|
import os |
|
|
|
from lightrag import LightRAG, QueryParam |
|
from lightrag.llm.hf import hf_model_complete, hf_embed |
|
from lightrag.utils import EmbeddingFunc |
|
from transformers import AutoModel, AutoTokenizer |
|
from lightrag.kg.shared_storage import initialize_pipeline_status |
|
|
|
import asyncio |
|
import nest_asyncio |
|
|
|
nest_asyncio.apply() |
|
|
|
WORKING_DIR = "./dickens" |
|
|
|
if not os.path.exists(WORKING_DIR): |
|
os.mkdir(WORKING_DIR) |
|
|
|
|
|
async def initialize_rag(): |
|
rag = LightRAG( |
|
working_dir=WORKING_DIR, |
|
llm_model_func=hf_model_complete, |
|
llm_model_name="meta-llama/Llama-3.1-8B-Instruct", |
|
embedding_func=EmbeddingFunc( |
|
embedding_dim=384, |
|
max_token_size=5000, |
|
func=lambda texts: hf_embed( |
|
texts, |
|
tokenizer=AutoTokenizer.from_pretrained( |
|
"sentence-transformers/all-MiniLM-L6-v2" |
|
), |
|
embed_model=AutoModel.from_pretrained( |
|
"sentence-transformers/all-MiniLM-L6-v2" |
|
), |
|
), |
|
), |
|
) |
|
|
|
await rag.initialize_storages() |
|
await initialize_pipeline_status() |
|
|
|
return rag |
|
|
|
|
|
def main(): |
|
rag = asyncio.run(initialize_rag()) |
|
|
|
with open("./book.txt", "r", encoding="utf-8") as f: |
|
rag.insert(f.read()) |
|
|
|
|
|
print( |
|
rag.query( |
|
"What are the top themes in this story?", param=QueryParam(mode="naive") |
|
) |
|
) |
|
|
|
|
|
print( |
|
rag.query( |
|
"What are the top themes in this story?", param=QueryParam(mode="local") |
|
) |
|
) |
|
|
|
|
|
print( |
|
rag.query( |
|
"What are the top themes in this story?", param=QueryParam(mode="global") |
|
) |
|
) |
|
|
|
|
|
print( |
|
rag.query( |
|
"What are the top themes in this story?", param=QueryParam(mode="hybrid") |
|
) |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|