import os | |
from lightrag import LightRAG, QueryParam | |
from lightrag.llm import ollama_model_complete, ollama_embedding | |
from lightrag.utils import EmbeddingFunc | |
WORKING_DIR = "./dickens" | |
if not os.path.exists(WORKING_DIR): | |
os.mkdir(WORKING_DIR) | |
rag = LightRAG( | |
working_dir=WORKING_DIR, | |
llm_model_func=ollama_model_complete, | |
llm_model_name="your_model_name", | |
embedding_func=EmbeddingFunc( | |
embedding_dim=768, | |
max_token_size=8192, | |
func=lambda texts: ollama_embedding(texts, embed_model="nomic-embed-text"), | |
), | |
) | |
with open("./book.txt") as f: | |
rag.insert(f.read()) | |
# Perform naive search | |
print( | |
rag.query("What are the top themes in this story?", param=QueryParam(mode="naive")) | |
) | |
# Perform local search | |
print( | |
rag.query("What are the top themes in this story?", param=QueryParam(mode="local")) | |
) | |
# Perform global search | |
print( | |
rag.query("What are the top themes in this story?", param=QueryParam(mode="global")) | |
) | |
# Perform hybrid search | |
print( | |
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid")) | |
) | |