|
import os |
|
import asyncio |
|
from lightrag import LightRAG, QueryParam |
|
from lightrag.llm.openai import openai_complete_if_cache |
|
from lightrag.llm.siliconcloud import siliconcloud_embedding |
|
from lightrag.utils import EmbeddingFunc |
|
from lightrag.utils import TokenTracker |
|
import numpy as np |
|
from lightrag.kg.shared_storage import initialize_pipeline_status |
|
from dotenv import load_dotenv |
|
|
|
load_dotenv() |
|
|
|
token_tracker = TokenTracker() |
|
WORKING_DIR = "./dickens" |
|
|
|
if not os.path.exists(WORKING_DIR): |
|
os.mkdir(WORKING_DIR) |
|
|
|
|
|
async def llm_model_func( |
|
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs |
|
) -> str: |
|
return await openai_complete_if_cache( |
|
"Qwen/Qwen2.5-7B-Instruct", |
|
prompt, |
|
system_prompt=system_prompt, |
|
history_messages=history_messages, |
|
api_key=os.getenv("SILICONFLOW_API_KEY"), |
|
base_url="https://api.siliconflow.cn/v1/", |
|
token_tracker=token_tracker, |
|
**kwargs, |
|
) |
|
|
|
|
|
async def embedding_func(texts: list[str]) -> np.ndarray: |
|
return await siliconcloud_embedding( |
|
texts, |
|
model="BAAI/bge-m3", |
|
api_key=os.getenv("SILICONFLOW_API_KEY"), |
|
max_token_size=512, |
|
) |
|
|
|
|
|
|
|
async def test_funcs(): |
|
|
|
with token_tracker: |
|
result = await llm_model_func("How are you?") |
|
print("llm_model_func: ", result) |
|
|
|
|
|
asyncio.run(test_funcs()) |
|
|
|
|
|
async def initialize_rag(): |
|
rag = LightRAG( |
|
working_dir=WORKING_DIR, |
|
llm_model_func=llm_model_func, |
|
embedding_func=EmbeddingFunc( |
|
embedding_dim=1024, max_token_size=512, func=embedding_func |
|
), |
|
) |
|
|
|
await rag.initialize_storages() |
|
await initialize_pipeline_status() |
|
|
|
return rag |
|
|
|
|
|
def main(): |
|
|
|
rag = asyncio.run(initialize_rag()) |
|
|
|
|
|
token_tracker.reset() |
|
|
|
with open("./book.txt", "r", encoding="utf-8") as f: |
|
rag.insert(f.read()) |
|
|
|
print( |
|
rag.query( |
|
"What are the top themes in this story?", param=QueryParam(mode="naive") |
|
) |
|
) |
|
|
|
print( |
|
rag.query( |
|
"What are the top themes in this story?", param=QueryParam(mode="local") |
|
) |
|
) |
|
|
|
print( |
|
rag.query( |
|
"What are the top themes in this story?", param=QueryParam(mode="global") |
|
) |
|
) |
|
|
|
print( |
|
rag.query( |
|
"What are the top themes in this story?", param=QueryParam(mode="hybrid") |
|
) |
|
) |
|
|
|
|
|
print("Token usage:", token_tracker.get_usage()) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|