Separated llms from the main llm.py file and fixed some deprication bugs
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitignore +2 -0
- README.md +5 -5
- config.ini +0 -13
- examples/insert_custom_kg.py +1 -1
- examples/lightrag_api_ollama_demo.py +2 -2
- examples/lightrag_api_open_webui_demo.py +1 -1
- examples/lightrag_api_openai_compatible_demo.py +2 -2
- examples/lightrag_api_oracle_demo.py +2 -2
- examples/lightrag_bedrock_demo.py +2 -2
- examples/lightrag_hf_demo.py +2 -2
- examples/lightrag_jinaai_demo.py +3 -2
- examples/lightrag_lmdeploy_demo.py +3 -2
- examples/lightrag_nvidia_demo.py +3 -3
- examples/lightrag_ollama_age_demo.py +2 -2
- examples/lightrag_ollama_demo.py +2 -2
- examples/lightrag_ollama_gremlin_demo.py +2 -2
- examples/lightrag_ollama_neo4j_milvus_mongo_demo.py +1 -1
- examples/lightrag_openai_compatible_demo.py +2 -2
- examples/lightrag_openai_compatible_demo_embedding_cache.py +2 -2
- examples/lightrag_openai_compatible_stream_demo.py +2 -2
- examples/lightrag_openai_demo.py +1 -1
- examples/lightrag_openai_neo4j_milvus_redis_demo.py +1 -1
- examples/lightrag_oracle_demo.py +2 -2
- examples/lightrag_siliconcloud_demo.py +2 -1
- examples/lightrag_zhipu_demo.py +1 -1
- examples/lightrag_zhipu_postgres_demo.py +1 -1
- examples/test.py +1 -1
- examples/test_chromadb.py +2 -2
- examples/test_neo4j.py +1 -1
- examples/test_split_by_character.ipynb +3 -3
- examples/vram_management_demo.py +2 -2
- lightrag/api/lightrag_server.py +16 -6
- lightrag/api/requirements.txt +0 -1
- lightrag/exceptions.py +55 -0
- lightrag/kg/redis_impl.py +3 -2
- lightrag/lightrag.py +2 -6
- lightrag/llm.py +3 -1207
- lightrag/llm/__init__.py +0 -0
- lightrag/llm/azure_openai.py +188 -0
- lightrag/llm/bedrock.py +229 -0
- lightrag/llm/hf.py +187 -0
- lightrag/llm/jina.py +104 -0
- lightrag/llm/lmdeploy.py +190 -0
- lightrag/llm/lollms.py +222 -0
- lightrag/llm/nvidia_openai.py +112 -0
- lightrag/llm/ollama.py +155 -0
- lightrag/llm/openai.py +232 -0
- lightrag/llm/siliconcloud.py +121 -0
- lightrag/llm/zhipu.py +250 -0
- lightrag/storage.py +2 -0
.gitignore
CHANGED
@@ -22,3 +22,5 @@ venv/
|
|
22 |
examples/input/
|
23 |
examples/output/
|
24 |
.DS_Store
|
|
|
|
|
|
22 |
examples/input/
|
23 |
examples/output/
|
24 |
.DS_Store
|
25 |
+
#Remove config.ini from repo
|
26 |
+
*.ini
|
README.md
CHANGED
@@ -81,7 +81,7 @@ Use the below Python snippet (in a script) to initialize LightRAG and perform qu
|
|
81 |
```python
|
82 |
import os
|
83 |
from lightrag import LightRAG, QueryParam
|
84 |
-
from lightrag.llm import gpt_4o_mini_complete, gpt_4o_complete
|
85 |
|
86 |
#########
|
87 |
# Uncomment the below two lines if running in a jupyter notebook to handle the async nature of rag.insert()
|
@@ -177,7 +177,7 @@ async def llm_model_func(
|
|
177 |
)
|
178 |
|
179 |
async def embedding_func(texts: list[str]) -> np.ndarray:
|
180 |
-
return await
|
181 |
texts,
|
182 |
model="solar-embedding-1-large-query",
|
183 |
api_key=os.getenv("UPSTAGE_API_KEY"),
|
@@ -233,7 +233,7 @@ If you want to use Ollama models, you need to pull model you plan to use and emb
|
|
233 |
Then you only need to set LightRAG as follows:
|
234 |
|
235 |
```python
|
236 |
-
from lightrag.llm import ollama_model_complete,
|
237 |
from lightrag.utils import EmbeddingFunc
|
238 |
|
239 |
# Initialize LightRAG with Ollama model
|
@@ -245,7 +245,7 @@ rag = LightRAG(
|
|
245 |
embedding_func=EmbeddingFunc(
|
246 |
embedding_dim=768,
|
247 |
max_token_size=8192,
|
248 |
-
func=lambda texts:
|
249 |
texts,
|
250 |
embed_model="nomic-embed-text"
|
251 |
)
|
@@ -690,7 +690,7 @@ if __name__ == "__main__":
|
|
690 |
| **entity\_summary\_to\_max\_tokens** | `int` | Maximum token size for each entity summary | `500` |
|
691 |
| **node\_embedding\_algorithm** | `str` | Algorithm for node embedding (currently not used) | `node2vec` |
|
692 |
| **node2vec\_params** | `dict` | Parameters for node embedding | `{"dimensions": 1536,"num_walks": 10,"walk_length": 40,"window_size": 2,"iterations": 3,"random_seed": 3,}` |
|
693 |
-
| **embedding\_func** | `EmbeddingFunc` | Function to generate embedding vectors from text | `
|
694 |
| **embedding\_batch\_num** | `int` | Maximum batch size for embedding processes (multiple texts sent per batch) | `32` |
|
695 |
| **embedding\_func\_max\_async** | `int` | Maximum number of concurrent asynchronous embedding processes | `16` |
|
696 |
| **llm\_model\_func** | `callable` | Function for LLM generation | `gpt_4o_mini_complete` |
|
|
|
81 |
```python
|
82 |
import os
|
83 |
from lightrag import LightRAG, QueryParam
|
84 |
+
from lightrag.llm.openai import gpt_4o_mini_complete, gpt_4o_complete
|
85 |
|
86 |
#########
|
87 |
# Uncomment the below two lines if running in a jupyter notebook to handle the async nature of rag.insert()
|
|
|
177 |
)
|
178 |
|
179 |
async def embedding_func(texts: list[str]) -> np.ndarray:
|
180 |
+
return await openai_embed(
|
181 |
texts,
|
182 |
model="solar-embedding-1-large-query",
|
183 |
api_key=os.getenv("UPSTAGE_API_KEY"),
|
|
|
233 |
Then you only need to set LightRAG as follows:
|
234 |
|
235 |
```python
|
236 |
+
from lightrag.llm.ollama import ollama_model_complete, ollama_embed
|
237 |
from lightrag.utils import EmbeddingFunc
|
238 |
|
239 |
# Initialize LightRAG with Ollama model
|
|
|
245 |
embedding_func=EmbeddingFunc(
|
246 |
embedding_dim=768,
|
247 |
max_token_size=8192,
|
248 |
+
func=lambda texts: ollama_embed(
|
249 |
texts,
|
250 |
embed_model="nomic-embed-text"
|
251 |
)
|
|
|
690 |
| **entity\_summary\_to\_max\_tokens** | `int` | Maximum token size for each entity summary | `500` |
|
691 |
| **node\_embedding\_algorithm** | `str` | Algorithm for node embedding (currently not used) | `node2vec` |
|
692 |
| **node2vec\_params** | `dict` | Parameters for node embedding | `{"dimensions": 1536,"num_walks": 10,"walk_length": 40,"window_size": 2,"iterations": 3,"random_seed": 3,}` |
|
693 |
+
| **embedding\_func** | `EmbeddingFunc` | Function to generate embedding vectors from text | `openai_embed` |
|
694 |
| **embedding\_batch\_num** | `int` | Maximum batch size for embedding processes (multiple texts sent per batch) | `32` |
|
695 |
| **embedding\_func\_max\_async** | `int` | Maximum number of concurrent asynchronous embedding processes | `16` |
|
696 |
| **llm\_model\_func** | `callable` | Function for LLM generation | `gpt_4o_mini_complete` |
|
config.ini
DELETED
@@ -1,13 +0,0 @@
|
|
1 |
-
[redis]
|
2 |
-
uri = redis://localhost:6379
|
3 |
-
|
4 |
-
[neo4j]
|
5 |
-
uri = #
|
6 |
-
username = neo4j
|
7 |
-
password = 12345678
|
8 |
-
|
9 |
-
[milvus]
|
10 |
-
uri = #
|
11 |
-
user = root
|
12 |
-
password = Milvus
|
13 |
-
db_name = lightrag
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
examples/insert_custom_kg.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import os
|
2 |
from lightrag import LightRAG
|
3 |
-
from lightrag.llm import gpt_4o_mini_complete
|
4 |
#########
|
5 |
# Uncomment the below two lines if running in a jupyter notebook to handle the async nature of rag.insert()
|
6 |
# import nest_asyncio
|
|
|
1 |
import os
|
2 |
from lightrag import LightRAG
|
3 |
+
from lightrag.llm.openai import gpt_4o_mini_complete
|
4 |
#########
|
5 |
# Uncomment the below two lines if running in a jupyter notebook to handle the async nature of rag.insert()
|
6 |
# import nest_asyncio
|
examples/lightrag_api_ollama_demo.py
CHANGED
@@ -2,7 +2,7 @@ from fastapi import FastAPI, HTTPException, File, UploadFile
|
|
2 |
from pydantic import BaseModel
|
3 |
import os
|
4 |
from lightrag import LightRAG, QueryParam
|
5 |
-
from lightrag.llm import
|
6 |
from lightrag.utils import EmbeddingFunc
|
7 |
from typing import Optional
|
8 |
import asyncio
|
@@ -38,7 +38,7 @@ rag = LightRAG(
|
|
38 |
embedding_func=EmbeddingFunc(
|
39 |
embedding_dim=768,
|
40 |
max_token_size=8192,
|
41 |
-
func=lambda texts:
|
42 |
texts, embed_model="nomic-embed-text", host="http://localhost:11434"
|
43 |
),
|
44 |
),
|
|
|
2 |
from pydantic import BaseModel
|
3 |
import os
|
4 |
from lightrag import LightRAG, QueryParam
|
5 |
+
from lightrag.llm.ollama import ollama_embed, ollama_model_complete
|
6 |
from lightrag.utils import EmbeddingFunc
|
7 |
from typing import Optional
|
8 |
import asyncio
|
|
|
38 |
embedding_func=EmbeddingFunc(
|
39 |
embedding_dim=768,
|
40 |
max_token_size=8192,
|
41 |
+
func=lambda texts: ollama_embed(
|
42 |
texts, embed_model="nomic-embed-text", host="http://localhost:11434"
|
43 |
),
|
44 |
),
|
examples/lightrag_api_open_webui_demo.py
CHANGED
@@ -9,7 +9,7 @@ from typing import Optional
|
|
9 |
import os
|
10 |
import logging
|
11 |
from lightrag import LightRAG, QueryParam
|
12 |
-
from lightrag.llm import ollama_model_complete, ollama_embed
|
13 |
from lightrag.utils import EmbeddingFunc
|
14 |
|
15 |
import nest_asyncio
|
|
|
9 |
import os
|
10 |
import logging
|
11 |
from lightrag import LightRAG, QueryParam
|
12 |
+
from lightrag.llm.ollama import ollama_model_complete, ollama_embed
|
13 |
from lightrag.utils import EmbeddingFunc
|
14 |
|
15 |
import nest_asyncio
|
examples/lightrag_api_openai_compatible_demo.py
CHANGED
@@ -2,7 +2,7 @@ from fastapi import FastAPI, HTTPException, File, UploadFile
|
|
2 |
from pydantic import BaseModel
|
3 |
import os
|
4 |
from lightrag import LightRAG, QueryParam
|
5 |
-
from lightrag.llm import openai_complete_if_cache,
|
6 |
from lightrag.utils import EmbeddingFunc
|
7 |
import numpy as np
|
8 |
from typing import Optional
|
@@ -48,7 +48,7 @@ async def llm_model_func(
|
|
48 |
|
49 |
|
50 |
async def embedding_func(texts: list[str]) -> np.ndarray:
|
51 |
-
return await
|
52 |
texts,
|
53 |
model=EMBEDDING_MODEL,
|
54 |
)
|
|
|
2 |
from pydantic import BaseModel
|
3 |
import os
|
4 |
from lightrag import LightRAG, QueryParam
|
5 |
+
from lightrag.llm.openai import openai_complete_if_cache, openai_embed
|
6 |
from lightrag.utils import EmbeddingFunc
|
7 |
import numpy as np
|
8 |
from typing import Optional
|
|
|
48 |
|
49 |
|
50 |
async def embedding_func(texts: list[str]) -> np.ndarray:
|
51 |
+
return await openai_embed(
|
52 |
texts,
|
53 |
model=EMBEDDING_MODEL,
|
54 |
)
|
examples/lightrag_api_oracle_demo.py
CHANGED
@@ -13,7 +13,7 @@ from pathlib import Path
|
|
13 |
import asyncio
|
14 |
import nest_asyncio
|
15 |
from lightrag import LightRAG, QueryParam
|
16 |
-
from lightrag.llm import openai_complete_if_cache,
|
17 |
from lightrag.utils import EmbeddingFunc
|
18 |
import numpy as np
|
19 |
|
@@ -64,7 +64,7 @@ async def llm_model_func(
|
|
64 |
|
65 |
|
66 |
async def embedding_func(texts: list[str]) -> np.ndarray:
|
67 |
-
return await
|
68 |
texts,
|
69 |
model=EMBEDDING_MODEL,
|
70 |
api_key=APIKEY,
|
|
|
13 |
import asyncio
|
14 |
import nest_asyncio
|
15 |
from lightrag import LightRAG, QueryParam
|
16 |
+
from lightrag.llm.openai import openai_complete_if_cache, openai_embed
|
17 |
from lightrag.utils import EmbeddingFunc
|
18 |
import numpy as np
|
19 |
|
|
|
64 |
|
65 |
|
66 |
async def embedding_func(texts: list[str]) -> np.ndarray:
|
67 |
+
return await openai_embed(
|
68 |
texts,
|
69 |
model=EMBEDDING_MODEL,
|
70 |
api_key=APIKEY,
|
examples/lightrag_bedrock_demo.py
CHANGED
@@ -6,7 +6,7 @@ import os
|
|
6 |
import logging
|
7 |
|
8 |
from lightrag import LightRAG, QueryParam
|
9 |
-
from lightrag.llm import bedrock_complete,
|
10 |
from lightrag.utils import EmbeddingFunc
|
11 |
|
12 |
logging.getLogger("aiobotocore").setLevel(logging.WARNING)
|
@@ -20,7 +20,7 @@ rag = LightRAG(
|
|
20 |
llm_model_func=bedrock_complete,
|
21 |
llm_model_name="Anthropic Claude 3 Haiku // Amazon Bedrock",
|
22 |
embedding_func=EmbeddingFunc(
|
23 |
-
embedding_dim=1024, max_token_size=8192, func=
|
24 |
),
|
25 |
)
|
26 |
|
|
|
6 |
import logging
|
7 |
|
8 |
from lightrag import LightRAG, QueryParam
|
9 |
+
from lightrag.llm.bedrock import bedrock_complete, bedrock_embed
|
10 |
from lightrag.utils import EmbeddingFunc
|
11 |
|
12 |
logging.getLogger("aiobotocore").setLevel(logging.WARNING)
|
|
|
20 |
llm_model_func=bedrock_complete,
|
21 |
llm_model_name="Anthropic Claude 3 Haiku // Amazon Bedrock",
|
22 |
embedding_func=EmbeddingFunc(
|
23 |
+
embedding_dim=1024, max_token_size=8192, func=bedrock_embed
|
24 |
),
|
25 |
)
|
26 |
|
examples/lightrag_hf_demo.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
import os
|
2 |
|
3 |
from lightrag import LightRAG, QueryParam
|
4 |
-
from lightrag.llm import hf_model_complete,
|
5 |
from lightrag.utils import EmbeddingFunc
|
6 |
from transformers import AutoModel, AutoTokenizer
|
7 |
|
@@ -17,7 +17,7 @@ rag = LightRAG(
|
|
17 |
embedding_func=EmbeddingFunc(
|
18 |
embedding_dim=384,
|
19 |
max_token_size=5000,
|
20 |
-
func=lambda texts:
|
21 |
texts,
|
22 |
tokenizer=AutoTokenizer.from_pretrained(
|
23 |
"sentence-transformers/all-MiniLM-L6-v2"
|
|
|
1 |
import os
|
2 |
|
3 |
from lightrag import LightRAG, QueryParam
|
4 |
+
from lightrag.llm.hf import hf_model_complete, hf_embed
|
5 |
from lightrag.utils import EmbeddingFunc
|
6 |
from transformers import AutoModel, AutoTokenizer
|
7 |
|
|
|
17 |
embedding_func=EmbeddingFunc(
|
18 |
embedding_dim=384,
|
19 |
max_token_size=5000,
|
20 |
+
func=lambda texts: hf_embed(
|
21 |
texts,
|
22 |
tokenizer=AutoTokenizer.from_pretrained(
|
23 |
"sentence-transformers/all-MiniLM-L6-v2"
|
examples/lightrag_jinaai_demo.py
CHANGED
@@ -1,13 +1,14 @@
|
|
1 |
import numpy as np
|
2 |
from lightrag import LightRAG, QueryParam
|
3 |
from lightrag.utils import EmbeddingFunc
|
