|
import os |
|
import asyncio |
|
from lightrag import LightRAG, QueryParam |
|
from lightrag.llm.ollama import ollama_embed, openai_complete_if_cache |
|
from lightrag.utils import EmbeddingFunc |
|
from lightrag.kg.shared_storage import initialize_pipeline_status |
|
|
|
|
|
ROOT_DIR = os.path.dirname(os.path.abspath(__file__)) |
|
WORKING_DIR = os.path.join(ROOT_DIR, "myKG") |
|
if not os.path.exists(WORKING_DIR): |
|
os.mkdir(WORKING_DIR) |
|
print(f"WorkingDir: {WORKING_DIR}") |
|
|
|
|
|
os.environ["REDIS_URI"] = "redis://localhost:6379" |
|
|
|
|
|
BATCH_SIZE_NODES = 500 |
|
BATCH_SIZE_EDGES = 100 |
|
os.environ["NEO4J_URI"] = "neo4j://localhost:7687" |
|
os.environ["NEO4J_USERNAME"] = "neo4j" |
|
os.environ["NEO4J_PASSWORD"] = "12345678" |
|
|
|
|
|
os.environ["MILVUS_URI"] = "http://localhost:19530" |
|
os.environ["MILVUS_USER"] = "root" |
|
os.environ["MILVUS_PASSWORD"] = "Milvus" |
|
os.environ["MILVUS_DB_NAME"] = "lightrag" |
|
|
|
|
|
async def llm_model_func( |
|
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs |
|
) -> str: |
|
return await openai_complete_if_cache( |
|
"deepseek-chat", |
|
prompt, |
|
system_prompt=system_prompt, |
|
history_messages=history_messages, |
|
api_key="", |
|
base_url="", |
|
**kwargs, |
|
) |
|
|
|
|
|
embedding_func = EmbeddingFunc( |
|
embedding_dim=768, |
|
max_token_size=512, |
|
func=lambda texts: ollama_embed( |
|
texts, embed_model="shaw/dmeta-embedding-zh", host="http://117.50.173.35:11434" |
|
), |
|
) |
|
|
|
|
|
async def initialize_rag(): |
|
rag = LightRAG( |
|
working_dir=WORKING_DIR, |
|
llm_model_func=llm_model_func, |
|
llm_model_max_token_size=32768, |
|
embedding_func=embedding_func, |
|
chunk_token_size=512, |
|
chunk_overlap_token_size=256, |
|
kv_storage="RedisKVStorage", |
|
graph_storage="Neo4JStorage", |
|
vector_storage="MilvusVectorDBStorage", |
|
doc_status_storage="RedisKVStorage", |
|
) |
|
|
|
await rag.initialize_storages() |
|
await initialize_pipeline_status() |
|
|
|
return rag |
|
|
|
|
|
def main(): |
|
|
|
rag = asyncio.run(initialize_rag()) |
|
|
|
with open("./book.txt", "r", encoding="utf-8") as f: |
|
rag.insert(f.read()) |
|
|
|
|
|
print( |
|
rag.query( |
|
"What are the top themes in this story?", param=QueryParam(mode="naive") |
|
) |
|
) |
|
|
|
|
|
print( |
|
rag.query( |
|
"What are the top themes in this story?", param=QueryParam(mode="local") |
|
) |
|
) |
|
|
|
|
|
print( |
|
rag.query( |
|
"What are the top themes in this story?", param=QueryParam(mode="global") |
|
) |
|
) |
|
|
|
|
|
print( |
|
rag.query( |
|
"What are the top themes in this story?", param=QueryParam(mode="hybrid") |
|
) |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|