|
import os |
|
import asyncio |
|
from lightrag import LightRAG, QueryParam |
|
from lightrag.utils import EmbeddingFunc |
|
import numpy as np |
|
from dotenv import load_dotenv |
|
import logging |
|
from openai import OpenAI |
|
from lightrag.kg.shared_storage import initialize_pipeline_status |
|
|
|
logging.basicConfig(level=logging.INFO) |
|
|
|
load_dotenv() |
|
|
|
LLM_MODEL = os.environ.get("LLM_MODEL", "qwen-turbo-latest") |
|
LLM_BINDING_HOST = "https://dashscope.aliyuncs.com/compatible-mode/v1" |
|
LLM_BINDING_API_KEY = os.getenv("LLM_BINDING_API_KEY") |
|
|
|
EMBEDDING_MODEL = os.environ.get("EMBEDDING_MODEL", "text-embedding-v3") |
|
EMBEDDING_BINDING_HOST = os.getenv("EMBEDDING_BINDING_HOST", LLM_BINDING_HOST) |
|
EMBEDDING_BINDING_API_KEY = os.getenv("EMBEDDING_BINDING_API_KEY", LLM_BINDING_API_KEY) |
|
EMBEDDING_DIM = int(os.environ.get("EMBEDDING_DIM", 1024)) |
|
EMBEDDING_MAX_TOKEN_SIZE = int(os.environ.get("EMBEDDING_MAX_TOKEN_SIZE", 8192)) |
|
EMBEDDING_MAX_BATCH_SIZE = int(os.environ.get("EMBEDDING_MAX_BATCH_SIZE", 10)) |
|
|
|
print(f"LLM_MODEL: {LLM_MODEL}") |
|
print(f"EMBEDDING_MODEL: {EMBEDDING_MODEL}") |
|
|
|
WORKING_DIR = "./dickens" |
|
|
|
if os.path.exists(WORKING_DIR): |
|
import shutil |
|
|
|
shutil.rmtree(WORKING_DIR) |
|
|
|
os.mkdir(WORKING_DIR) |
|
|
|
|
|
async def llm_model_func( |
|
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs |
|
) -> str: |
|
client = OpenAI( |
|
api_key=LLM_BINDING_API_KEY, |
|
base_url=LLM_BINDING_HOST, |
|
) |
|
|
|
messages = [] |
|
if system_prompt: |
|
messages.append({"role": "system", "content": system_prompt}) |
|
if history_messages: |
|
messages.extend(history_messages) |
|
messages.append({"role": "user", "content": prompt}) |
|
|
|
chat_completion = client.chat.completions.create( |
|
model=LLM_MODEL, |
|
messages=messages, |
|
temperature=kwargs.get("temperature", 0), |
|
top_p=kwargs.get("top_p", 1), |
|
n=kwargs.get("n", 1), |
|
extra_body={"enable_thinking": False}, |
|
) |
|
return chat_completion.choices[0].message.content |
|
|
|
|
|
async def embedding_func(texts: list[str]) -> np.ndarray: |
|
client = OpenAI( |
|
api_key=EMBEDDING_BINDING_API_KEY, |
|
base_url=EMBEDDING_BINDING_HOST, |
|
) |
|
|
|
print("##### embedding: texts: %d #####" % len(texts)) |
|
max_batch_size = EMBEDDING_MAX_BATCH_SIZE |
|
embeddings = [] |
|
for i in range(0, len(texts), max_batch_size): |
|
batch = texts[i : i + max_batch_size] |
|
embedding = client.embeddings.create(model=EMBEDDING_MODEL, input=batch) |
|
embeddings += [item.embedding for item in embedding.data] |
|
|
|
return np.array(embeddings) |
|
|
|
|
|
async def test_funcs(): |
|
result = await llm_model_func("How are you?") |
|
print("Resposta do llm_model_func: ", result) |
|
|
|
result = await embedding_func(["How are you?"]) |
|
print("Resultado do embedding_func: ", result.shape) |
|
print("Dimensão da embedding: ", result.shape[1]) |
|
|
|
|
|
asyncio.run(test_funcs()) |
|
|
|
|
|
async def initialize_rag(): |
|
rag = LightRAG( |
|
working_dir=WORKING_DIR, |
|
llm_model_func=llm_model_func, |
|
embedding_func=EmbeddingFunc( |
|
embedding_dim=EMBEDDING_DIM, |
|
max_token_size=EMBEDDING_MAX_TOKEN_SIZE, |
|
func=embedding_func, |
|
), |
|
) |
|
|
|
await rag.initialize_storages() |
|
await initialize_pipeline_status() |
|
|
|
return rag |
|
|
|
|
|
def main(): |
|
rag = asyncio.run(initialize_rag()) |
|
|
|
with open("./book.txt", "r", encoding="utf-8") as f: |
|
rag.insert(f.read()) |
|
|
|
query_text = "What are the main themes?" |
|
|
|
print("Result (Naive):") |
|
print(rag.query(query_text, param=QueryParam(mode="naive"))) |
|
|
|
print("\nResult (Local):") |
|
print(rag.query(query_text, param=QueryParam(mode="local"))) |
|
|
|
print("\nResult (Global):") |
|
print(rag.query(query_text, param=QueryParam(mode="global"))) |
|
|
|
print("\nResult (Hybrid):") |
|
print(rag.query(query_text, param=QueryParam(mode="hybrid"))) |
|
|
|
print("\nResult (mix):") |
|
print(rag.query(query_text, param=QueryParam(mode="mix"))) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|