4 |
-
from lightrag.llm import
|
|
|
5 |
import os
|
6 |
import asyncio
|
7 |
|
8 |
|
9 |
async def embedding_func(texts: list[str]) -> np.ndarray:
|
10 |
-
return await
|
11 |
|
12 |
|
13 |
WORKING_DIR = "./dickens"
|
|
|
1 |
import numpy as np
|
2 |
from lightrag import LightRAG, QueryParam
|
3 |
from lightrag.utils import EmbeddingFunc
|
4 |
+
from lightrag.llm.jina import jina_embed
|
5 |
+
from lightrag.llm.openai import openai_complete_if_cache
|
6 |
import os
|
7 |
import asyncio
|
8 |
|
9 |
|
10 |
async def embedding_func(texts: list[str]) -> np.ndarray:
|
11 |
+
return await jina_embed(texts, api_key="YourJinaAPIKey")
|
12 |
|
13 |
|
14 |
WORKING_DIR = "./dickens"
|
examples/lightrag_lmdeploy_demo.py
CHANGED
@@ -1,7 +1,8 @@
|
|
1 |
import os
|
2 |
|
3 |
from lightrag import LightRAG, QueryParam
|
4 |
-
from lightrag.llm import lmdeploy_model_if_cache
|
|
|
5 |
from lightrag.utils import EmbeddingFunc
|
6 |
from transformers import AutoModel, AutoTokenizer
|
7 |
|
@@ -42,7 +43,7 @@ rag = LightRAG(
|
|
42 |
embedding_func=EmbeddingFunc(
|
43 |
embedding_dim=384,
|
44 |
max_token_size=5000,
|
45 |
-
func=lambda texts:
|
46 |
texts,
|
47 |
tokenizer=AutoTokenizer.from_pretrained(
|
48 |
"sentence-transformers/all-MiniLM-L6-v2"
|
|
|
1 |
import os
|
2 |
|
3 |
from lightrag import LightRAG, QueryParam
|
4 |
+
from lightrag.llm.lmdeploy import lmdeploy_model_if_cache
|
5 |
+
from lightrag.llm.hf import hf_embed
|
6 |
from lightrag.utils import EmbeddingFunc
|
7 |
from transformers import AutoModel, AutoTokenizer
|
8 |
|
|
|
43 |
embedding_func=EmbeddingFunc(
|
44 |
embedding_dim=384,
|
45 |
max_token_size=5000,
|
46 |
+
func=lambda texts: hf_embed(
|
47 |
texts,
|
48 |
tokenizer=AutoTokenizer.from_pretrained(
|
49 |
"sentence-transformers/all-MiniLM-L6-v2"
|
examples/lightrag_nvidia_demo.py
CHANGED
@@ -3,7 +3,7 @@ import asyncio
|
|
3 |
from lightrag import LightRAG, QueryParam
|
4 |
from lightrag.llm import (
|
5 |
openai_complete_if_cache,
|
6 |
-
|
7 |
)
|
8 |
from lightrag.utils import EmbeddingFunc
|
9 |
import numpy as np
|
@@ -47,7 +47,7 @@ nvidia_embed_model = "nvidia/nv-embedqa-e5-v5"
|
|
47 |
|
48 |
|
49 |
async def indexing_embedding_func(texts: list[str]) -> np.ndarray:
|
50 |
-
return await
|
51 |
texts,
|
52 |
model=nvidia_embed_model, # maximum 512 token
|
53 |
# model="nvidia/llama-3.2-nv-embedqa-1b-v1",
|
@@ -60,7 +60,7 @@ async def indexing_embedding_func(texts: list[str]) -> np.ndarray:
|
|
60 |
|
61 |
|
62 |
async def query_embedding_func(texts: list[str]) -> np.ndarray:
|
63 |
-
return await
|
64 |
texts,
|
65 |
model=nvidia_embed_model, # maximum 512 token
|
66 |
# model="nvidia/llama-3.2-nv-embedqa-1b-v1",
|
|
|
3 |
from lightrag import LightRAG, QueryParam
|
4 |
from lightrag.llm import (
|
5 |
openai_complete_if_cache,
|
6 |
+
nvidia_openai_embed,
|
7 |
)
|
8 |
from lightrag.utils import EmbeddingFunc
|
9 |
import numpy as np
|
|
|
47 |
|
48 |
|
49 |
async def indexing_embedding_func(texts: list[str]) -> np.ndarray:
|
50 |
+
return await nvidia_openai_embed(
|
51 |
texts,
|
52 |
model=nvidia_embed_model, # maximum 512 token
|
53 |
# model="nvidia/llama-3.2-nv-embedqa-1b-v1",
|
|
|
60 |
|
61 |
|
62 |
async def query_embedding_func(texts: list[str]) -> np.ndarray:
|
63 |
+
return await nvidia_openai_embed(
|
64 |
texts,
|
65 |
model=nvidia_embed_model, # maximum 512 token
|
66 |
# model="nvidia/llama-3.2-nv-embedqa-1b-v1",
|
examples/lightrag_ollama_age_demo.py
CHANGED
@@ -4,7 +4,7 @@ import logging
|
|
4 |
import os
|
5 |
|
6 |
from lightrag import LightRAG, QueryParam
|
7 |
-
from lightrag.llm import
|
8 |
from lightrag.utils import EmbeddingFunc
|
9 |
|
10 |
WORKING_DIR = "./dickens_age"
|
@@ -32,7 +32,7 @@ rag = LightRAG(
|
|
32 |
embedding_func=EmbeddingFunc(
|
33 |
embedding_dim=768,
|
34 |
max_token_size=8192,
|
35 |
-
func=lambda texts:
|
36 |
texts, embed_model="nomic-embed-text", host="http://localhost:11434"
|
37 |
),
|
38 |
),
|
|
|
4 |
import os
|
5 |
|
6 |
from lightrag import LightRAG, QueryParam
|
7 |
+
from lightrag.llm.ollama import ollama_embed, ollama_model_complete
|
8 |
from lightrag.utils import EmbeddingFunc
|
9 |
|
10 |
WORKING_DIR = "./dickens_age"
|
|
|
32 |
embedding_func=EmbeddingFunc(
|
33 |
embedding_dim=768,
|
34 |
max_token_size=8192,
|
35 |
+
func=lambda texts: ollama_embed(
|
36 |
texts, embed_model="nomic-embed-text", host="http://localhost:11434"
|
37 |
),
|
38 |
),
|
examples/lightrag_ollama_demo.py
CHANGED
@@ -3,7 +3,7 @@ import os
|
|
3 |
import inspect
|
4 |
import logging
|
5 |
from lightrag import LightRAG, QueryParam
|
6 |
-
from lightrag.llm import ollama_model_complete,
|
7 |
from lightrag.utils import EmbeddingFunc
|
8 |
|
9 |
WORKING_DIR = "./dickens"
|
@@ -23,7 +23,7 @@ rag = LightRAG(
|
|
23 |
embedding_func=EmbeddingFunc(
|
24 |
embedding_dim=768,
|
25 |
max_token_size=8192,
|
26 |
-
func=lambda texts:
|
27 |
texts, embed_model="nomic-embed-text", host="http://localhost:11434"
|
28 |
),
|
29 |
),
|
|
|
3 |
import inspect
|
4 |
import logging
|
5 |
from lightrag import LightRAG, QueryParam
|
6 |
+
from lightrag.llm.ollama import ollama_model_complete, ollama_embed
|
7 |
from lightrag.utils import EmbeddingFunc
|
8 |
|
9 |
WORKING_DIR = "./dickens"
|
|
|
23 |
embedding_func=EmbeddingFunc(
|
24 |
embedding_dim=768,
|
25 |
max_token_size=8192,
|
26 |
+
func=lambda texts: ollama_embed(
|
27 |
texts, embed_model="nomic-embed-text", host="http://localhost:11434"
|
28 |
),
|
29 |
),
|
examples/lightrag_ollama_gremlin_demo.py
CHANGED
@@ -10,7 +10,7 @@ import os
|
|
10 |
# logging.basicConfig(format="%(levelname)s:%(message)s", level=logging.WARN)
|
11 |
|
12 |
from lightrag import LightRAG, QueryParam
|
13 |
-
from lightrag.llm import
|
14 |
from lightrag.utils import EmbeddingFunc
|
15 |
|
16 |
WORKING_DIR = "./dickens_gremlin"
|
@@ -41,7 +41,7 @@ rag = LightRAG(
|
|
41 |
embedding_func=EmbeddingFunc(
|
42 |
embedding_dim=768,
|
43 |
max_token_size=8192,
|
44 |
-
func=lambda texts:
|
45 |
texts, embed_model="nomic-embed-text", host="http://localhost:11434"
|
46 |
),
|
47 |
),
|
|
|
10 |
# logging.basicConfig(format="%(levelname)s:%(message)s", level=logging.WARN)
|
11 |
|
12 |
from lightrag import LightRAG, QueryParam
|
13 |
+
from lightrag.llm.ollama import ollama_embed, ollama_model_complete
|
14 |
from lightrag.utils import EmbeddingFunc
|
15 |
|
16 |
WORKING_DIR = "./dickens_gremlin"
|
|
|
41 |
embedding_func=EmbeddingFunc(
|
42 |
embedding_dim=768,
|
43 |
max_token_size=8192,
|
44 |
+
func=lambda texts: ollama_embed(
|
45 |
texts, embed_model="nomic-embed-text", host="http://localhost:11434"
|
46 |
),
|
47 |
),
|
examples/lightrag_ollama_neo4j_milvus_mongo_demo.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import os
|
2 |
from lightrag import LightRAG, QueryParam
|
3 |
-
from lightrag.llm import ollama_model_complete, ollama_embed
|
4 |
from lightrag.utils import EmbeddingFunc
|
5 |
|
6 |
# WorkingDir
|
|
|
1 |
import os
|
2 |
from lightrag import LightRAG, QueryParam
|
3 |
+
from lightrag.llm.ollama import ollama_model_complete, ollama_embed
|
4 |
from lightrag.utils import EmbeddingFunc
|
5 |
|
6 |
# WorkingDir
|
examples/lightrag_openai_compatible_demo.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
import os
|
2 |
import asyncio
|
3 |
from lightrag import LightRAG, QueryParam
|
4 |
-
from lightrag.llm import openai_complete_if_cache,
|
5 |
from lightrag.utils import EmbeddingFunc
|
6 |
import numpy as np
|
7 |
|
@@ -26,7 +26,7 @@ async def llm_model_func(
|
|
26 |
|
27 |
|
28 |
async def embedding_func(texts: list[str]) -> np.ndarray:
|
29 |
-
return await
|
30 |
texts,
|
31 |
model="solar-embedding-1-large-query",
|
32 |
api_key=os.getenv("UPSTAGE_API_KEY"),
|
|
|
1 |
import os
|
2 |
import asyncio
|
3 |
from lightrag import LightRAG, QueryParam
|
4 |
+
from lightrag.llm.openai import openai_complete_if_cache, openai_embed
|
5 |
from lightrag.utils import EmbeddingFunc
|
6 |
import numpy as np
|
7 |
|
|
|
26 |
|
27 |
|
28 |
async def embedding_func(texts: list[str]) -> np.ndarray:
|
29 |
+
return await openai_embed(
|
30 |
texts,
|
31 |
model="solar-embedding-1-large-query",
|
32 |
api_key=os.getenv("UPSTAGE_API_KEY"),
|
examples/lightrag_openai_compatible_demo_embedding_cache.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
import os
|
2 |
import asyncio
|
3 |
from lightrag import LightRAG, QueryParam
|
4 |
-
from lightrag.llm import openai_complete_if_cache,
|
5 |
from lightrag.utils import EmbeddingFunc
|
6 |
import numpy as np
|
7 |
|
@@ -26,7 +26,7 @@ async def llm_model_func(
|
|
26 |
|
27 |
|
28 |
async def embedding_func(texts: list[str]) -> np.ndarray:
|
29 |
-
return await
|
30 |
texts,
|
31 |
model="solar-embedding-1-large-query",
|
32 |
api_key=os.getenv("UPSTAGE_API_KEY"),
|
|
|
1 |
import os
|
2 |
import asyncio
|
3 |
from lightrag import LightRAG, QueryParam
|
4 |
+
from lightrag.llm.openai import openai_complete_if_cache, openai_embed
|
5 |
from lightrag.utils import EmbeddingFunc
|
6 |
import numpy as np
|
7 |
|
|
|
26 |
|
27 |
|
28 |
async def embedding_func(texts: list[str]) -> np.ndarray:
|
29 |
+
return await openai_embed(
|
30 |
texts,
|
31 |
model="solar-embedding-1-large-query",
|
32 |
api_key=os.getenv("UPSTAGE_API_KEY"),
|
examples/lightrag_openai_compatible_stream_demo.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
import os
|
2 |
import inspect
|
3 |
from lightrag import LightRAG
|
4 |
-
from lightrag.llm import openai_complete,
|
5 |
from lightrag.utils import EmbeddingFunc
|
6 |
from lightrag.lightrag import always_get_an_event_loop
|
7 |
from lightrag import QueryParam
|
@@ -24,7 +24,7 @@ rag = LightRAG(
|
|
24 |
embedding_func=EmbeddingFunc(
|
25 |
embedding_dim=1024,
|
26 |
max_token_size=8192,
|
27 |
-
func=lambda texts:
|
28 |
texts=texts,
|
29 |
model="text-embedding-bge-m3",
|
30 |
base_url="http://127.0.0.1:1234/v1",
|
|
|
1 |
import os
|
2 |
import inspect
|
3 |
from lightrag import LightRAG
|
4 |
+
from lightrag.llm import openai_complete, openai_embed
|
5 |
from lightrag.utils import EmbeddingFunc
|
6 |
from lightrag.lightrag import always_get_an_event_loop
|
7 |
from lightrag import QueryParam
|
|
|
24 |
embedding_func=EmbeddingFunc(
|
25 |
embedding_dim=1024,
|
26 |
max_token_size=8192,
|
27 |
+
func=lambda texts: openai_embed(
|
28 |
texts=texts,
|
29 |
model="text-embedding-bge-m3",
|
30 |
base_url="http://127.0.0.1:1234/v1",
|
examples/lightrag_openai_demo.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
import os
|
2 |
|
3 |
from lightrag import LightRAG, QueryParam
|
4 |
-
from lightrag.llm import gpt_4o_mini_complete
|
5 |
|
6 |
WORKING_DIR = "./dickens"
|
7 |
|
|
|
1 |
import os
|
2 |
|
3 |
from lightrag import LightRAG, QueryParam
|
4 |
+
from lightrag.llm.openai import gpt_4o_mini_complete
|
5 |
|
6 |
WORKING_DIR = "./dickens"
|
7 |
|
examples/lightrag_openai_neo4j_milvus_redis_demo.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import os
|
2 |
from lightrag import LightRAG, QueryParam
|
3 |
-
from lightrag.llm import ollama_embed, openai_complete_if_cache
|
4 |
from lightrag.utils import EmbeddingFunc
|
5 |
|
6 |
# WorkingDir
|
|
|
1 |
import os
|
2 |
from lightrag import LightRAG, QueryParam
|
3 |
+
from lightrag.llm.ollama import ollama_embed, openai_complete_if_cache
|
4 |
from lightrag.utils import EmbeddingFunc
|
5 |
|
6 |
# WorkingDir
|
examples/lightrag_oracle_demo.py
CHANGED
@@ -3,7 +3,7 @@ import os
|
|
3 |
from pathlib import Path
|
4 |
import asyncio
|
5 |
from lightrag import LightRAG, QueryParam
|
6 |
-
from lightrag.llm import openai_complete_if_cache,
|
7 |
from lightrag.utils import EmbeddingFunc
|
8 |
import numpy as np
|
9 |
from lightrag.kg.oracle_impl import OracleDB
|
@@ -42,7 +42,7 @@ async def llm_model_func(
|
|
42 |
|
43 |
|
44 |
async def embedding_func(texts: list[str]) -> np.ndarray:
|
45 |
-
return await
|
46 |
texts,
|
47 |
model=EMBEDMODEL,
|
48 |
api_key=APIKEY,
|
|
|
3 |
from pathlib import Path
|
4 |
import asyncio
|
5 |
from lightrag import LightRAG, QueryParam
|
6 |
+
from lightrag.llm.openai import openai_complete_if_cache, openai_embed
|
7 |
from lightrag.utils import EmbeddingFunc
|
8 |
import numpy as np
|
9 |
from lightrag.kg.oracle_impl import OracleDB
|
|
|
42 |
|
43 |
|
44 |
async def embedding_func(texts: list[str]) -> np.ndarray:
|
45 |
+
return await openai_embed(
|
46 |
texts,
|
47 |
model=EMBEDMODEL,
|
48 |
api_key=APIKEY,
|
examples/lightrag_siliconcloud_demo.py
CHANGED
@@ -1,7 +1,8 @@
|
|
1 |
import os
|
2 |
import asyncio
|
3 |
from lightrag import LightRAG, QueryParam
|
4 |
-
from lightrag.llm import openai_complete_if_cache
|
|
|
5 |
from lightrag.utils import EmbeddingFunc
|
6 |
import numpy as np
|
7 |
|
|
|
1 |
import os
|
2 |
import asyncio
|
3 |
from lightrag import LightRAG, QueryParam
|
4 |
+
from lightrag.llm.openai import openai_complete_if_cache
|
5 |
+
from lightrag.llm.siliconcloud import siliconcloud_embedding
|
6 |
from lightrag.utils import EmbeddingFunc
|
7 |
import numpy as np
|
8 |
|
examples/lightrag_zhipu_demo.py
CHANGED
@@ -3,7 +3,7 @@ import logging
|
|
3 |
|
4 |
|
5 |
from lightrag import LightRAG, QueryParam
|
6 |
-
from lightrag.llm import zhipu_complete, zhipu_embedding
|
7 |
from lightrag.utils import EmbeddingFunc
|
8 |
|
9 |
WORKING_DIR = "./dickens"
|
|
|
3 |
|
4 |
|
5 |
from lightrag import LightRAG, QueryParam
|
6 |
+
from lightrag.llm.zhipu import zhipu_complete, zhipu_embedding
|
7 |
from lightrag.utils import EmbeddingFunc
|
8 |
|
9 |
WORKING_DIR = "./dickens"
|
examples/lightrag_zhipu_postgres_demo.py
