|
""" |
|
LightRAG meets Amazon Bedrock ⛰️ |
|
""" |
|
|
|
import os |
|
import logging |
|
|
|
from lightrag import LightRAG, QueryParam |
|
from lightrag.llm.bedrock import bedrock_complete, bedrock_embed |
|
from lightrag.utils import EmbeddingFunc |
|
from lightrag.kg.shared_storage import initialize_pipeline_status |
|
|
|
import asyncio |
|
import nest_asyncio |
|
|
|
nest_asyncio.apply() |
|
|
|
logging.getLogger("aiobotocore").setLevel(logging.WARNING) |
|
|
|
WORKING_DIR = "./dickens" |
|
if not os.path.exists(WORKING_DIR): |
|
os.mkdir(WORKING_DIR) |
|
|
|
|
|
async def initialize_rag(): |
|
rag = LightRAG( |
|
working_dir=WORKING_DIR, |
|
llm_model_func=bedrock_complete, |
|
llm_model_name="Anthropic Claude 3 Haiku // Amazon Bedrock", |
|
embedding_func=EmbeddingFunc( |
|
embedding_dim=1024, max_token_size=8192, func=bedrock_embed |
|
), |
|
) |
|
|
|
await rag.initialize_storages() |
|
await initialize_pipeline_status() |
|
|
|
return rag |
|
|
|
|
|
def main(): |
|
rag = asyncio.run(initialize_rag()) |
|
|
|
with open("./book.txt", "r", encoding="utf-8") as f: |
|
rag.insert(f.read()) |
|
|
|
for mode in ["naive", "local", "global", "hybrid"]: |
|
print("\n+-" + "-" * len(mode) + "-+") |
|
print(f"| {mode.capitalize()} |") |
|
print("+-" + "-" * len(mode) + "-+\n") |
|
print( |
|
rag.query( |
|
"What are the top themes in this story?", param=QueryParam(mode=mode) |
|
) |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|