|
import asyncio |
|
import os |
|
|
|
import numpy as np |
|
|
|
from lightrag import LightRAG, QueryParam |
|
from lightrag.kg.tidb_impl import TiDB |
|
from lightrag.llm import siliconcloud_embedding, openai_complete_if_cache |
|
from lightrag.utils import EmbeddingFunc |
|
|
|
WORKING_DIR = "./dickens" |
|
|
|
|
|
|
|
BASE_URL = "https://api.siliconflow.cn/v1/" |
|
APIKEY = "" |
|
CHATMODEL = "" |
|
EMBEDMODEL = "" |
|
|
|
TIDB_HOST = "" |
|
TIDB_PORT = "" |
|
TIDB_USER = "" |
|
TIDB_PASSWORD = "" |
|
TIDB_DATABASE = "lightrag" |
|
|
|
if not os.path.exists(WORKING_DIR): |
|
os.mkdir(WORKING_DIR) |
|
|
|
|
|
async def llm_model_func( |
|
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs |
|
) -> str: |
|
return await openai_complete_if_cache( |
|
CHATMODEL, |
|
prompt, |
|
system_prompt=system_prompt, |
|
history_messages=history_messages, |
|
api_key=APIKEY, |
|
base_url=BASE_URL, |
|
**kwargs, |
|
) |
|
|
|
|
|
async def embedding_func(texts: list[str]) -> np.ndarray: |
|
return await siliconcloud_embedding( |
|
texts, |
|
|
|
api_key=APIKEY, |
|
) |
|
|
|
|
|
async def get_embedding_dim(): |
|
test_text = ["This is a test sentence."] |
|
embedding = await embedding_func(test_text) |
|
embedding_dim = embedding.shape[1] |
|
return embedding_dim |
|
|
|
|
|
async def main(): |
|
try: |
|
|
|
embedding_dimension = await get_embedding_dim() |
|
print(f"Detected embedding dimension: {embedding_dimension}") |
|
|
|
|
|
tidb = TiDB( |
|
config={ |
|
"host": TIDB_HOST, |
|
"port": TIDB_PORT, |
|
"user": TIDB_USER, |
|
"password": TIDB_PASSWORD, |
|
"database": TIDB_DATABASE, |
|
"workspace": "company", |
|
} |
|
) |
|
|
|
|
|
await tidb.check_tables() |
|
|
|
|
|
|
|
|
|
rag = LightRAG( |
|
enable_llm_cache=False, |
|
working_dir=WORKING_DIR, |
|
chunk_token_size=512, |
|
llm_model_func=llm_model_func, |
|
embedding_func=EmbeddingFunc( |
|
embedding_dim=embedding_dimension, |
|
max_token_size=512, |
|
func=embedding_func, |
|
), |
|
kv_storage="TiDBKVStorage", |
|
vector_storage="TiDBVectorDBStorage", |
|
graph_storage="TiDBGraphStorage", |
|
) |
|
|
|
if rag.llm_response_cache: |
|
rag.llm_response_cache.db = tidb |
|
rag.full_docs.db = tidb |
|
rag.text_chunks.db = tidb |
|
rag.entities_vdb.db = tidb |
|
rag.relationships_vdb.db = tidb |
|
rag.chunks_vdb.db = tidb |
|
rag.chunk_entity_relation_graph.db = tidb |
|
|
|
|
|
with open("./dickens/demo.txt", "r", encoding="utf-8") as f: |
|
await rag.ainsert(f.read()) |
|
|
|
|
|
modes = ["naive", "local", "global", "hybrid"] |
|
for mode in modes: |
|
print("=" * 20, mode, "=" * 20) |
|
print( |
|
await rag.aquery( |
|
"What are the top themes in this story?", |
|
param=QueryParam(mode=mode), |
|
) |
|
) |
|
print("-" * 100, "\n") |
|
|
|
except Exception as e: |
|
print(f"An error occurred: {e}") |
|
|
|
|
|
if __name__ == "__main__": |
|
asyncio.run(main()) |
|
|