CHANGED
@@ -6,7 +6,7 @@ from dotenv import load_dotenv
|
|
6 |
|
7 |
from lightrag import LightRAG, QueryParam
|
8 |
from lightrag.kg.postgres_impl import PostgreSQLDB
|
9 |
-
from lightrag.llm import ollama_embedding, zhipu_complete
|
10 |
from lightrag.utils import EmbeddingFunc
|
11 |
|
12 |
load_dotenv()
|
|
|
6 |
|
7 |
from lightrag import LightRAG, QueryParam
|
8 |
from lightrag.kg.postgres_impl import PostgreSQLDB
|
9 |
+
from lightrag.llm.zhipu import ollama_embedding, zhipu_complete
|
10 |
from lightrag.utils import EmbeddingFunc
|
11 |
|
12 |
load_dotenv()
|
examples/test.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import os
|
2 |
from lightrag import LightRAG, QueryParam
|
3 |
-
from lightrag.llm import gpt_4o_mini_complete
|
4 |
#########
|
5 |
# Uncomment the below two lines if running in a jupyter notebook to handle the async nature of rag.insert()
|
6 |
# import nest_asyncio
|
|
|
1 |
import os
|
2 |
from lightrag import LightRAG, QueryParam
|
3 |
+
from lightrag.llm.openai import gpt_4o_mini_complete
|
4 |
#########
|
5 |
# Uncomment the below two lines if running in a jupyter notebook to handle the async nature of rag.insert()
|
6 |
# import nest_asyncio
|
examples/test_chromadb.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
import os
|
2 |
import asyncio
|
3 |
from lightrag import LightRAG, QueryParam
|
4 |
-
from lightrag.llm import gpt_4o_mini_complete,
|
5 |
from lightrag.utils import EmbeddingFunc
|
6 |
import numpy as np
|
7 |
|
@@ -35,7 +35,7 @@ EMBEDDING_MAX_TOKEN_SIZE = int(os.environ.get("EMBEDDING_MAX_TOKEN_SIZE", 8192))
|
|
35 |
|
36 |
|
37 |
async def embedding_func(texts: list[str]) -> np.ndarray:
|
38 |
-
return await
|
39 |
texts,
|
40 |
model=EMBEDDING_MODEL,
|
41 |
)
|
|
|
1 |
import os
|
2 |
import asyncio
|
3 |
from lightrag import LightRAG, QueryParam
|
4 |
+
from lightrag.llm.openai import gpt_4o_mini_complete, openai_embed
|
5 |
from lightrag.utils import EmbeddingFunc
|
6 |
import numpy as np
|
7 |
|
|
|
35 |
|
36 |
|
37 |
async def embedding_func(texts: list[str]) -> np.ndarray:
|
38 |
+
return await openai_embed(
|
39 |
texts,
|
40 |
model=EMBEDDING_MODEL,
|
41 |
)
|
examples/test_neo4j.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import os
|
2 |
from lightrag import LightRAG, QueryParam
|
3 |
-
from lightrag.llm import gpt_4o_mini_complete
|
4 |
|
5 |
|
6 |
#########
|
|
|
1 |
import os
|
2 |
from lightrag import LightRAG, QueryParam
|
3 |
+
from lightrag.llm.openai import gpt_4o_mini_complete
|
4 |
|
5 |
|
6 |
#########
|
examples/test_split_by_character.ipynb
CHANGED
@@ -16,7 +16,7 @@
|
|
16 |
"import logging\n",
|
17 |
"import numpy as np\n",
|
18 |
"from lightrag import LightRAG, QueryParam\n",
|
19 |
-
"from lightrag.llm import openai_complete_if_cache,
|
20 |
"from lightrag.utils import EmbeddingFunc\n",
|
21 |
"import nest_asyncio"
|
22 |
]
|
@@ -74,7 +74,7 @@
|
|
74 |
"\n",
|
75 |
"\n",
|
76 |
"async def embedding_func(texts: list[str]) -> np.ndarray:\n",
|
77 |
-
" return await
|
78 |
" texts,\n",
|
79 |
" model=\"ep-20241231173413-pgjmk\",\n",
|
80 |
" api_key=API,\n",
|
@@ -138,7 +138,7 @@
|
|
138 |
"\n",
|
139 |
"\n",
|
140 |
"async def embedding_func(texts: list[str]) -> np.ndarray:\n",
|
141 |
-
" return await
|
142 |
" texts,\n",
|
143 |
" model=\"ep-20241231173413-pgjmk\",\n",
|
144 |
" api_key=API,\n",
|
|
|
16 |
"import logging\n",
|
17 |
"import numpy as np\n",
|
18 |
"from lightrag import LightRAG, QueryParam\n",
|
19 |
+
"from lightrag.llm.openai import openai_complete_if_cache, openai_embed\n",
|
20 |
"from lightrag.utils import EmbeddingFunc\n",
|
21 |
"import nest_asyncio"
|
22 |
]
|
|
|
74 |
"\n",
|
75 |
"\n",
|
76 |
"async def embedding_func(texts: list[str]) -> np.ndarray:\n",
|
77 |
+
" return await openai_embed(\n",
|
78 |
" texts,\n",
|
79 |
" model=\"ep-20241231173413-pgjmk\",\n",
|
80 |
" api_key=API,\n",
|
|
|
138 |
"\n",
|
139 |
"\n",
|
140 |
"async def embedding_func(texts: list[str]) -> np.ndarray:\n",
|
141 |
+
" return await openai_embed(\n",
|
142 |
" texts,\n",
|
143 |
" model=\"ep-20241231173413-pgjmk\",\n",
|
144 |
" api_key=API,\n",
|
examples/vram_management_demo.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
import os
|
2 |
import time
|
3 |
from lightrag import LightRAG, QueryParam
|
4 |
-
from lightrag.llm import ollama_model_complete,
|
5 |
from lightrag.utils import EmbeddingFunc
|
6 |
|
7 |
# Working directory and the directory path for text files
|
@@ -20,7 +20,7 @@ rag = LightRAG(
|
|
20 |
embedding_func=EmbeddingFunc(
|
21 |
embedding_dim=768,
|
22 |
max_token_size=8192,
|
23 |
-
func=lambda texts:
|
24 |
),
|
25 |
)
|
26 |
|
|
|
1 |
import os
|
2 |
import time
|
3 |
from lightrag import LightRAG, QueryParam
|
4 |
+
from lightrag.llm.ollama import ollama_model_complete, ollama_embed
|
5 |
from lightrag.utils import EmbeddingFunc
|
6 |
|
7 |
# Working directory and the directory path for text files
|
|
|
20 |
embedding_func=EmbeddingFunc(
|
21 |
embedding_dim=768,
|
22 |
max_token_size=8192,
|
23 |
+
func=lambda texts: ollama_embed(texts, embed_model="nomic-embed-text"),
|
24 |
),
|
25 |
)
|
26 |
|
lightrag/api/lightrag_server.py
CHANGED
@@ -8,10 +8,6 @@ import time
|
|
8 |
import re
|
9 |
from typing import List, Dict, Any, Optional, Union
|
10 |
from lightrag import LightRAG, QueryParam
|
11 |
-
from lightrag.llm import lollms_model_complete, lollms_embed
|
12 |
-
from lightrag.llm import ollama_model_complete, ollama_embed
|
13 |
-
from lightrag.llm import openai_complete_if_cache, openai_embedding
|
14 |
-
from lightrag.llm import azure_openai_complete_if_cache, azure_openai_embedding
|
15 |
from lightrag.api import __api_version__
|
16 |
|
17 |
from lightrag.utils import EmbeddingFunc
|
@@ -720,6 +716,20 @@ def create_app(args):
|
|
720 |
|
721 |
# Create working directory if it doesn't exist
|
722 |
Path(args.working_dir).mkdir(parents=True, exist_ok=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
723 |
|
724 |
async def openai_alike_model_complete(
|
725 |
prompt,
|
@@ -773,13 +783,13 @@ def create_app(args):
|
|
773 |
api_key=args.embedding_binding_api_key,
|
774 |
)
|
775 |
if args.embedding_binding == "ollama"
|
776 |
-
else
|
777 |
texts,
|
778 |
model=args.embedding_model, # no host is used for openai,
|
779 |
api_key=args.embedding_binding_api_key,
|
780 |
)
|
781 |
if args.embedding_binding == "azure_openai"
|
782 |
-
else
|
783 |
texts,
|
784 |
model=args.embedding_model, # no host is used for openai,
|
785 |
api_key=args.embedding_binding_api_key,
|
|
|
8 |
import re
|
9 |
from typing import List, Dict, Any, Optional, Union
|
10 |
from lightrag import LightRAG, QueryParam
|
|
|
|
|
|
|
|
|
11 |
from lightrag.api import __api_version__
|
12 |
|
13 |
from lightrag.utils import EmbeddingFunc
|
|
|
716 |
|
717 |
# Create working directory if it doesn't exist
|
718 |
Path(args.working_dir).mkdir(parents=True, exist_ok=True)
|
719 |
+
if args.llm_binding_host == "lollms" or args.embedding_binding == "lollms":
|
720 |
+
from lightrag.llm.lollms import lollms_model_complete, lollms_embed
|
721 |
+
if args.llm_binding_host == "ollama" or args.embedding_binding == "ollama":
|
722 |
+
from lightrag.llm.ollama import ollama_model_complete, ollama_embed
|
723 |
+
if args.llm_binding_host == "openai" or args.embedding_binding == "openai":
|
724 |
+
from lightrag.llm.openai import openai_complete_if_cache, openai_embed
|
725 |
+
if (
|
726 |
+
args.llm_binding_host == "azure_openai"
|
727 |
+
or args.embedding_binding == "azure_openai"
|
728 |
+
):
|
729 |
+
from lightrag.llm.azure_openai import (
|
730 |
+
azure_openai_complete_if_cache,
|
731 |
+
azure_openai_embed,
|
732 |
+
)
|
733 |
|
734 |
async def openai_alike_model_complete(
|
735 |
prompt,
|
|
|
783 |
api_key=args.embedding_binding_api_key,
|
784 |
)
|
785 |
if args.embedding_binding == "ollama"
|
786 |
+
else azure_openai_embed(
|
787 |
texts,
|
788 |
model=args.embedding_model, # no host is used for openai,
|
789 |
api_key=args.embedding_binding_api_key,
|
790 |
)
|
791 |
if args.embedding_binding == "azure_openai"
|
792 |
+
else openai_embed(
|
793 |
texts,
|
794 |
model=args.embedding_model, # no host is used for openai,
|
795 |
api_key=args.embedding_binding_api_key,
|
lightrag/api/requirements.txt
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
aioboto3
|
2 |
ascii_colors
|
3 |
fastapi
|
4 |
nano_vectordb
|
|
|
|
|
1 |
ascii_colors
|
2 |
fastapi
|
3 |
nano_vectordb
|
lightrag/exceptions.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import httpx
|
2 |
+
from typing import Literal
|
3 |
+
|
4 |
+
class APIStatusError(Exception):
|
5 |
+
"""Raised when an API response has a status code of 4xx or 5xx."""
|
6 |
+
|
7 |
+
response: httpx.Response
|
8 |
+
status_code: int
|
9 |
+
request_id: str | None
|
10 |
+
|
11 |
+
def __init__(self, message: str, *, response: httpx.Response, body: object | None) -> None:
|
12 |
+
super().__init__(message, response.request, body=body)
|
13 |
+
self.response = response
|
14 |
+
self.status_code = response.status_code
|
15 |
+
self.request_id = response.headers.get("x-request-id")
|
16 |
+
|
17 |
+
class APIConnectionError(Exception):
|
18 |
+
def __init__(self, *, message: str = "Connection error.", request: httpx.Request) -> None:
|
19 |
+
super().__init__(message, request, body=None)
|
20 |
+
|
21 |
+
|
22 |
+
class BadRequestError(APIStatusError):
|
23 |
+
status_code: Literal[400] = 400 # pyright: ignore[reportIncompatibleVariableOverride]
|
24 |
+
|
25 |
+
|
26 |
+
class AuthenticationError(APIStatusError):
|
27 |
+
status_code: Literal[401] = 401 # pyright: ignore[reportIncompatibleVariableOverride]
|
28 |
+
|
29 |
+
|
30 |
+
class PermissionDeniedError(APIStatusError):
|
31 |
+
status_code: Literal[403] = 403 # pyright: ignore[reportIncompatibleVariableOverride]
|
32 |
+
|
33 |
+
|
34 |
+
class NotFoundError(APIStatusError):
|
35 |
+
status_code: Literal[404] = 404 # pyright: ignore[reportIncompatibleVariableOverride]
|
36 |
+
|
37 |
+
|
38 |
+
class ConflictError(APIStatusError):
|
39 |
+
status_code: Literal[409] = 409 # pyright: ignore[reportIncompatibleVariableOverride]
|
40 |
+
|
41 |
+
|
42 |
+
class UnprocessableEntityError(APIStatusError):
|
43 |
+
status_code: Literal[422] = 422 # pyright: ignore[reportIncompatibleVariableOverride]
|
44 |
+
|
45 |
+
|
46 |
+
class RateLimitError(APIStatusError):
|
47 |
+
status_code: Literal[429] = 429 # pyright: ignore[reportIncompatibleVariableOverride]
|
48 |
+
|
49 |
+
class APITimeoutError(APIConnectionError):
|
50 |
+
def __init__(self, request: httpx.Request) -> None:
|
51 |
+
super().__init__(message="Request timed out.", request=request)
|
52 |
+
|
53 |
+
|
54 |
+
class BadRequestError(APIStatusError):
|
55 |
+
status_code: Literal[400] = 400 # pyright: ignore[reportIncompatibleVariableOverride]
|
lightrag/kg/redis_impl.py
CHANGED
@@ -1,7 +1,8 @@
|
|
1 |
import os
|
2 |
from tqdm.asyncio import tqdm as tqdm_async
|
3 |
from dataclasses import dataclass
|
4 |
-
|
|
|
5 |
from lightrag.utils import logger
|
6 |
from lightrag.base import BaseKVStorage
|
7 |
import json
|
@@ -11,7 +12,7 @@ import json
|
|
11 |
class RedisKVStorage(BaseKVStorage):
|
12 |
def __post_init__(self):
|
13 |
redis_url = os.environ.get("REDIS_URI", "redis://localhost:6379")
|
14 |
-
self._redis =
|
15 |
logger.info(f"Use Redis as KV {self.namespace}")
|
16 |
|
17 |
async def all_keys(self) -> list[str]:
|
|
|
1 |
import os
|
2 |
from tqdm.asyncio import tqdm as tqdm_async
|
3 |
from dataclasses import dataclass
|
4 |
+
# aioredis is a depricated library, replaced with redis
|
5 |
+
from redis.asyncio import Redis
|
6 |
from lightrag.utils import logger
|
7 |
from lightrag.base import BaseKVStorage
|
8 |
import json
|
|
|
12 |
class RedisKVStorage(BaseKVStorage):
|
13 |
def __post_init__(self):
|
14 |
redis_url = os.environ.get("REDIS_URI", "redis://localhost:6379")
|
15 |
+
self._redis = Redis.from_url(redis_url, decode_responses=True)
|
16 |
logger.info(f"Use Redis as KV {self.namespace}")
|
17 |
|
18 |
async def all_keys(self) -> list[str]:
|
lightrag/lightrag.py
CHANGED
@@ -6,10 +6,6 @@ from datetime import datetime
|
|
6 |
from functools import partial
|
7 |
from typing import Type, cast, Dict
|
8 |
|
9 |
-
from .llm import (
|
10 |
-
gpt_4o_mini_complete,
|
11 |
-
openai_embedding,
|
12 |
-
)
|
13 |
from .operate import (
|
14 |
chunking_by_token_size,
|
15 |
extract_entities,
|
@@ -154,12 +150,12 @@ class LightRAG:
|
|
154 |
)
|
155 |
|
156 |
# embedding_func: EmbeddingFunc = field(default_factory=lambda:hf_embedding)
|
157 |
-
embedding_func: EmbeddingFunc =
|
158 |
embedding_batch_num: int = 32
|
159 |
embedding_func_max_async: int = 16
|
160 |
|
161 |
# LLM
|
162 |
-
llm_model_func: callable =
|
163 |
llm_model_name: str = "meta-llama/Llama-3.2-1B-Instruct" # 'meta-llama/Llama-3.2-1B'#'google/gemma-2-2b-it'
|
164 |
llm_model_max_token_size: int = 32768
|
165 |
llm_model_max_async: int = 16
|
|
|
6 |
from functools import partial
|
7 |
from typing import Type, cast, Dict
|
8 |
|
|
|
|
|
|
|
|
|
9 |
from .operate import (
|
10 |
chunking_by_token_size,
|
11 |
extract_entities,
|
|
|
150 |
)
|
151 |
|
152 |
# embedding_func: EmbeddingFunc = field(default_factory=lambda:hf_embedding)
|
153 |
+
embedding_func: EmbeddingFunc = None # This must be set (we do want to separate llm from the corte, so no more default initialization)
|
154 |
embedding_batch_num: int = 32
|
155 |
embedding_func_max_async: int = 16
|
156 |
|
157 |
# LLM
|
158 |
+
