|
import os |
|
import asyncio |
|
from lightrag import LightRAG, QueryParam |
|
from lightrag.llm.openai import gpt_4o_mini_complete, openai_embed |
|
from lightrag.utils import EmbeddingFunc |
|
import numpy as np |
|
|
|
|
|
|
|
|
|
|
|
|
|
WORKING_DIR = "./mongodb_test_dir" |
|
if not os.path.exists(WORKING_DIR): |
|
os.mkdir(WORKING_DIR) |
|
|
|
|
|
os.environ["OPENAI_API_KEY"] = "sk-" |
|
os.environ["MONGO_URI"] = "mongodb://0.0.0.0:27017/?directConnection=true" |
|
os.environ["MONGO_DATABASE"] = "LightRAG" |
|
os.environ["MONGO_KG_COLLECTION"] = "MDB_KG" |
|
|
|
|
|
EMBEDDING_MODEL = os.environ.get("EMBEDDING_MODEL", "text-embedding-3-large") |
|
EMBEDDING_MAX_TOKEN_SIZE = int(os.environ.get("EMBEDDING_MAX_TOKEN_SIZE", 8192)) |
|
|
|
|
|
async def embedding_func(texts: list[str]) -> np.ndarray: |
|
return await openai_embed( |
|
texts, |
|
model=EMBEDDING_MODEL, |
|
) |
|
|
|
|
|
async def get_embedding_dimension(): |
|
test_text = ["This is a test sentence."] |
|
embedding = await embedding_func(test_text) |
|
return embedding.shape[1] |
|
|
|
|
|
async def create_embedding_function_instance(): |
|
|
|
embedding_dimension = await get_embedding_dimension() |
|
|
|
return EmbeddingFunc( |
|
embedding_dim=embedding_dimension, |
|
max_token_size=EMBEDDING_MAX_TOKEN_SIZE, |
|
func=embedding_func, |
|
) |
|
|
|
|
|
async def initialize_rag(): |
|
embedding_func_instance = await create_embedding_function_instance() |
|
|
|
return LightRAG( |
|
working_dir=WORKING_DIR, |
|
llm_model_func=gpt_4o_mini_complete, |
|
embedding_func=embedding_func_instance, |
|
graph_storage="MongoGraphStorage", |
|
log_level="DEBUG", |
|
) |
|
|
|
|
|
|
|
rag = asyncio.run(initialize_rag()) |
|
|
|
with open("book.txt", "r", encoding="utf-8") as f: |
|
rag.insert(f.read()) |
|
|
|
|
|
print( |
|
rag.query("What are the top themes in this story?", param=QueryParam(mode="naive")) |
|
) |
|
|