Magic_yuan
commited on
Commit
·
0069752
1
Parent(s):
38d7e17
更新format
Browse files
examples/lightrag_azure_openai_demo.py
CHANGED
@@ -4,7 +4,6 @@ from lightrag import LightRAG, QueryParam
|
|
4 |
from lightrag.utils import EmbeddingFunc
|
5 |
import numpy as np
|
6 |
from dotenv import load_dotenv
|
7 |
-
import aiohttp
|
8 |
import logging
|
9 |
from openai import AzureOpenAI
|
10 |
|
@@ -31,12 +30,12 @@ os.mkdir(WORKING_DIR)
|
|
31 |
|
32 |
|
33 |
async def llm_model_func(
|
34 |
-
|
35 |
) -> str:
|
36 |
client = AzureOpenAI(
|
37 |
api_key=AZURE_OPENAI_API_KEY,
|
38 |
api_version=AZURE_OPENAI_API_VERSION,
|
39 |
-
azure_endpoint=
|
40 |
)
|
41 |
|
42 |
messages = []
|
@@ -47,7 +46,7 @@ async def llm_model_func(
|
|
47 |
messages.append({"role": "user", "content": prompt})
|
48 |
|
49 |
chat_completion = client.chat.completions.create(
|
50 |
-
model=
|
51 |
messages=messages,
|
52 |
temperature=kwargs.get("temperature", 0),
|
53 |
top_p=kwargs.get("top_p", 1),
|
@@ -60,12 +59,9 @@ async def embedding_func(texts: list[str]) -> np.ndarray:
|
|
60 |
client = AzureOpenAI(
|
61 |
api_key=AZURE_OPENAI_API_KEY,
|
62 |
api_version=AZURE_EMBEDDING_API_VERSION,
|
63 |
-
azure_endpoint=AZURE_OPENAI_ENDPOINT
|
64 |
-
)
|
65 |
-
embedding = client.embeddings.create(
|
66 |
-
model=AZURE_EMBEDDING_DEPLOYMENT,
|
67 |
-
input=texts
|
68 |
)
|
|
|
69 |
|
70 |
embeddings = [item.embedding for item in embedding.data]
|
71 |
return np.array(embeddings)
|
|
|
4 |
from lightrag.utils import EmbeddingFunc
|
5 |
import numpy as np
|
6 |
from dotenv import load_dotenv
|
|
|
7 |
import logging
|
8 |
from openai import AzureOpenAI
|
9 |
|
|
|
30 |
|
31 |
|
32 |
async def llm_model_func(
|
33 |
+
prompt, system_prompt=None, history_messages=[], **kwargs
|
34 |
) -> str:
|
35 |
client = AzureOpenAI(
|
36 |
api_key=AZURE_OPENAI_API_KEY,
|
37 |
api_version=AZURE_OPENAI_API_VERSION,
|
38 |
+
azure_endpoint=AZURE_OPENAI_ENDPOINT,
|
39 |
)
|
40 |
|
41 |
messages = []
|
|
|
46 |
messages.append({"role": "user", "content": prompt})
|
47 |
|
48 |
chat_completion = client.chat.completions.create(
|
49 |
+
model=AZURE_OPENAI_DEPLOYMENT, # model = "deployment_name".
|
50 |
messages=messages,
|
51 |
temperature=kwargs.get("temperature", 0),
|
52 |
top_p=kwargs.get("top_p", 1),
|
|
|
59 |
client = AzureOpenAI(
|
60 |
api_key=AZURE_OPENAI_API_KEY,
|
61 |
api_version=AZURE_EMBEDDING_API_VERSION,
|
62 |
+
azure_endpoint=AZURE_OPENAI_ENDPOINT,
|
|
|
|
|
|
|
|
|
63 |
)
|
64 |
+
embedding = client.embeddings.create(model=AZURE_EMBEDDING_DEPLOYMENT, input=texts)
|
65 |
|
66 |
embeddings = [item.embedding for item in embedding.data]
|
67 |
return np.array(embeddings)
|