llm_model_func: callable = None # This must be set (we do want to separate llm from the corte, so no more default initialization)
|
159 |
llm_model_name: str = "meta-llama/Llama-3.2-1B-Instruct" # 'meta-llama/Llama-3.2-1B'#'google/gemma-2-2b-it'
|
160 |
llm_model_max_token_size: int = 32768
|
161 |
llm_model_max_async: int = 16
|
lightrag/llm.py
CHANGED
@@ -1,1211 +1,5 @@
|
|
1 |
-
import
|
2 |
-
import copy
|
3 |
-
import json
|
4 |
-
import os
|
5 |
-
import re
|
6 |
-
import struct
|
7 |
-
from functools import lru_cache
|
8 |
-
from typing import List, Dict, Callable, Any, Union, Optional
|
9 |
-
import aioboto3
|
10 |
-
import aiohttp
|
11 |
-
import numpy as np
|
12 |
-
import ollama
|
13 |
-
import torch
|
14 |
-
from openai import (
|
15 |
-
AsyncOpenAI,
|
16 |
-
APIConnectionError,
|
17 |
-
RateLimitError,
|
18 |
-
APITimeoutError,
|
19 |
-
AsyncAzureOpenAI,
|
20 |
-
)
|
21 |
from pydantic import BaseModel, Field
|
22 |
-
from tenacity import (
|
23 |
-
retry,
|
24 |
-
stop_after_attempt,
|
25 |
-
wait_exponential,
|
26 |
-
retry_if_exception_type,
|
27 |
-
)
|
28 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
29 |
-
|
30 |
-
from .utils import (
|
31 |
-
wrap_embedding_func_with_attrs,
|
32 |
-
locate_json_string_body_from_string,
|
33 |
-
safe_unicode_decode,
|
34 |
-
logger,
|
35 |
-
)
|
36 |
-
|
37 |
-
import sys
|
38 |
-
|
39 |
-
if sys.version_info < (3, 9):
|
40 |
-
from typing import AsyncIterator
|
41 |
-
else:
|
42 |
-
from collections.abc import AsyncIterator
|
43 |
-
|
44 |
-
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
45 |
-
|
46 |
-
|
47 |
-
@retry(
|
48 |
-
stop=stop_after_attempt(3),
|
49 |
-
wait=wait_exponential(multiplier=1, min=4, max=10),
|
50 |
-
retry=retry_if_exception_type(
|
51 |
-
(RateLimitError, APIConnectionError, APITimeoutError)
|
52 |
-
),
|
53 |
-
)
|
54 |
-
async def openai_complete_if_cache(
|
55 |
-
model,
|
56 |
-
prompt,
|
57 |
-
system_prompt=None,
|
58 |
-
history_messages=[],
|
59 |
-
base_url=None,
|
60 |
-
api_key=None,
|
61 |
-
**kwargs,
|
62 |
-
) -> str:
|
63 |
-
if api_key:
|
64 |
-
os.environ["OPENAI_API_KEY"] = api_key
|
65 |
-
|
66 |
-
openai_async_client = (
|
67 |
-
AsyncOpenAI() if base_url is None else AsyncOpenAI(base_url=base_url)
|
68 |
-
)
|
69 |
-
kwargs.pop("hashing_kv", None)
|
70 |
-
kwargs.pop("keyword_extraction", None)
|
71 |
-
messages = []
|
72 |
-
if system_prompt:
|
73 |
-
messages.append({"role": "system", "content": system_prompt})
|
74 |
-
messages.extend(history_messages)
|
75 |
-
messages.append({"role": "user", "content": prompt})
|
76 |
-
|
77 |
-
# 添加日志输出
|
78 |
-
logger.debug("===== Query Input to LLM =====")
|
79 |
-
logger.debug(f"Query: {prompt}")
|
80 |
-
logger.debug(f"System prompt: {system_prompt}")
|
81 |
-
logger.debug("Full context:")
|
82 |
-
if "response_format" in kwargs:
|
83 |
-
response = await openai_async_client.beta.chat.completions.parse(
|
84 |
-
model=model, messages=messages, **kwargs
|
85 |
-
)
|
86 |
-
else:
|
87 |
-
response = await openai_async_client.chat.completions.create(
|
88 |
-
model=model, messages=messages, **kwargs
|
89 |
-
)
|
90 |
-
|
91 |
-
if hasattr(response, "__aiter__"):
|
92 |
-
|
93 |
-
async def inner():
|
94 |
-
async for chunk in response:
|
95 |
-
content = chunk.choices[0].delta.content
|
96 |
-
if content is None:
|
97 |
-
continue
|
98 |
-
if r"\u" in content:
|
99 |
-
content = safe_unicode_decode(content.encode("utf-8"))
|
100 |
-
yield content
|
101 |
-
|
102 |
-
return inner()
|
103 |
-
else:
|
104 |
-
content = response.choices[0].message.content
|
105 |
-
if r"\u" in content:
|
106 |
-
content = safe_unicode_decode(content.encode("utf-8"))
|
107 |
-
return content
|
108 |
-
|
109 |
-
|
110 |
-
@retry(
|
111 |
-
stop=stop_after_attempt(3),
|
112 |
-
wait=wait_exponential(multiplier=1, min=4, max=10),
|
113 |
-
retry=retry_if_exception_type(
|
114 |
-
(RateLimitError, APIConnectionError, APIConnectionError)
|
115 |
-
),
|
116 |
-
)
|
117 |
-
async def azure_openai_complete_if_cache(
|
118 |
-
model,
|
119 |
-
prompt,
|
120 |
-
system_prompt=None,
|
121 |
-
history_messages=[],
|
122 |
-
base_url=None,
|
123 |
-
api_key=None,
|
124 |
-
api_version=None,
|
125 |
-
**kwargs,
|
126 |
-
):
|
127 |
-
if api_key:
|
128 |
-
os.environ["AZURE_OPENAI_API_KEY"] = api_key
|
129 |
-
if base_url:
|
130 |
-
os.environ["AZURE_OPENAI_ENDPOINT"] = base_url
|
131 |
-
if api_version:
|
132 |
-
os.environ["AZURE_OPENAI_API_VERSION"] = api_version
|
133 |
-
|
134 |
-
openai_async_client = AsyncAzureOpenAI(
|
135 |
-
azure_endpoint=os.getenv("AZURE_OPENAI_ENDPOINT"),
|
136 |
-
api_key=os.getenv("AZURE_OPENAI_API_KEY"),
|
137 |
-
api_version=os.getenv("AZURE_OPENAI_API_VERSION"),
|
138 |
-
)
|
139 |
-
kwargs.pop("hashing_kv", None)
|
140 |
-
messages = []
|
141 |
-
if system_prompt:
|
142 |
-
messages.append({"role": "system", "content": system_prompt})
|
143 |
-
messages.extend(history_messages)
|
144 |
-
if prompt is not None:
|
145 |
-
messages.append({"role": "user", "content": prompt})
|
146 |
-
|
147 |
-
if "response_format" in kwargs:
|
148 |
-
response = await openai_async_client.beta.chat.completions.parse(
|
149 |
-
model=model, messages=messages, **kwargs
|
150 |
-
)
|
151 |
-
else:
|
152 |
-
response = await openai_async_client.chat.completions.create(
|
153 |
-
model=model, messages=messages, **kwargs
|
154 |
-
)
|
155 |
-
|
156 |
-
if hasattr(response, "__aiter__"):
|
157 |
-
|
158 |
-
async def inner():
|
159 |
-
async for chunk in response:
|
160 |
-
if len(chunk.choices) == 0:
|
161 |
-
continue
|
162 |
-
content = chunk.choices[0].delta.content
|
163 |
-
if content is None:
|
164 |
-
continue
|
165 |
-
if r"\u" in content:
|
166 |
-
content = safe_unicode_decode(content.encode("utf-8"))
|
167 |
-
yield content
|
168 |
-
|
169 |
-
return inner()
|
170 |
-
else:
|
171 |
-
content = response.choices[0].message.content
|
172 |
-
if r"\u" in content:
|
173 |
-
content = safe_unicode_decode(content.encode("utf-8"))
|
174 |
-
return content
|
175 |
-
|
176 |
-
|
177 |
-
class BedrockError(Exception):
|
178 |
-
"""Generic error for issues related to Amazon Bedrock"""
|
179 |
-
|
180 |
-
|
181 |
-
@retry(
|
182 |
-
stop=stop_after_attempt(5),
|
183 |
-
wait=wait_exponential(multiplier=1, max=60),
|
184 |
-
retry=retry_if_exception_type((BedrockError)),
|
185 |
-
)
|
186 |
-
async def bedrock_complete_if_cache(
|
187 |
-
model,
|
188 |
-
prompt,
|
189 |
-
system_prompt=None,
|
190 |
-
history_messages=[],
|
191 |
-
aws_access_key_id=None,
|
192 |
-
aws_secret_access_key=None,
|
193 |
-
aws_session_token=None,
|
194 |
-
**kwargs,
|
195 |
-
) -> str:
|
196 |
-
os.environ["AWS_ACCESS_KEY_ID"] = os.environ.get(
|
197 |
-
"AWS_ACCESS_KEY_ID", aws_access_key_id
|
198 |
-
)
|
199 |
-
os.environ["AWS_SECRET_ACCESS_KEY"] = os.environ.get(
|
200 |
-
"AWS_SECRET_ACCESS_KEY", aws_secret_access_key
|
201 |
-
)
|
202 |
-
os.environ["AWS_SESSION_TOKEN"] = os.environ.get(
|
203 |
-
"AWS_SESSION_TOKEN", aws_session_token
|
204 |
-
)
|
205 |
-
kwargs.pop("hashing_kv", None)
|
206 |
-
# Fix message history format
|
207 |
-
messages = []
|
208 |
-
for history_message in history_messages:
|
209 |
-
message = copy.copy(history_message)
|
210 |
-
message["content"] = [{"text": message["content"]}]
|
211 |
-
messages.append(message)
|
212 |
-
|
213 |
-
# Add user prompt
|
214 |
-
messages.append({"role": "user", "content": [{"text": prompt}]})
|
215 |
-
|
216 |
-
# Initialize Converse API arguments
|
217 |
-
args = {"modelId": model, "messages": messages}
|
218 |
-
|
219 |
-
# Define system prompt
|
220 |
-
if system_prompt:
|
221 |
-
args["system"] = [{"text": system_prompt}]
|
222 |
-
|
223 |
-
# Map and set up inference parameters
|
224 |
-
inference_params_map = {
|
225 |
-
"max_tokens": "maxTokens",
|
226 |
-
"top_p": "topP",
|
227 |
-
"stop_sequences": "stopSequences",
|
228 |
-
}
|
229 |
-
if inference_params := list(
|
230 |
-
set(kwargs) & set(["max_tokens", "temperature", "top_p", "stop_sequences"])
|
231 |
-
):
|
232 |
-
args["inferenceConfig"] = {}
|
233 |
-
for param in inference_params:
|
234 |
-
args["inferenceConfig"][inference_params_map.get(param, param)] = (
|
235 |
-
kwargs.pop(param)
|
236 |
-
)
|
237 |
-
|
238 |
-
# Call model via Converse API
|
239 |
-
session = aioboto3.Session()
|
240 |
-
async with session.client("bedrock-runtime") as bedrock_async_client:
|
241 |
-
try:
|
242 |
-
response = await bedrock_async_client.converse(**args, **kwargs)
|
243 |
-
except Exception as e:
|
244 |
-
raise BedrockError(e)
|
245 |
-
|
246 |
-
return response["output"]["message"]["content"][0]["text"]
|
247 |
-
|
248 |
-
|
249 |
-
@lru_cache(maxsize=1)
|
250 |
-
def initialize_hf_model(model_name):
|
251 |
-
hf_tokenizer = AutoTokenizer.from_pretrained(
|
252 |
-
model_name, device_map="auto", trust_remote_code=True
|
253 |
-
)
|
254 |
-
hf_model = AutoModelForCausalLM.from_pretrained(
|
255 |
-
model_name, device_map="auto", trust_remote_code=True
|
256 |
-
)
|
257 |
-
if hf_tokenizer.pad_token is None:
|
258 |
-
hf_tokenizer.pad_token = hf_tokenizer.eos_token
|
259 |
-
|
260 |
-
return hf_model, hf_tokenizer
|
261 |
-
|
262 |
-
|
263 |
-
@retry(
|
264 |
-
stop=stop_after_attempt(3),
|
265 |
-
wait=wait_exponential(multiplier=1, min=4, max=10),
|
266 |
-
retry=retry_if_exception_type(
|
267 |
-
(RateLimitError, APIConnectionError, APITimeoutError)
|
268 |
-
),
|
269 |
-
)
|
270 |
-
async def hf_model_if_cache(
|
271 |
-
model,
|
272 |
-
prompt,
|
273 |
-
system_prompt=None,
|
274 |
-
history_messages=[],
|
275 |
-
**kwargs,
|
276 |
-
) -> str:
|
277 |
-
model_name = model
|
278 |
-
hf_model, hf_tokenizer = initialize_hf_model(model_name)
|
279 |
-
messages = []
|
280 |
-
if system_prompt:
|
281 |
-
messages.append({"role": "system", "content": system_prompt})
|
282 |
-
messages.extend(history_messages)
|
283 |
-
messages.append({"role": "user", "content": prompt})
|
284 |
-
kwargs.pop("hashing_kv", None)
|
285 |
-
input_prompt = ""
|
286 |
-
try:
|
287 |
-
input_prompt = hf_tokenizer.apply_chat_template(
|
288 |
-
messages, tokenize=False, add_generation_prompt=True
|
289 |
-
)
|
290 |
-
except Exception:
|
291 |
-
try:
|
292 |
-
ori_message = copy.deepcopy(messages)
|
293 |
-
if messages[0]["role"] == "system":
|
294 |
-
messages[1]["content"] = (
|
295 |
-
"<system>"
|
296 |
-
+ messages[0]["content"]
|
297 |
-
+ "</system>\n"
|
298 |
-
+ messages[1]["content"]
|
299 |
-
)
|
300 |
-
messages = messages[1:]
|
301 |
-
input_prompt = hf_tokenizer.apply_chat_template(
|
302 |
-
messages, tokenize=False, add_generation_prompt=True
|
303 |
-
)
|
304 |
-
except Exception:
|
305 |
-
len_message = len(ori_message)
|
306 |
-
for msgid in range(len_message):
|
307 |
-
input_prompt = (
|
308 |
-
input_prompt
|
309 |
-
+ "<"
|
310 |
-
+ ori_message[msgid]["role"]
|
311 |
-
+ ">"
|
312 |
-
+ ori_message[msgid]["content"]
|
313 |
-
+ "</"
|
314 |
-
+ ori_message[msgid]["role"]
|
315 |
-
+ ">\n"
|
316 |
-
)
|
317 |
-
|
318 |
-
input_ids = hf_tokenizer(
|
319 |
-
input_prompt, return_tensors="pt", padding=True, truncation=True
|
320 |
-
).to("cuda")
|
321 |
-
inputs = {k: v.to(hf_model.device) for k, v in input_ids.items()}
|
322 |
-
output = hf_model.generate(
|
323 |
-
**input_ids, max_new_tokens=512, num_return_sequences=1, early_stopping=True
|
324 |
-
)
|
325 |
-
response_text = hf_tokenizer.decode(
|
326 |
-
output[0][len(inputs["input_ids"][0]) :], skip_special_tokens=True
|
327 |
-
)
|
328 |
-
|
329 |
-
return response_text
|
330 |
-
|
331 |
-
|
332 |
-
@retry(
|
333 |
-
stop=stop_after_attempt(3),
|
334 |
-
wait=wait_exponential(multiplier=1, min=4, max=10),
|
335 |
-
retry=retry_if_exception_type(
|
336 |
-
(RateLimitError, APIConnectionError, APITimeoutError)
|
337 |
-
),
|
338 |
-
)
|
339 |
-
async def ollama_model_if_cache(
|
340 |
-
model,
|
341 |
-
prompt,
|
342 |
-
system_prompt=None,
|
343 |
-
history_messages=[],
|
344 |
-
**kwargs,
|
345 |
-
) -> Union[str, AsyncIterator[str]]:
|
346 |
-
stream = True if kwargs.get("stream") else False
|
347 |
-
kwargs.pop("max_tokens", None)
|
348 |
-
# kwargs.pop("response_format", None) # allow json
|
349 |
-
host = kwargs.pop("host", None)
|
350 |
-
timeout = kwargs.pop("timeout", None)
|
351 |
-
kwargs.pop("hashing_kv", None)
|
352 |
-
api_key = kwargs.pop("api_key", None)
|
353 |
-
headers = (
|
354 |
-
{"Content-Type": "application/json", "Authorization": f"Bearer {api_key}"}
|
355 |
-
if api_key
|
356 |
-
else {"Content-Type": "application/json"}
|
357 |
-
)
|
358 |
-
ollama_client = ollama.AsyncClient(host=host, timeout=timeout, headers=headers)
|
359 |
-
messages = []
|
360 |
-
if system_prompt:
|
361 |
-
messages.append({"role": "system", "content": system_prompt})
|
362 |
-
messages.extend(history_messages)
|
363 |
-
messages.append({"role": "user", "content": prompt})
|
364 |
-
|
365 |
-
response = await ollama_client.chat(model=model, messages=messages, **kwargs)
|
366 |
-
if stream:
|
367 |
-
"""cannot cache stream response"""
|
368 |
-
|
369 |
-
async def inner():
|
370 |
-
async for chunk in response:
|
371 |
-
yield chunk["message"]["content"]
|
372 |
-
|
373 |
-
return inner()
|
374 |
-
else:
|
375 |
-
return response["message"]["content"]
|
376 |
-
|
377 |
-
|
378 |
-
async def lollms_model_if_cache(
|
379 |
-
model,
|
380 |
-
prompt,
|
381 |
-
system_prompt=None,
|
382 |
-
history_messages=[],
|
383 |
-
base_url="http://localhost:9600",
|
384 |
-
**kwargs,
|
385 |
-
) -> Union[str, AsyncIterator[str]]:
|
386 |
-
"""Client implementation for lollms generation."""
