Added OpenAI compatible options and examples
Browse files- examples/lightrag_openai_compatible_demo.py +69 -0
- lightrag/llm.py +11 -5
examples/lightrag_openai_compatible_demo.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import asyncio
|
3 |
+
from lightrag import LightRAG, QueryParam
|
4 |
+
from lightrag.llm import openai_complete_if_cache, openai_embedding
|
5 |
+
from lightrag.utils import EmbeddingFunc
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
WORKING_DIR = "./dickens"
|
9 |
+
|
10 |
+
if not os.path.exists(WORKING_DIR):
|
11 |
+
os.mkdir(WORKING_DIR)
|
12 |
+
|
13 |
+
async def llm_model_func(
|
14 |
+
prompt, system_prompt=None, history_messages=[], **kwargs
|
15 |
+
) -> str:
|
16 |
+
return await openai_complete_if_cache(
|
17 |
+
"solar-mini",
|
18 |
+
prompt,
|
19 |
+
system_prompt=system_prompt,
|
20 |
+
history_messages=history_messages,
|
21 |
+
api_key=os.getenv("UPSTAGE_API_KEY"),
|
22 |
+
base_url="https://api.upstage.ai/v1/solar",
|
23 |
+
**kwargs
|
24 |
+
)
|
25 |
+
|
26 |
+
async def embedding_func(texts: list[str]) -> np.ndarray:
|
27 |
+
return await openai_embedding(
|
28 |
+
texts,
|
29 |
+
model="solar-embedding-1-large-query",
|
30 |
+
api_key=os.getenv("UPSTAGE_API_KEY"),
|
31 |
+
base_url="https://api.upstage.ai/v1/solar"
|
32 |
+
)
|
33 |
+
|
34 |
+
# function test
|
35 |
+
async def test_funcs():
|
36 |
+
result = await llm_model_func("How are you?")
|
37 |
+
print("llm_model_func: ", result)
|
38 |
+
|
39 |
+
result = await embedding_func(["How are you?"])
|
40 |
+
print("embedding_func: ", result)
|
41 |
+
|
42 |
+
asyncio.run(test_funcs())
|
43 |
+
|
44 |
+
|
45 |
+
rag = LightRAG(
|
46 |
+
working_dir=WORKING_DIR,
|
47 |
+
llm_model_func=llm_model_func,
|
48 |
+
embedding_func=EmbeddingFunc(
|
49 |
+
embedding_dim=4096,
|
50 |
+
max_token_size=8192,
|
51 |
+
func=embedding_func
|
52 |
+
)
|
53 |
+
)
|
54 |
+
|
55 |
+
|
56 |
+
with open("./book.txt") as f:
|
57 |
+
rag.insert(f.read())
|
58 |
+
|
59 |
+
# Perform naive search
|
60 |
+
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="naive")))
|
61 |
+
|
62 |
+
# Perform local search
|
63 |
+
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="local")))
|
64 |
+
|
65 |
+
# Perform global search
|
66 |
+
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="global")))
|
67 |
+
|
68 |
+
# Perform hybrid search
|
69 |
+
print(rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid")))
|
lightrag/llm.py
CHANGED
@@ -19,9 +19,12 @@ os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
|
19 |
retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)),
|
20 |
)
|
21 |
async def openai_complete_if_cache(
|
22 |
-
model, prompt, system_prompt=None, history_messages=[], **kwargs
|
23 |
) -> str:
|
24 |
-
|
|
|
|
|
|
|
25 |
hashing_kv: BaseKVStorage = kwargs.pop("hashing_kv", None)
|
26 |
messages = []
|
27 |
if system_prompt:
|
@@ -133,10 +136,13 @@ async def hf_model_complete(
|
|
133 |
wait=wait_exponential(multiplier=1, min=4, max=10),
|
134 |
retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)),
|
135 |
)
|
136 |
-
async def openai_embedding(texts: list[str]) -> np.ndarray:
|
137 |
-
|
|
|
|
|
|
|
138 |
response = await openai_async_client.embeddings.create(
|
139 |
-
model=
|
140 |
)
|
141 |
return np.array([dp.embedding for dp in response.data])
|
142 |
|
|
|
19 |
retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)),
|
20 |
)
|
21 |
async def openai_complete_if_cache(
|
22 |
+
model, prompt, system_prompt=None, history_messages=[], base_url=None, api_key=None, **kwargs
|
23 |
) -> str:
|
24 |
+
if api_key:
|
25 |
+
os.environ["OPENAI_API_KEY"] = api_key
|
26 |
+
|
27 |
+
openai_async_client = AsyncOpenAI() if base_url is None else AsyncOpenAI(base_url=base_url)
|
28 |
hashing_kv: BaseKVStorage = kwargs.pop("hashing_kv", None)
|
29 |
messages = []
|
30 |
if system_prompt:
|
|
|
136 |
wait=wait_exponential(multiplier=1, min=4, max=10),
|
137 |
retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)),
|
138 |
)
|
139 |
+
async def openai_embedding(texts: list[str], model: str = "text-embedding-3-small", base_url: str = None, api_key: str = None) -> np.ndarray:
|
140 |
+
if api_key:
|
141 |
+
os.environ["OPENAI_API_KEY"] = api_key
|
142 |
+
|
143 |
+
openai_async_client = AsyncOpenAI() if base_url is None else AsyncOpenAI(base_url=base_url)
|
144 |
response = await openai_async_client.embeddings.create(
|
145 |
+
model=model, input=texts, encoding_format="float"
|
146 |
)
|
147 |
return np.array([dp.embedding for dp in response.data])
|
148 |
|