|
"""Get counts of documents in each status""" |
|
counts = {status: 0 for status in DocStatus} |
|
for doc in self._data.values(): |
|
counts[doc["status"]] += 1 |
|
return counts |
|
|
|
async def get_failed_docs(self) -> Dict[str, DocProcessingStatus]: |
|
"""Get all failed documents""" |
|
return {k: v for k, v in self._data.items() if v["status"] == DocStatus.FAILED} |
|
|
|
async def get_pending_docs(self) -> Dict[str, DocProcessingStatus]: |
|
"""Get all pending documents""" |
|
return {k: v for k, v in self._data.items() if v["status"] == DocStatus.PENDING} |
|
|
|
async def index_done_callback(self): |
|
"""Save data to file after indexing""" |
|
write_json(self._data, self._file_name) |
|
|
|
async def upsert(self, data: dict[str, dict]): |
|
"""Update or insert document status |
|
|
|
Args: |
|
data: Dictionary of document IDs and their status data |
|
""" |
|
self._data.update(data) |
|
await self.index_done_callback() |
|
return data |
|
|
|
async def get(self, doc_id: str) -> Union[DocProcessingStatus, None]: |
|
"""Get document status by ID""" |
|
return self._data.get(doc_id) |
|
|
|
async def delete(self, doc_ids: list[str]): |
|
"""Delete document status by IDs""" |
|
for doc_id in doc_ids: |
|
self._data.pop(doc_id, None) |
|
await self.index_done_callback() |
|
|