|
387 |
-
|
388 |
-
stream = True if kwargs.get("stream") else False
|
389 |
-
api_key = kwargs.pop("api_key", None)
|
390 |
-
headers = (
|
391 |
-
{"Content-Type": "application/json", "Authorization": f"Bearer {api_key}"}
|
392 |
-
if api_key
|
393 |
-
else {"Content-Type": "application/json"}
|
394 |
-
)
|
395 |
-
|
396 |
-
# Extract lollms specific parameters
|
397 |
-
request_data = {
|
398 |
-
"prompt": prompt,
|
399 |
-
"model_name": model,
|
400 |
-
"personality": kwargs.get("personality", -1),
|
401 |
-
"n_predict": kwargs.get("n_predict", None),
|
402 |
-
"stream": stream,
|
403 |
-
"temperature": kwargs.get("temperature", 0.1),
|
404 |
-
"top_k": kwargs.get("top_k", 50),
|
405 |
-
"top_p": kwargs.get("top_p", 0.95),
|
406 |
-
"repeat_penalty": kwargs.get("repeat_penalty", 0.8),
|
407 |
-
"repeat_last_n": kwargs.get("repeat_last_n", 40),
|
408 |
-
"seed": kwargs.get("seed", None),
|
409 |
-
"n_threads": kwargs.get("n_threads", 8),
|
410 |
-
}
|
411 |
-
|
412 |
-
# Prepare the full prompt including history
|
413 |
-
full_prompt = ""
|
414 |
-
if system_prompt:
|
415 |
-
full_prompt += f"{system_prompt}\n"
|
416 |
-
for msg in history_messages:
|
417 |
-
full_prompt += f"{msg['role']}: {msg['content']}\n"
|
418 |
-
full_prompt += prompt
|
419 |
-
|
420 |
-
request_data["prompt"] = full_prompt
|
421 |
-
timeout = aiohttp.ClientTimeout(total=kwargs.get("timeout", None))
|
422 |
-
|
423 |
-
async with aiohttp.ClientSession(timeout=timeout, headers=headers) as session:
|
424 |
-
if stream:
|
425 |
-
|
426 |
-
async def inner():
|
427 |
-
async with session.post(
|
428 |
-
f"{base_url}/lollms_generate", json=request_data
|
429 |
-
) as response:
|
430 |
-
async for line in response.content:
|
431 |
-
yield line.decode().strip()
|
432 |
-
|
433 |
-
return inner()
|
434 |
-
else:
|
435 |
-
async with session.post(
|
436 |
-
f"{base_url}/lollms_generate", json=request_data
|
437 |
-
) as response:
|
438 |
-
return await response.text()
|
439 |
-
|
440 |
-
|
441 |
-
@lru_cache(maxsize=1)
|
442 |
-
def initialize_lmdeploy_pipeline(
|
443 |
-
model,
|
444 |
-
tp=1,
|
445 |
-
chat_template=None,
|
446 |
-
log_level="WARNING",
|
447 |
-
model_format="hf",
|
448 |
-
quant_policy=0,
|
449 |
-
):
|
450 |
-
from lmdeploy import pipeline, ChatTemplateConfig, TurbomindEngineConfig
|
451 |
-
|
452 |
-
lmdeploy_pipe = pipeline(
|
453 |
-
model_path=model,
|
454 |
-
backend_config=TurbomindEngineConfig(
|
455 |
-
tp=tp, model_format=model_format, quant_policy=quant_policy
|
456 |
-
),
|
457 |
-
chat_template_config=(
|
458 |
-
ChatTemplateConfig(model_name=chat_template) if chat_template else None
|
459 |
-
),
|
460 |
-
log_level="WARNING",
|
461 |
-
)
|
462 |
-
return lmdeploy_pipe
|
463 |
-
|
464 |
-
|
465 |
-
@retry(
|
466 |
-
stop=stop_after_attempt(3),
|
467 |
-
wait=wait_exponential(multiplier=1, min=4, max=10),
|
468 |
-
retry=retry_if_exception_type(
|
469 |
-
(RateLimitError, APIConnectionError, APITimeoutError)
|
470 |
-
),
|
471 |
-
)
|
472 |
-
async def lmdeploy_model_if_cache(
|
473 |
-
model,
|
474 |
-
prompt,
|
475 |
-
system_prompt=None,
|
476 |
-
history_messages=[],
|
477 |
-
chat_template=None,
|
478 |
-
model_format="hf",
|
479 |
-
quant_policy=0,
|
480 |
-
**kwargs,
|
481 |
-
) -> str:
|
482 |
-
"""
|
483 |
-
Args:
|
484 |
-
model (str): The path to the model.
|
485 |
-
It could be one of the following options:
|
486 |
-
- i) A local directory path of a turbomind model which is
|
487 |
-
converted by `lmdeploy convert` command or download
|
488 |
-
from ii) and iii).
|
489 |
-
- ii) The model_id of a lmdeploy-quantized model hosted
|
490 |
-
inside a model repo on huggingface.co, such as
|
491 |
-
"InternLM/internlm-chat-20b-4bit",
|
492 |
-
"lmdeploy/llama2-chat-70b-4bit", etc.
|
493 |
-
- iii) The model_id of a model hosted inside a model repo
|
494 |
-
on huggingface.co, such as "internlm/internlm-chat-7b",
|
495 |
-
"Qwen/Qwen-7B-Chat ", "baichuan-inc/Baichuan2-7B-Chat"
|
496 |
-
and so on.
|
497 |
-
chat_template (str): needed when model is a pytorch model on
|
498 |
-
huggingface.co, such as "internlm-chat-7b",
|
499 |
-
"Qwen-7B-Chat ", "Baichuan2-7B-Chat" and so on,
|
500 |
-
and when the model name of local path did not match the original model name in HF.
|
501 |
-
tp (int): tensor parallel
|
502 |
-
prompt (Union[str, List[str]]): input texts to be completed.
|
503 |
-
do_preprocess (bool): whether pre-process the messages. Default to
|
504 |
-
True, which means chat_template will be applied.
|
505 |
-
skip_special_tokens (bool): Whether or not to remove special tokens
|
506 |
-
in the decoding. Default to be True.
|
507 |
-
do_sample (bool): Whether or not to use sampling, use greedy decoding otherwise.
|
508 |
-
Default to be False, which means greedy decoding will be applied.
|
509 |
-
"""
|
510 |
-
try:
|
511 |
-
import lmdeploy
|
512 |
-
from lmdeploy import version_info, GenerationConfig
|
513 |
-
except Exception:
|
514 |
-
raise ImportError("Please install lmdeploy before initialize lmdeploy backend.")
|
515 |
-
kwargs.pop("hashing_kv", None)
|
516 |
-
kwargs.pop("response_format", None)
|
517 |
-
max_new_tokens = kwargs.pop("max_tokens", 512)
|
518 |
-
tp = kwargs.pop("tp", 1)
|
519 |
-
skip_special_tokens = kwargs.pop("skip_special_tokens", True)
|
520 |
-
do_preprocess = kwargs.pop("do_preprocess", True)
|
521 |
-
do_sample = kwargs.pop("do_sample", False)
|
522 |
-
gen_params = kwargs
|
523 |
-
|
524 |
-
version = version_info
|
525 |
-
if do_sample is not None and version < (0, 6, 0):
|
526 |
-
raise RuntimeError(
|
527 |
-
"`do_sample` parameter is not supported by lmdeploy until "
|
528 |
-
f"v0.6.0, but currently using lmdeloy {lmdeploy.__version__}"
|
529 |
-
)
|
530 |
-
else:
|
531 |
-
do_sample = True
|
532 |
-
gen_params.update(do_sample=do_sample)
|
533 |
-
|
534 |
-
lmdeploy_pipe = initialize_lmdeploy_pipeline(
|
535 |
-
model=model,
|
536 |
-
tp=tp,
|
537 |
-
chat_template=chat_template,
|
538 |
-
model_format=model_format,
|
539 |
-
quant_policy=quant_policy,
|
540 |
-
log_level="WARNING",
|
541 |
-
)
|
542 |
-
|
543 |
-
messages = []
|
544 |
-
if system_prompt:
|
545 |
-
messages.append({"role": "system", "content": system_prompt})
|
546 |
-
|
547 |
-
messages.extend(history_messages)
|
548 |
-
messages.append({"role": "user", "content": prompt})
|
549 |
-
|
550 |
-
gen_config = GenerationConfig(
|
551 |
-
skip_special_tokens=skip_special_tokens,
|
552 |
-
max_new_tokens=max_new_tokens,
|
553 |
-
**gen_params,
|
554 |
-
)
|
555 |
-
|
556 |
-
response = ""
|
557 |
-
async for res in lmdeploy_pipe.generate(
|
558 |
-
messages,
|
559 |
-
gen_config=gen_config,
|
560 |
-
do_preprocess=do_preprocess,
|
561 |
-
stream_response=False,
|
562 |
-
session_id=1,
|
563 |
-
):
|
564 |
-
response += res.response
|
565 |
-
return response
|
566 |
-
|
567 |
-
|
568 |
-
class GPTKeywordExtractionFormat(BaseModel):
|
569 |
-
high_level_keywords: List[str]
|
570 |
-
low_level_keywords: List[str]
|
571 |
-
|
572 |
-
|
573 |
-
async def openai_complete(
|
574 |
-
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
575 |
-
) -> Union[str, AsyncIterator[str]]:
|
576 |
-
keyword_extraction = kwargs.pop("keyword_extraction", None)
|
577 |
-
if keyword_extraction:
|
578 |
-
kwargs["response_format"] = "json"
|
579 |
-
model_name = kwargs["hashing_kv"].global_config["llm_model_name"]
|
580 |
-
return await openai_complete_if_cache(
|
581 |
-
model_name,
|
582 |
-
prompt,
|
583 |
-
system_prompt=system_prompt,
|
584 |
-
history_messages=history_messages,
|
585 |
-
**kwargs,
|
586 |
-
)
|
587 |
-
|
588 |
-
|
589 |
-
async def gpt_4o_complete(
|
590 |
-
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
591 |
-
) -> str:
|
592 |
-
keyword_extraction = kwargs.pop("keyword_extraction", None)
|
593 |
-
if keyword_extraction:
|
594 |
-
kwargs["response_format"] = GPTKeywordExtractionFormat
|
595 |
-
return await openai_complete_if_cache(
|
596 |
-
"gpt-4o",
|
597 |
-
prompt,
|
598 |
-
system_prompt=system_prompt,
|
599 |
-
history_messages=history_messages,
|
600 |
-
**kwargs,
|
601 |
-
)
|
602 |
-
|
603 |
-
|
604 |
-
async def gpt_4o_mini_complete(
|
605 |
-
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
606 |
-
) -> str:
|
607 |
-
keyword_extraction = kwargs.pop("keyword_extraction", None)
|
608 |
-
if keyword_extraction:
|
609 |
-
kwargs["response_format"] = GPTKeywordExtractionFormat
|
610 |
-
return await openai_complete_if_cache(
|
611 |
-
"gpt-4o-mini",
|
612 |
-
prompt,
|
613 |
-
system_prompt=system_prompt,
|
614 |
-
history_messages=history_messages,
|
615 |
-
**kwargs,
|
616 |
-
)
|
617 |
-
|
618 |
-
|
619 |
-
async def nvidia_openai_complete(
|
620 |
-
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
621 |
-
) -> str:
|
622 |
-
keyword_extraction = kwargs.pop("keyword_extraction", None)
|
623 |
-
result = await openai_complete_if_cache(
|
624 |
-
"nvidia/llama-3.1-nemotron-70b-instruct", # context length 128k
|
625 |
-
prompt,
|
626 |
-
system_prompt=system_prompt,
|
627 |
-
history_messages=history_messages,
|
628 |
-
base_url="https://integrate.api.nvidia.com/v1",
|
629 |
-
**kwargs,
|
630 |
-
)
|
631 |
-
if keyword_extraction: # TODO: use JSON API
|
632 |
-
return locate_json_string_body_from_string(result)
|
633 |
-
return result
|
634 |
-
|
635 |
-
|
636 |
-
async def azure_openai_complete(
|
637 |
-
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
638 |
-
) -> str:
|
639 |
-
keyword_extraction = kwargs.pop("keyword_extraction", None)
|
640 |
-
result = await azure_openai_complete_if_cache(
|
641 |
-
os.getenv("LLM_MODEL", "gpt-4o-mini"),
|
642 |
-
prompt,
|
643 |
-
system_prompt=system_prompt,
|
644 |
-
history_messages=history_messages,
|
645 |
-
**kwargs,
|
646 |
-
)
|
647 |
-
if keyword_extraction: # TODO: use JSON API
|
648 |
-
return locate_json_string_body_from_string(result)
|
649 |
-
return result
|
650 |
-
|
651 |
-
|
652 |
-
async def bedrock_complete(
|
653 |
-
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
654 |
-
) -> str:
|
655 |
-
keyword_extraction = kwargs.pop("keyword_extraction", None)
|
656 |
-
result = await bedrock_complete_if_cache(
|
657 |
-
"anthropic.claude-3-haiku-20240307-v1:0",
|
658 |
-
prompt,
|
659 |
-
system_prompt=system_prompt,
|
660 |
-
history_messages=history_messages,
|
661 |
-
**kwargs,
|
662 |
-
)
|
663 |
-
if keyword_extraction: # TODO: use JSON API
|
664 |
-
return locate_json_string_body_from_string(result)
|
665 |
-
return result
|
666 |
-
|
667 |
-
|
668 |
-
async def hf_model_complete(
|
669 |
-
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
670 |
-
) -> str:
|
671 |
-
keyword_extraction = kwargs.pop("keyword_extraction", None)
|
672 |
-
model_name = kwargs["hashing_kv"].global_config["llm_model_name"]
|
673 |
-
result = await hf_model_if_cache(
|
674 |
-
model_name,
|
675 |
-
prompt,
|
676 |
-
system_prompt=system_prompt,
|
677 |
-
history_messages=history_messages,
|
678 |
-
**kwargs,
|
679 |
-
)
|
680 |
-
if keyword_extraction: # TODO: use JSON API
|
681 |
-
return locate_json_string_body_from_string(result)
|
682 |
-
return result
|
683 |
-
|
684 |
-
|
685 |
-
async def ollama_model_complete(
|
686 |
-
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
687 |
-
) -> Union[str, AsyncIterator[str]]:
|
688 |
-
keyword_extraction = kwargs.pop("keyword_extraction", None)
|
689 |
-
if keyword_extraction:
|
690 |
-
kwargs["format"] = "json"
|
691 |
-
model_name = kwargs["hashing_kv"].global_config["llm_model_name"]
|
692 |
-
return await ollama_model_if_cache(
|
693 |
-
model_name,
|
694 |
-
prompt,
|
695 |
-
system_prompt=system_prompt,
|
696 |
-
history_messages=history_messages,
|
697 |
-
**kwargs,
|
698 |
-
)
|
699 |
-
|
700 |
-
|
701 |
-
async def lollms_model_complete(
|
702 |
-
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
703 |
-
) -> Union[str, AsyncIterator[str]]:
|
704 |
-
"""Complete function for lollms model generation."""
|
705 |
-
|
706 |
-
# Extract and remove keyword_extraction from kwargs if present
|
707 |
-
keyword_extraction = kwargs.pop("keyword_extraction", None)
|
708 |
-
|
709 |
-
# Get model name from config
|
710 |
-
model_name = kwargs["hashing_kv"].global_config["llm_model_name"]
|
711 |
-
|
712 |
-
# If keyword extraction is needed, we might need to modify the prompt
|
713 |
-
# or add specific parameters for JSON output (if lollms supports it)
|
714 |
-
if keyword_extraction:
|
715 |
-
# Note: You might need to adjust this based on how lollms handles structured output
|
716 |
-
pass
|
717 |
-
|
718 |
-
return await lollms_model_if_cache(
|
719 |
-
model_name,
|
720 |
-
prompt,
|
721 |
-
system_prompt=system_prompt,
|
722 |
-
history_messages=history_messages,
|
723 |
-
**kwargs,
|
724 |
-
)
|
725 |
-
|
726 |
-
|
727 |
-
@retry(
|
728 |
-
stop=stop_after_attempt(3),
|
729 |
-
wait=wait_exponential(multiplier=1, min=4, max=10),
|
730 |
-
retry=retry_if_exception_type(
|
731 |
-
(RateLimitError, APIConnectionError, APITimeoutError)
|
732 |
-
),
|
733 |
-
)
|
734 |
-
async def zhipu_complete_if_cache(
|
735 |
-
prompt: Union[str, List[Dict[str, str]]],
|
736 |
-
model: str = "glm-4-flashx", # The most cost/performance balance model in glm-4 series
|
737 |
-
api_key: Optional[str] = None,
|
738 |
-
system_prompt: Optional[str] = None,
|
739 |
-
history_messages: List[Dict[str, str]] = [],
|
740 |
-
**kwargs,
|
741 |
-
) -> str:
|
742 |
-
# dynamically load ZhipuAI
|
743 |
-
try:
|
744 |
-
from zhipuai import ZhipuAI
|
745 |
-
except ImportError:
|
746 |
-
raise ImportError("Please install zhipuai before initialize zhipuai backend.")
|
747 |
-
|
748 |
-
if api_key:
|
749 |
-
client = ZhipuAI(api_key=api_key)
|
750 |
-
else:
|
751 |
-
# please set ZHIPUAI_API_KEY in your environment
|
752 |
-
# os.environ["ZHIPUAI_API_KEY"]
|
753 |
-
client = ZhipuAI()
|
754 |
-
|
755 |
-
messages = []
|
756 |
-
|
757 |
-
if not system_prompt:
|
758 |
-
system_prompt = "You are a helpful assistant. Note that sensitive words in the content should be replaced with ***"
|
759 |
-
|
760 |
-
# Add system prompt if provided
|
761 |
-
if system_prompt:
|
762 |
-
messages.append({"role": "system", "content": system_prompt})
|
763 |
-
messages.extend(history_messages)
|
764 |
-
messages.append({"role": "user", "content": prompt})
|
765 |
-
|
766 |
-
# Add debug logging
|
767 |
-
logger.debug("===== Query Input to LLM =====")
|
768 |
-
logger.debug(f"Query: {prompt}")
|
769 |
-
logger.debug(f"System prompt: {system_prompt}")
|
770 |
-
|
771 |
-
# Remove unsupported kwargs
|
772 |
-
kwargs = {
|
773 |
-
k: v for k, v in kwargs.items() if k not in ["hashing_kv", "keyword_extraction"]
|
774 |
-
}
|
775 |
-
|
776 |
-
response = client.chat.completions.create(model=model, messages=messages, **kwargs)
|
777 |
-
|
778 |
-
return response.choices[0].message.content
|
779 |
-
|
780 |
-
|
781 |
-
async def zhipu_complete(
|
782 |
-
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
783 |
-
):
|
784 |
-
# Pop keyword_extraction from kwargs to avoid passing it to zhipu_complete_if_cache
|
785 |
-
keyword_extraction = kwargs.pop("keyword_extraction", None)
|
786 |
-
|
787 |
-
if keyword_extraction:
|
788 |
-
# Add a system prompt to guide the model to return JSON format
|
789 |
-
extraction_prompt = """You are a helpful assistant that extracts keywords from text.
|
790 |
-
Please analyze the content and extract two types of keywords:
|
791 |
-
1. High-level keywords: Important concepts and main themes
|
792 |
-
2. Low-level keywords: Specific details and supporting elements
|
793 |
-
|
794 |
-
Return your response in this exact JSON format:
|
795 |
-
{
|
796 |
-
"high_level_keywords": ["keyword1", "keyword2"],
|
797 |
-
"low_level_keywords": ["keyword1", "keyword2", "keyword3"]
|
798 |
-
}
|
799 |
-
|
800 |
-
Only return the JSON, no other text."""
|
801 |
-
|
802 |
-
# Combine with existing system prompt if any
|
803 |
-
if system_prompt:
|
804 |
-
system_prompt = f"{system_prompt}\n\n{extraction_prompt}"
|
805 |
-
else:
|
806 |
-
system_prompt = extraction_prompt
|
807 |
-
|
808 |
-
try:
|
809 |
-
response = await zhipu_complete_if_cache(
|
810 |
-
prompt=prompt,
|
811 |
-
system_prompt=system_prompt,
|
812 |
-
history_messages=history_messages,
|
813 |
-
**kwargs,
|
814 |
-
)
|
815 |
-
|
816 |
-
# Try to parse as JSON
|
817 |
-
try:
|
818 |
-
data = json.loads(response)
|
819 |
-
return GPTKeywordExtractionFormat(
|
820 |
-
high_level_keywords=data.get("high_level_keywords", []),
|
821 |
-
low_level_keywords=data.get("low_level_keywords", []),
|
822 |
-
)
|
823 |
-
except json.JSONDecodeError:
|
824 |
-
# If direct JSON parsing fails, try to extract JSON from text
|
825 |
-
match = re.search(r"\{[\s\S]*\}", response)
|
826 |
-
if match:
|
827 |
-
try:
|
828 |
-
data = json.loads(match.group())
|
829 |
-
return GPTKeywordExtractionFormat(
|
830 |
-
high_level_keywords=data.get("high_level_keywords", []),
|
831 |
-
low_level_keywords=data.get("low_level_keywords", []),
|
832 |
-
)
|
833 |
-
except json.JSONDecodeError:
|
834 |
-
pass
|
835 |
-
|
836 |
-
# If all parsing fails, log warning and return empty format
|
837 |
-
logger.warning(
|
838 |
-
f"Failed to parse keyword extraction response: {response}"
|
839 |
-
)
|
840 |
-
return GPTKeywordExtractionFormat(
|
841 |
-
high_level_keywords=[], low_level_keywords=[]
|
842 |
-
)
|
843 |
-
except Exception as e:
|
844 |
-
logger.error(f"Error during keyword extraction: {str(e)}")
|
845 |
-
return GPTKeywordExtractionFormat(
|
846 |
-
high_level_keywords=[], low_level_keywords=[]
|
847 |
-
)
|
848 |
-
else:
|
849 |
-
# For non-keyword-extraction, just return the raw response string
|
850 |
-
return await zhipu_complete_if_cache(
|
851 |
-
prompt=prompt,
|
852 |
-
system_prompt=system_prompt,
|
853 |
-
history_messages=history_messages,
|
854 |
-
**kwargs,
|
855 |
-
)
|
856 |
-
|
857 |
-
|
858 |
-
@wrap_embedding_func_with_attrs(embedding_dim=1024, max_token_size=8192)
|
859 |
-
@retry(
|
860 |
-
stop=stop_after_attempt(3),
|
861 |
-
wait=wait_exponential(multiplier=1, min=4, max=60),
|
862 |
-
retry=retry_if_exception_type(
|
863 |
-
(RateLimitError, APIConnectionError, APITimeoutError)
|
864 |
-
),
|
865 |
-
)
|
866 |
-
async def zhipu_embedding(
|
867 |
-
texts: list[str], model: str = "embedding-3", api_key: str = None, **kwargs
|
868 |
-
) -> np.ndarray:
|
869 |
-
# dynamically load ZhipuAI
|
870 |
-
try:
|
871 |
-
from zhipuai import ZhipuAI
|
872 |
-
except ImportError:
|
873 |
-
raise ImportError("Please install zhipuai before initialize zhipuai backend.")
|
874 |
-
if api_key:
|
875 |
-
client = ZhipuAI(api_key=api_key)
|
876 |
-
else:
|
877 |
-
# please set ZHIPUAI_API_KEY in your environment
|
878 |
-
# os.environ["ZHIPUAI_API_KEY"]
|
879 |
-
client = ZhipuAI()
|
880 |
-
|
881 |
-
# Convert single text to list if needed
|
882 |
-
if isinstance(texts, str):
|
883 |
-
texts = [texts]
|
884 |
-
|
885 |
-
embeddings = []
|
886 |
-
for text in texts:
|
887 |
-
try:
|
888 |
-
response = client.embeddings.create(model=model, input=[text], **kwargs)
|
889 |
-
embeddings.append(response.data[0].embedding)
|
890 |
-
except Exception as e:
|
891 |
-
raise Exception(f"Error calling ChatGLM Embedding API: {str(e)}")
|
892 |
-
|
893 |
-
return np.array(embeddings)
|
894 |
-
|
895 |
-
|
896 |
-
@wrap_embedding_func_with_attrs(embedding_dim=1536, max_token_size=8192)
|
897 |
-
@retry(
|
898 |
-
stop=stop_after_attempt(3),
|
899 |
-
wait=wait_exponential(multiplier=1, min=4, max=60),
|
900 |
-
retry=retry_if_exception_type(
|
901 |
-
(RateLimitError, APIConnectionError, APITimeoutError)
|
902 |
-
),
|
903 |
-
)
|
904 |
-
async def openai_embedding(
|
905 |
-
texts: list[str],
|
906 |
-
model: str = "text-embedding-3-small",
|
907 |
-
base_url: str = None,
|
908 |
-
api_key: str = None,
|
909 |
-
) -> np.ndarray:
|
910 |
-
if api_key:
|
911 |
-
os.environ["OPENAI_API_KEY"] = api_key
|
912 |
-
|
913 |
-
openai_async_client = (
|
914 |
-
AsyncOpenAI() if base_url is None else AsyncOpenAI(base_url=base_url)
|
915 |
-
)
|
916 |
-
response = await openai_async_client.embeddings.create(
|
917 |
-
model=model, input=texts, encoding_format="float"
|
918 |
-
)
|
919 |
-
return np.array([dp.embedding for dp in response.data])
|
920 |
-
|
921 |
-
|
922 |
-
async def fetch_data(url, headers, data):
|
923 |
-
async with aiohttp.ClientSession() as session:
|
924 |
-
async with session.post(url, headers=headers, json=data) as response:
|
925 |
-
response_json = await response.json()
|
926 |
-
data_list = response_json.get("data", [])
|
927 |
-
return data_list
|
928 |
-
|
929 |
-
|
930 |
-
async def jina_embedding(
|
931 |
-
texts: list[str],
|
932 |
-
dimensions: int = 1024,
|
933 |
-
late_chunking: bool = False,
|
934 |
-
base_url: str = None,
|
935 |
-
api_key: str = None,
|
936 |
-
) -> np.ndarray:
|
937 |
-
if api_key:
|
938 |
-
os.environ["JINA_API_KEY"] = api_key
|
939 |
-
url = "https://api.jina.ai/v1/embeddings" if not base_url else base_url
|
940 |
-
headers = {
|
941 |
-
"Content-Type": "application/json",
|
942 |
-
"Authorization": f"Bearer {os.environ['JINA_API_KEY']}",
|
943 |
-
}
|
944 |
-
data = {
|
945 |
-
"model": "jina-embeddings-v3",
|
946 |
-
"normalized": True,
|
947 |
-
"embedding_type": "float",
|
948 |
-
"dimensions": f"{dimensions}",
|
949 |
-
"late_chunking": late_chunking,
|
950 |
-
"input": texts,
|
951 |
-
}
|
952 |
-
data_list = await fetch_data(url, headers, data)
|
953 |
-
return np.array([dp["embedding"] for dp in data_list])
|
954 |
-
|
955 |
-
|
956 |
-
@wrap_embedding_func_with_attrs(embedding_dim=2048, max_token_size=512)
|
957 |
-
@retry(
|
958 |
-
stop=stop_after_attempt(3),
|
959 |
-
wait=wait_exponential(multiplier=1, min=4, max=60),
|
960 |
-
retry=retry_if_exception_type(
|
961 |
-
(RateLimitError, APIConnectionError, APITimeoutError)
|
962 |
-
),
|
963 |
-
)
|
964 |
-
async def nvidia_openai_embedding(
|
965 |
-
texts: list[str],
|
966 |
-
model: str = "nvidia/llama-3.2-nv-embedqa-1b-v1",
|
967 |
-
# refer to https://build.nvidia.com/nim?filters=usecase%3Ausecase_text_to_embedding
|
968 |
-
base_url: str = "https://integrate.api.nvidia.com/v1",
|
969 |
-
api_key: str = None,
|
970 |
-
input_type: str = "passage", # query for retrieval, passage for embedding
|
971 |
-
trunc: str = "NONE", # NONE or START or END
|
972 |
-
encode: str = "float", # float or base64
|
973 |
-
) -> np.ndarray:
|
974 |
-
if api_key:
|
975 |
-
os.environ["OPENAI_API_KEY"] = api_key
|
976 |
-
|
977 |
-
openai_async_client = (
|
978 |
-
AsyncOpenAI() if base_url is None else AsyncOpenAI(base_url=base_url)
|
979 |
-
)
|
980 |
-
response = await openai_async_client.embeddings.create(
|
981 |
-
model=model,
|
982 |
-
input=texts,
|
983 |
-
encoding_format=encode,
|
984 |
-
extra_body={"input_type": input_type, "truncate": trunc},
|
985 |
-
)
|
986 |
-
return np.array([dp.embedding for dp in response.data])
|
987 |
-
|
988 |
-
|
989 |
-
@wrap_embedding_func_with_attrs(embedding_dim=1536, max_token_size=8191)
|
990 |
-
@retry(
|
991 |
-
stop=stop_after_attempt(3),
|
992 |
-
wait=wait_exponential(multiplier=1, min=4, max=10),
|
993 |
-
retry=retry_if_exception_type(
|
994 |
-
(RateLimitError, APIConnectionError, APITimeoutError)
|
995 |
-
),
|
996 |
-
)
|
997 |
-
async def azure_openai_embedding(
|
998 |
-
texts: list[str],
|
999 |
-
model: str = "text-embedding-3-small",
|
1000 |
-
base_url: str = None,
|
1001 |
-
api_key: str = None,
|
1002 |
-
api_version: str = None,
|
1003 |
-
) -> np.ndarray:
|
1004 |
-
if api_key:
|
1005 |
-
os.environ["AZURE_OPENAI_API_KEY"] = api_key
|
1006 |
-
if base_url:
|
1007 |
-
os.environ["AZURE_OPENAI_ENDPOINT"] = base_url
|
1008 |
-
if api_version:
|
1009 |
-
os.environ["AZURE_OPENAI_API_VERSION"] = api_version
|
1010 |
-
|
1011 |
-
openai_async_client = AsyncAzureOpenAI(
|
1012 |
-
azure_endpoint=os.getenv("AZURE_OPENAI_ENDPOINT"),
|
1013 |
-
api_key=os.getenv("AZURE_OPENAI_API_KEY"),
|
1014 |
-
api_version=os.getenv("AZURE_OPENAI_API_VERSION"),
|
1015 |
-
)
|
1016 |
-
|
1017 |
-
response = await openai_async_client.embeddings.create(
|
1018 |
-
model=model, input=texts, encoding_format="float"
|
1019 |
-
)
|
1020 |
-
return np.array([dp.embedding for dp in response.data])
|
1021 |
-
|
1022 |
-
|
1023 |
-
@retry(
|
1024 |
-
stop=stop_after_attempt(3),
|
1025 |
-
wait=wait_exponential(multiplier=1, min=4, max=60),
|
1026 |
-
retry=retry_if_exception_type(
|
1027 |
-
(RateLimitError, APIConnectionError, APITimeoutError)
|
1028 |
-
),
|
1029 |
-
)
|
1030 |
-
async def siliconcloud_embedding(
|
1031 |
-
texts: list[str],
|
1032 |
-
model: str = "netease-youdao/bce-embedding-base_v1",
|
1033 |
-
base_url: str = "https://api.siliconflow.cn/v1/embeddings",
|
1034 |
-
max_token_size: int = 512,
|
1035 |
-
api_key: str = None,
|
1036 |
-
) -> np.ndarray:
|
1037 |
-
if api_key and not api_key.startswith("Bearer "):
|
1038 |
-
api_key = "Bearer " + api_key
|
1039 |
-
|
1040 |
-
headers = {"Authorization": api_key, "Content-Type": "application/json"}
|
1041 |
-
|
1042 |
-
truncate_texts = [text[0:max_token_size] for text in texts]
|
1043 |
-
|
1044 |
-
payload = {"model": model, "input": truncate_texts, "encoding_format": "base64"}
|
1045 |
-
|
1046 |
-
base64_strings = []
|
1047 |
-
async with aiohttp.ClientSession() as session:
|
1048 |
-
async with session.post(base_url, headers=headers, json=payload) as response:
|
1049 |
-
content = await response.json()
|
1050 |
-
if "code" in content:
|
1051 |
-
raise ValueError(content)
|
1052 |
-
base64_strings = [item["embedding"] for item in content["data"]]
|
1053 |
-
|
1054 |
-
embeddings = []
|
1055 |
-
for string in base64_strings:
|
1056 |
-
decode_bytes = base64.b64decode(string)
|
1057 |
-
n = len(decode_bytes) // 4
|
1058 |
-
float_array = struct.unpack("<" + "f" * n, decode_bytes)
|
1059 |
-
embeddings.append(float_array)
|
1060 |
-
return np.array(embeddings)
|
1061 |
-
|
1062 |
-
|
1063 |
-
# @wrap_embedding_func_with_attrs(embedding_dim=1024, max_token_size=8192)
|
1064 |
-
# @retry(
|
1065 |
-
# stop=stop_after_attempt(3),
|
1066 |
-
# wait=wait_exponential(multiplier=1, min=4, max=10),
|
1067 |
-
# retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)), # TODO: fix exceptions
|
1068 |
-
# )
|
1069 |
-
async def bedrock_embedding(
|
1070 |
-
texts: list[str],
|
1071 |
-
model: str = "amazon.titan-embed-text-v2:0",
|
1072 |
-
aws_access_key_id=None,
|
1073 |
-
aws_secret_access_key=None,
|
1074 |
-
aws_session_token=None,
|
1075 |
-
) -> np.ndarray:
|
1076 |
-
os.environ["AWS_ACCESS_KEY_ID"] = os.environ.get(
|
1077 |
-
"AWS_ACCESS_KEY_ID", aws_access_key_id
|
1078 |
-
)
|
1079 |
-
os.environ["AWS_SECRET_ACCESS_KEY"] = os.environ.get(
|
1080 |
-
"AWS_SECRET_ACCESS_KEY", aws_secret_access_key
|
1081 |
-
)
|
1082 |
-
os.environ["AWS_SESSION_TOKEN"] = os.environ.get(
|
1083 |
-
"AWS_SESSION_TOKEN", aws_session_token
|
1084 |
-
)
|
1085 |
-
|
1086 |
-
session = aioboto3.Session()
|
1087 |
-
async with session.client("bedrock-runtime") as bedrock_async_client:
|
1088 |
-
if (model_provider := model.split(".")[0]) == "amazon":
|
1089 |
-
embed_texts = []
|
1090 |
-
for text in texts:
|
1091 |
-
if "v2" in model:
|
1092 |
-
body = json.dumps(
|
1093 |
-
{
|
1094 |
-
"inputText": text,
|
1095 |
-
# 'dimensions': embedding_dim,
|
1096 |
-
"embeddingTypes": ["float"],
|
1097 |
-
}
|
1098 |
-
)
|
1099 |
-
elif "v1" in model:
|
1100 |
-
body = json.dumps({"inputText": text})
|
1101 |
-
else:
|
1102 |
-
raise ValueError(f"Model {model} is not supported!")
|
1103 |
-
|
1104 |
-
response = await bedrock_async_client.invoke_model(
|
1105 |
-
modelId=model,
|
1106 |
-
body=body,
|
1107 |
-
accept="application/json",
|
1108 |
-
contentType="application/json",
|
1109 |
-
)
|
1110 |
-
|
1111 |
-
response_body = await response.get("body").json()
|
1112 |
-
|
1113 |
-
embed_texts.append(response_body["embedding"])
|
1114 |
-
elif model_provider == "cohere":
|
1115 |
-
body = json.dumps(
|
1116 |
-
{"texts": texts, "input_type": "search_document", "truncate": "NONE"}
|
1117 |
-
)
|
1118 |
-
|
1119 |
-
response = await bedrock_async_client.invoke_model(
|
1120 |
-
model=model,
|
1121 |
-
body=body,
|
1122 |
-
accept="application/json",
|
1123 |
-
contentType="application/json",
|
1124 |
-
)
|
1125 |
-
|
1126 |
-
response_body = json.loads(response.get("body").read())
|
1127 |
-
|
1128 |
-
embed_texts = response_body["embeddings"]
|
1129 |
-
else:
|
1130 |
-
raise ValueError(f"Model provider '{model_provider}' is not supported!")
|
1131 |
-
|
1132 |
-
return np.array(embed_texts)
|
1133 |
-
|
1134 |
-
|
1135 |
-
async def hf_embedding(texts: list[str], tokenizer, embed_model) -> np.ndarray:
|
1136 |
-
device = next(embed_model.parameters()).device
|
1137 |
-
input_ids = tokenizer(
|
1138 |
-
texts, return_tensors="pt", padding=True, truncation=True
|
1139 |
-
).input_ids.to(device)
|
1140 |
-
with torch.no_grad():
|
1141 |
-
outputs = embed_model(input_ids)
|
1142 |
-
embeddings = outputs.last_hidden_state.mean(dim=1)
|
1143 |
-
if embeddings.dtype == torch.bfloat16:
|
1144 |
-
return embeddings.detach().to(torch.float32).cpu().numpy()
|
1145 |
-
else:
|
1146 |
-
return embeddings.detach().cpu().numpy()
|
1147 |
-
|
1148 |
-
|
1149 |
-
async def ollama_embedding(texts: list[str], embed_model, **kwargs) -> np.ndarray:
|
1150 |
-
"""
|
1151 |
-
Deprecated in favor of `embed`.
|
1152 |
-
"""
|
1153 |
-
embed_text = []
|
1154 |
-
ollama_client = ollama.Client(**kwargs)
|
1155 |
-
for text in texts:
|
1156 |
-
data = ollama_client.embeddings(model=embed_model, prompt=text)
|
1157 |
-
embed_text.append(data["embedding"])
|
1158 |
-
|
1159 |
-
return embed_text
|
1160 |
-
|
1161 |
-
|
1162 |
-
async def ollama_embed(texts: list[str], embed_model, **kwargs) -> np.ndarray:
|
1163 |
-
api_key = kwargs.pop("api_key", None)
|
1164 |
-
headers = (
|
1165 |
-
{"Content-Type": "application/json", "Authorization": api_key}
|
1166 |
-
if api_key
|
1167 |
-
else {"Content-Type": "application/json"}
|
1168 |
-
)
|
1169 |
-
kwargs["headers"] = headers
|
1170 |
-
ollama_client = ollama.Client(**kwargs)
|
1171 |
-
data = ollama_client.embed(model=embed_model, input=texts)
|
1172 |
-
return data["embeddings"]
|
1173 |
-
|
1174 |
-
|
1175 |
-
async def lollms_embed(
|
1176 |
-
texts: List[str], embed_model=None, base_url="http://localhost:9600", **kwargs
|
1177 |
-
) -> np.ndarray:
|
1178 |
-
"""
|
1179 |
-
Generate embeddings for a list of texts using lollms server.
|
1180 |
-
|
1181 |
-
Args:
|
1182 |
-
texts: List of strings to embed
|
1183 |
-
embed_model: Model name (not used directly as lollms uses configured vectorizer)
|
1184 |
-
base_url: URL of the lollms server
|
1185 |
-
**kwargs: Additional arguments passed to the request
|
1186 |
-
|
1187 |
-
Returns:
|
1188 |
-
np.ndarray: Array of embeddings
|
1189 |
-
"""
|
1190 |
-
api_key = kwargs.pop("api_key", None)
|
1191 |
-
headers = (
|
1192 |
-
{"Content-Type": "application/json", "Authorization": api_key}
|
1193 |
-
if api_key
|
1194 |
-
else {"Content-Type": "application/json"}
|
1195 |
-
)
|
1196 |
-
async with aiohttp.ClientSession(headers=headers) as session:
|
1197 |
-
embeddings = []
|
1198 |
-
for text in texts:
|
1199 |
-
request_data = {"text": text}
|
1200 |
-
|
1201 |
-
async with session.post(
|
1202 |
-
f"{base_url}/lollms_embed",
|
1203 |
-
json=request_data,
|
1204 |
-
) as response:
|
1205 |
-
result = await response.json()
|
1206 |
-
embeddings.append(result["vector"])
|
1207 |
-
|
1208 |
-
return np.array(embeddings)
|
1209 |
|
1210 |
|
1211 |
class Model(BaseModel):
|
@@ -1293,6 +87,8 @@ if __name__ == "__main__":
|
|
1293 |
import asyncio
|
1294 |
|
1295 |
async def main():
|
|
|
|
|
1296 |
result = await gpt_4o_mini_complete("How are you?")
|
1297 |
print(result)
|
1298 |
|
|
|
1 |
+
from typing import List, Dict, Callable, Any
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
from pydantic import BaseModel, Field
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
|
5 |
class Model(BaseModel):
|
|
|
87 |
import asyncio
|
88 |
|
89 |
async def main():
|
90 |
+
from lightrag.llm.openai import gpt_4o_mini_complete
|
91 |
+
|
92 |
result = await gpt_4o_mini_complete("How are you?")
|
93 |
print(result)
|
94 |
|
lightrag/llm/__init__.py
ADDED
File without changes
|
lightrag/llm/azure_openai.py
ADDED
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Azure OpenAI LLM Interface Module
|
3 |
+
==========================
|
4 |
+
|
5 |
+
This module provides interfaces for interacting with aure openai's language models,
|
6 |
+
including text generation and embedding capabilities.
|
7 |
+
|
8 |
+
Author: Lightrag team
|
9 |
+
Created: 2024-01-24
|
10 |
+
License: MIT License
|
11 |
+
|
12 |
+
Copyright (c) 2024 Lightrag
|
13 |
+
|
14 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
15 |
+
of this software and associated documentation files (the "Software"), to deal
|
16 |
+
in the Software without restriction, including without limitation the rights
|
17 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
18 |
+
copies of the Software, and to permit persons to whom the Software is
|
19 |
+
furnished to do so, subject to the following conditions:
|
20 |
+
|
21 |
+
Version: 1.0.0
|
22 |
+
|
23 |
+
Change Log:
|
24 |
+
- 1.0.0 (2024-01-24): Initial release
|
25 |
+
* Added async chat completion support
|
26 |
+
* Added embedding generation
|
27 |
+
* Added stream response capability
|
28 |
+
|
29 |
+
Dependencies:
|
30 |
+
- openai
|
31 |
+
- numpy
|
32 |
+
- pipmaster
|
33 |
+
- Python >= 3.10
|
34 |
+
|
35 |
+
Usage:
|
36 |
+
from llm_interfaces.azure_openai import azure_openai_model_complete, azure_openai_embed
|
37 |
+
"""
|
38 |
+
|
39 |
+
__version__ = "1.0.0"
|
40 |
+
__author__ = "lightrag Team"
|
41 |
+
__status__ = "Production"
|
42 |
+
|
43 |
+
|
44 |
+
import os
|
45 |
+
import pipmaster as pm # Pipmaster for dynamic library install
|
46 |
+
|
47 |
+
# install specific modules
|
48 |
+
if not pm.is_installed("openai"):
|
49 |
+
pm.install("openai")
|
50 |
+
if not pm.is_installed("tenacity"):
|
51 |
+
pm.install("tenacity")
|
52 |
+
|
53 |
+
from openai import (
|
54 |
+
AsyncAzureOpenAI,
|
55 |
+
APIConnectionError,
|
56 |
+
RateLimitError,
|
57 |
+
APITimeoutError,
|
58 |
+
)
|
59 |
+
from tenacity import (
|
60 |
+
retry,
|
61 |
+
stop_after_attempt,
|
62 |
+
wait_exponential,
|
63 |
+
retry_if_exception_type,
|
64 |
+
)
|
65 |
+
|
66 |
+
from lightrag.utils import (
|
67 |
+
wrap_embedding_func_with_attrs,
|
68 |
+
locate_json_string_body_from_string,
|
69 |
+
safe_unicode_decode,
|
70 |
+
)
|
71 |
+
|
72 |
+
import numpy as np
|
73 |
+
|
74 |
+
@retry(
|
75 |
+
stop=stop_after_attempt(3),
|
76 |
+
wait=wait_exponential(multiplier=1, min=4, max=10),
|
77 |
+
retry=retry_if_exception_type(
|
78 |
+
(RateLimitError, APIConnectionError, APIConnectionError)
|
79 |
+
),
|
80 |
+
)
|
81 |
+
async def azure_openai_complete_if_cache(
|
82 |
+
model,
|
83 |
+
prompt,
|
84 |
+
system_prompt=None,
|
85 |
+
history_messages=[],
|
86 |
+
base_url=None,
|
87 |
+
api_key=None,
|
88 |
+
api_version=None,
|
89 |
+
**kwargs,
|
90 |
+
):
|
91 |
+
if api_key:
|
92 |
+
os.environ["AZURE_OPENAI_API_KEY"] = api_key
|
93 |
+
if base_url:
|
94 |
+
os.environ["AZURE_OPENAI_ENDPOINT"] = base_url
|
95 |
+
if api_version:
|
96 |
+
os.environ["AZURE_OPENAI_API_VERSION"] = api_version
|
97 |
+
|
98 |
+
openai_async_client = AsyncAzureOpenAI(
|
99 |
+
azure_endpoint=os.getenv("AZURE_OPENAI_ENDPOINT"),
|
100 |
+
api_key=os.getenv("AZURE_OPENAI_API_KEY"),
|
101 |
+
api_version=os.getenv("AZURE_OPENAI_API_VERSION"),
|
102 |
+
)
|
103 |
+
kwargs.pop("hashing_kv", None)
|
104 |
+
messages = []
|
105 |
+
if system_prompt:
|
106 |
+
messages.append({"role": "system", "content": system_prompt})
|
107 |
+
messages.extend(history_messages)
|
108 |
+
if prompt is not None:
|
109 |
+
messages.append({"role": "user", "content": prompt})
|
110 |
+
|
111 |
+
if "response_format" in kwargs:
|
112 |
+
response = await openai_async_client.beta.chat.completions.parse(
|
113 |
+
model=model, messages=messages, **kwargs
|
114 |
+
)
|
115 |
+
else:
|
116 |
+
response = await openai_async_client.chat.completions.create(
|
117 |
+
model=model, messages=messages, **kwargs
|
118 |
+
)
|
119 |
+
|
120 |
+
if hasattr(response, "__aiter__"):
|
121 |
+
|
122 |
+
async def inner():
|
123 |
+
async for chunk in response:
|
124 |
+
if len(chunk.choices) == 0:
|
125 |
+
continue
|
126 |
+
content = chunk.choices[0].delta.content
|
127 |
+
if content is None:
|
128 |
+
continue
|
129 |
+
if r"\u" in content:
|
130 |
+
content = safe_unicode_decode(content.encode("utf-8"))
|
131 |
+
yield content
|
132 |
+
|
133 |
+
return inner()
|
134 |
+
else:
|
135 |
+
content = response.choices[0].message.content
|
136 |
+
if r"\u" in content:
|
137 |
+
content = safe_unicode_decode(content.encode("utf-8"))
|
138 |
+
return content
|
139 |
+
|
140 |
+
|
141 |
+
async def azure_openai_complete(
|
142 |
+
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
143 |
+
) -> str:
|
144 |
+
keyword_extraction = kwargs.pop("keyword_extraction", None)
|
145 |
+
result = await azure_openai_complete_if_cache(
|
146 |
+
os.getenv("LLM_MODEL", "gpt-4o-mini"),
|
147 |
+
prompt,
|
148 |
+
system_prompt=system_prompt,
|
149 |
+
history_messages=history_messages,
|
150 |
+
**kwargs,
|
151 |
+
)
|
152 |
+
if keyword_extraction: # TODO: use JSON API
|
153 |
+
return locate_json_string_body_from_string(result)
|
154 |
+
return result
|
155 |
+
|
156 |
+
@wrap_embedding_func_with_attrs(embedding_dim=1536, max_token_size=8191)
|
157 |
+
@retry(
|
158 |
+
stop=stop_after_attempt(3),
|
159 |
+
wait=wait_exponential(multiplier=1, min=4, max=10),
|
160 |
+
retry=retry_if_exception_type(
|
161 |
+
(RateLimitError, APIConnectionError, APITimeoutError)
|
162 |
+
),
|
163 |
+
)
|
164 |
+
async def azure_openai_embed(
|
165 |
+
texts: list[str],
|
166 |
+
model: str = "text-embedding-3-small",
|
167 |
+
base_url: str = None,
|
168 |
+
api_key: str = None,
|
169 |
+
api_version: str = None,
|
170 |
+
) -> np.ndarray:
|
171 |
+
if api_key:
|
172 |
+
os.environ["AZURE_OPENAI_API_KEY"] = api_key
|
173 |
+
if base_url:
|
174 |
+
os.environ["AZURE_OPENAI_ENDPOINT"] = base_url
|
175 |
+
if api_version:
|
176 |
+
os.environ["AZURE_OPENAI_API_VERSION"] = api_version
|
177 |
+
|
178 |
+
openai_async_client = AsyncAzureOpenAI(
|
179 |
+
azure_endpoint=os.getenv("AZURE_OPENAI_ENDPOINT"),
|
180 |
+
api_key=os.getenv("AZURE_OPENAI_API_KEY"),
|
181 |
+
api_version=os.getenv("AZURE_OPENAI_API_VERSION"),
|
182 |
+
)
|
183 |
+
|
184 |
+
response = await openai_async_client.embeddings.create(
|
185 |
+
model=model, input=texts, encoding_format="float"
|
186 |
+
)
|
187 |
+
return np.array([dp.embedding for dp in response.data])
|
188 |
+
|
lightrag/llm/bedrock.py
ADDED
@@ -0,0 +1,229 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Bedrock LLM Interface Module
|
3 |
+
==========================
|
4 |
+
|
5 |
+
This module provides interfaces for interacting with Bedrock's language models,
|
6 |
+
including text generation and embedding capabilities.
|
7 |
+
|
8 |
+
Author: Lightrag team
|
9 |
+
Created: 2024-01-24
|
10 |
+
License: MIT License
|
11 |
+
|
12 |
+
Copyright (c) 2024 Lightrag
|
13 |
+
|
14 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
15 |
+
of this software and associated documentation files (the "Software"), to deal
|
16 |
+
in the Software without restriction, including without limitation the rights
|
17 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
18 |
+
copies of the Software, and to permit persons to whom the Software is
|
19 |
+
furnished to do so, subject to the following conditions:
|
20 |
+
|
21 |
+
Version: 1.0.0
|
22 |
+
|
23 |
+
Change Log:
|
24 |
+
- 1.0.0 (2024-01-24): Initial release
|
25 |
+
* Added async chat completion support
|
26 |
+
* Added embedding generation
|
27 |
+
* Added stream response capability
|
28 |
+
|
29 |
+
Dependencies:
|
30 |
+
- aioboto3, tenacity
|
31 |
+
- numpy
|
32 |
+
- pipmaster
|
33 |
+
- Python >= 3.10
|
34 |
+
|
35 |
+
Usage:
|
36 |
+
from llm_interfaces.bebrock import bebrock_model_complete, bebrock_embed
|
37 |
+
"""
|
38 |
+
|
39 |
+
__version__ = "1.0.0"
|
40 |
+
__author__ = "lightrag Team"
|
41 |
+
__status__ = "Production"
|
42 |
+
|
43 |
+
|
44 |
+
import sys
|
45 |
+
import copy
|
46 |
+
import os
|
47 |
+
import json
|
48 |
+
|
49 |
+
import pipmaster as pm # Pipmaster for dynamic library install
|
50 |
+
if not pm.is_installed("aioboto3"):
|
51 |
+
pm.install("aioboto3")
|
52 |
+
if not pm.is_installed("tenacity"):
|
53 |
+
pm.install("tenacity")
|
54 |
+
import aioboto3
|
55 |
+
import numpy as np
|
56 |
+
from tenacity import (
|
57 |
+
retry,
|
58 |
+
stop_after_attempt,
|
59 |
+
wait_exponential,
|
60 |
+
retry_if_exception_type,
|
61 |
+
)
|
62 |
+
|
63 |
+
from lightrag.exceptions import (
|
64 |
+
APIConnectionError,
|
65 |
+
RateLimitError,
|
66 |
+
APITimeoutError,
|
67 |
+
)
|
68 |
+
from lightrag.utils import (
|
69 |
+
locate_json_string_body_from_string,
|
70 |
+
)
|
71 |
+
|
72 |
+
class BedrockError(Exception):
|
73 |
+
"""Generic error for issues related to Amazon Bedrock"""
|
74 |
+
|
75 |
+
|
76 |
+
@retry(
|
77 |
+
stop=stop_after_attempt(5),
|
78 |
+
wait=wait_exponential(multiplier=1, max=60),
|
79 |
+
retry=retry_if_exception_type((BedrockError)),
|
80 |
+
)
|
81 |
+
async def bedrock_complete_if_cache(
|
82 |
+
model,
|
83 |
+
prompt,
|
84 |
+
system_prompt=None,
|
85 |
+
history_messages=[],
|
86 |
+
aws_access_key_id=None,
|
87 |
+
aws_secret_access_key=None,
|
88 |
+
aws_session_token=None,
|
89 |
+
**kwargs,
|
90 |
+
) -> str:
|
91 |
+
os.environ["AWS_ACCESS_KEY_ID"] = os.environ.get(
|
92 |
+
"AWS_ACCESS_KEY_ID", aws_access_key_id
|
93 |
+
)
|
94 |
+
os.environ["AWS_SECRET_ACCESS_KEY"] = os.environ.get(
|
95 |
+
"AWS_SECRET_ACCESS_KEY", aws_secret_access_key
|
96 |
+
)
|
97 |
+
os.environ["AWS_SESSION_TOKEN"] = os.environ.get(
|
98 |
+
"AWS_SESSION_TOKEN", aws_session_token
|
99 |
+
)
|
100 |
+
kwargs.pop("hashing_kv", None)
|
101 |
+
# Fix message history format
|
102 |
+
messages = []
|
103 |
+
for history_message in history_messages:
|
104 |
+
message = copy.copy(history_message)
|
105 |
+
message["content"] = [{"text": message["content"]}]
|
106 |
+
messages.append(message)
|
107 |
+
|
108 |
+
# Add user prompt
|
109 |
+
messages.append({"role": "user", "content": [{"text": prompt}]})
|
110 |
+
|
111 |
+
# Initialize Converse API arguments
|
112 |
+
args = {"modelId": model, "messages": messages}
|
113 |
+
|
114 |
+
# Define system prompt
|
115 |
+
if system_prompt:
|
116 |
+
args["system"] = [{"text": system_prompt}]
|
117 |
+
|
118 |
+
# Map and set up inference parameters
|
119 |
+
inference_params_map = {
|
120 |
+
"max_tokens": "maxTokens",
|
121 |
+
"top_p": "topP",
|
122 |
+
"stop_sequences": "stopSequences",
|
123 |
+
}
|
124 |
+
if inference_params := list(
|
125 |
+
set(kwargs) & set(["max_tokens", "temperature", "top_p", "stop_sequences"])
|
126 |
+
):
|
127 |
+
args["inferenceConfig"] = {}
|
128 |
+
for param in inference_params:
|
129 |
+
args["inferenceConfig"][inference_params_map.get(param, param)] = (
|
130 |
+
kwargs.pop(param)
|
131 |
+
)
|
132 |
+
|
133 |
+
# Call model via Converse API
|
134 |
+
session = aioboto3.Session()
|
135 |
+
async with session.client("bedrock-runtime") as bedrock_async_client:
|
136 |
+
try:
|
137 |
+
response = await bedrock_async_client.converse(**args, **kwargs)
|
138 |
+
except Exception as e:
|
139 |
+
raise BedrockError(e)
|
140 |
+
|
141 |
+
return response["output"]["message"]["content"][0]["text"]
|
142 |
+
|
143 |
+
|
144 |
+
async def bedrock_complete(
|
145 |
+
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
146 |
+
) -> str:
|
147 |
+
keyword_extraction = kwargs.pop("keyword_extraction", None)
|
148 |
+
result = await bedrock_complete_if_cache(
|
149 |
+
"anthropic.claude-3-haiku-20240307-v1:0",
|
150 |
+
prompt,
|
151 |
+
system_prompt=system_prompt,
|
152 |
+
history_messages=history_messages,
|
153 |
+
**kwargs,
|
154 |
+
)
|
155 |
+
if keyword_extraction: # TODO: use JSON API
|
156 |
+
return locate_json_string_body_from_string(result)
|
157 |
+
return result
|
158 |
+
|
159 |
+
|
160 |
+
# @wrap_embedding_func_with_attrs(embedding_dim=1024, max_token_size=8192)
|
161 |
+
# @retry(
|
162 |
+
# stop=stop_after_attempt(3),
|
163 |
+
# wait=wait_exponential(multiplier=1, min=4, max=10),
|
164 |
+
# retry=retry_if_exception_type((RateLimitError, APIConnectionError, Timeout)), # TODO: fix exceptions
|
165 |
+
# )
|
166 |
+
async def bedrock_embed(
|
167 |
+
texts: list[str],
|
168 |
+
model: str = "amazon.titan-embed-text-v2:0",
|
169 |
+
aws_access_key_id=None,
|
170 |
+
aws_secret_access_key=None,
|
171 |
+
aws_session_token=None,
|
172 |
+
) -> np.ndarray:
|
173 |
+
os.environ["AWS_ACCESS_KEY_ID"] = os.environ.get(
|
174 |
+
"AWS_ACCESS_KEY_ID", aws_access_key_id
|
175 |
+
)
|
176 |
+
os.environ["AWS_SECRET_ACCESS_KEY"] = os.environ.get(
|
177 |
+
"AWS_SECRET_ACCESS_KEY", aws_secret_access_key
|
178 |
+
)
|
179 |
+
os.environ["AWS_SESSION_TOKEN"] = os.environ.get(
|
180 |
+
"AWS_SESSION_TOKEN", aws_session_token
|
181 |
+
)
|
182 |
+
|
183 |
+
session = aioboto3.Session()
|
184 |
+
async with session.client("bedrock-runtime") as bedrock_async_client:
|
185 |
+
if (model_provider := model.split(".")[0]) == "amazon":
|
186 |
+
embed_texts = []
|
187 |
+
for text in texts:
|
188 |
+
if "v2" in model:
|
189 |
+
body = json.dumps(
|
190 |
+
{
|
191 |
+
"inputText": text,
|
192 |
+
# 'dimensions': embedding_dim,
|
193 |
+
"embeddingTypes": ["float"],
|
194 |
+
}
|
195 |
+
)
|
196 |
+
elif "v1" in model:
|
197 |
+
body = json.dumps({"inputText": text})
|
198 |
+
else:
|
199 |
+
raise ValueError(f"Model {model} is not supported!")
|
200 |
+
|
201 |
+
response = await bedrock_async_client.invoke_model(
|
202 |
+
modelId=model,
|
203 |
+
body=body,
|
204 |
+
accept="application/json",
|
205 |
+
contentType="application/json",
|
206 |
+
)
|
207 |
+
|
208 |
+
response_body = await response.get("body").json()
|
209 |
+
|
210 |
+
embed_texts.append(response_body["embedding"])
|
211 |
+
elif model_provider == "cohere":
|
212 |
+
body = json.dumps(
|
213 |
+
{"texts": texts, "input_type": "search_document", "truncate": "NONE"}
|
214 |
+
)
|
215 |
+
|
216 |
+
response = await bedrock_async_client.invoke_model(
|
217 |
+
model=model,
|
218 |
+
body=body,
|
219 |
+
accept="application/json",
|
220 |
+
contentType="application/json",
|
221 |
+
)
|
222 |
+
|
223 |
+
response_body = json.loads(response.get("body").read())
|
224 |
+
|
225 |
+
embed_texts = response_body["embeddings"]
|
226 |
+
else:
|
227 |
+
raise ValueError(f"Model provider '{model_provider}' is not supported!")
|
228 |
+
|
229 |
+
return np.array(embed_texts)
|
lightrag/llm/hf.py
ADDED
@@ -0,0 +1,187 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Hugging face LLM Interface Module
|
3 |
+
==========================
|
4 |
+
|
5 |
+
This module provides interfaces for interacting with Hugging face's language models,
|
6 |
+
including text generation and embedding capabilities.
|
7 |
+
|
8 |
+
Author: Lightrag team
|
9 |
+
Created: 2024-01-24
|
10 |
+
License: MIT License
|
11 |
+
|
12 |
+
Copyright (c) 2024 Lightrag
|
13 |
+
|
14 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
15 |
+
of this software and associated documentation files (the "Software"), to deal
|
16 |
+
in the Software without restriction, including without limitation the rights
|
17 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
18 |
+
copies of the Software, and to permit persons to whom the Software is
|
19 |
+
furnished to do so, subject to the following conditions:
|
20 |
+
|
21 |
+
Version: 1.0.0
|
22 |
+
|
23 |
+
Change Log:
|
24 |
+
- 1.0.0 (2024-01-24): Initial release
|
25 |
+
* Added async chat completion support
|
26 |
+
* Added embedding generation
|
27 |
+
* Added stream response capability
|
28 |
+
|
29 |
+
Dependencies:
|
30 |
+
- transformers
|
31 |
+
- numpy
|
32 |
+
- pipmaster
|
33 |
+
- Python >= 3.10
|
34 |
+
|
35 |
+
Usage:
|
36 |
+
from llm_interfaces.hf import hf_model_complete, hf_embed
|
37 |
+
"""
|
38 |
+
|
39 |
+
__version__ = "1.0.0"
|
40 |
+
__author__ = "lightrag Team"
|
41 |
+
__status__ = "Production"
|
42 |
+
|
43 |
+
import copy
|
44 |
+
import os
|
45 |
+
import pipmaster as pm # Pipmaster for dynamic library install
|
46 |
+
|
47 |
+
# install specific modules
|
48 |
+
if not pm.is_installed("transformers"):
|
49 |
+
pm.install("transformers")
|
50 |
+
if not pm.is_installed("torch"):
|
51 |
+
pm.install("torch")
|
52 |
+
if not pm.is_installed("tenacity"):
|
53 |
+
pm.install("tenacity")
|
54 |
+
|
55 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
56 |
+
from functools import lru_cache
|
57 |
+
from tenacity import (
|
58 |
+
retry,
|
59 |
+
stop_after_attempt,
|
60 |
+
wait_exponential,
|
61 |
+
retry_if_exception_type,
|
62 |
+
)
|
63 |
+
from lightrag.exceptions import (
|
64 |
+
APIConnectionError,
|
65 |
+
RateLimitError,
|
66 |
+
APITimeoutError,
|
67 |
+
)
|
68 |
+
from lightrag.utils import (
|
69 |
+
locate_json_string_body_from_string,
|
70 |
+
)
|
71 |
+
import torch
|
72 |
+
|
73 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
74 |
+
|
75 |
+
@lru_cache(maxsize=1)
|
76 |
+
def initialize_hf_model(model_name):
|
77 |
+
hf_tokenizer = AutoTokenizer.from_pretrained(
|
78 |
+
model_name, device_map="auto", trust_remote_code=True
|
79 |
+
)
|
80 |
+
hf_model = AutoModelForCausalLM.from_pretrained(
|
81 |
+
model_name, device_map="auto", trust_remote_code=True
|
82 |
+
)
|
83 |
+
if hf_tokenizer.pad_token is None:
|
84 |
+
hf_tokenizer.pad_token = hf_tokenizer.eos_token
|
85 |
+
|
86 |
+
return hf_model, hf_tokenizer
|
87 |
+
|
88 |
+
|
89 |
+
@retry(
|
90 |
+
stop=stop_after_attempt(3),
|
91 |
+
wait=wait_exponential(multiplier=1, min=4, max=10),
|
92 |
+
retry=retry_if_exception_type(
|
93 |
+
(RateLimitError, APIConnectionError, APITimeoutError)
|
94 |
+
),
|
95 |
+
)
|
96 |
+
async def hf_model_if_cache(
|
97 |
+
model,
|
98 |
+
prompt,
|
99 |
+
system_prompt=None,
|
100 |
+
history_messages=[],
|
101 |
+
**kwargs,
|
102 |
+
) -> str:
|
103 |
+
model_name = model
|
104 |
+
hf_model, hf_tokenizer = initialize_hf_model(model_name)
|
105 |
+
messages = []
|
106 |
+
if system_prompt:
|
107 |
+
messages.append({"role": "system", "content": system_prompt})
|
108 |
+
messages.extend(history_messages)
|
109 |
+
messages.append({"role": "user", "content": prompt})
|
110 |
+
kwargs.pop("hashing_kv", None)
|
111 |
+
input_prompt = ""
|
112 |
+
try:
|
113 |
+
input_prompt = hf_tokenizer.apply_chat_template(
|
114 |
+
messages, tokenize=False, add_generation_prompt=True
|
115 |
+
)
|
116 |
+
except Exception:
|
117 |
+
try:
|
118 |
+
ori_message = copy.deepcopy(messages)
|
119 |
+
if messages[0]["role"] == "system":
|
120 |
+
messages[1]["content"] = (
|
121 |
+
"<system>"
|
122 |
+
+ messages[0]["content"]
|
123 |
+
+ "</system>\n"
|
124 |
+
+ messages[1]["content"]
|
125 |
+
)
|
126 |
+
messages = messages[1:]
|
127 |
+
input_prompt = hf_tokenizer.apply_chat_template(
|
128 |
+
messages, tokenize=False, add_generation_prompt=True
|
129 |
+
)
|
130 |
+
except Exception:
|
131 |
+
len_message = len(ori_message)
|
132 |
+
for msgid in range(len_message):
|
133 |
+
input_prompt = (
|
134 |
+
input_prompt
|
135 |
+
+ "<"
|
136 |
+
+ ori_message[msgid]["role"]
|
137 |
+
+ ">"
|
138 |
+
+ ori_message[msgid]["content"]
|
139 |
+
+ "</"
|
140 |
+
+ ori_message[msgid]["role"]
|
141 |
+
+ ">\n"
|
142 |
+
)
|
143 |
+
|
144 |
+
input_ids = hf_tokenizer(
|
145 |
+
input_prompt, return_tensors="pt", padding=True, truncation=True
|
146 |
+
).to("cuda")
|
147 |
+
inputs = {k: v.to(hf_model.device) for k, v in input_ids.items()}
|
148 |
+
output = hf_model.generate(
|
149 |
+
**input_ids, max_new_tokens=512, num_return_sequences=1, early_stopping=True
|
150 |
+
)
|
151 |
+
response_text = hf_tokenizer.decode(
|
152 |
+
output[0][len(inputs["input_ids"][0]) :], skip_special_tokens=True
|
153 |
+
)
|
154 |
+
|
155 |
+
return response_text
|
156 |
+
|
157 |
+
|
158 |
+
|
159 |
+
async def hf_model_complete(
|
160 |
+
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
161 |
+
) -> str:
|
162 |
+
keyword_extraction = kwargs.pop("keyword_extraction", None)
|
163 |
+
model_name = kwargs["hashing_kv"].global_config["llm_model_name"]
|
164 |
+
result = await hf_model_if_cache(
|
165 |
+
model_name,
|
166 |
+
prompt,
|
167 |
+
system_prompt=system_prompt,
|
168 |
+
history_messages=history_messages,
|
169 |
+
**kwargs,
|
170 |
+
)
|
171 |
+
if keyword_extraction: # TODO: use JSON API
|
172 |
+
return locate_json_string_body_from_string(result)
|
173 |
+
return result
|
174 |
+
|
175 |
+
|
176 |
+
async def hf_embed(texts: list[str], tokenizer, embed_model) -> np.ndarray:
|
177 |
+
device = next(embed_model.parameters()).device
|
178 |
+
input_ids = tokenizer(
|
179 |
+
texts, return_tensors="pt", padding=True, truncation=True
|
180 |
+
).input_ids.to(device)
|
181 |
+
with torch.no_grad():
|
182 |
+
outputs = embed_model(input_ids)
|
183 |
+
embeddings = outputs.last_hidden_state.mean(dim=1)
|
184 |
+
if embeddings.dtype == torch.bfloat16:
|
185 |
+
return embeddings.detach().to(torch.float32).cpu().numpy()
|
186 |
+
else:
|
187 |
+
return embeddings.detach().cpu().numpy()
|
lightrag/llm/jina.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Jina Embedding Interface Module
|
3 |
+
==========================
|
4 |
+
|
5 |
+
This module provides interfaces for interacting with jina system,
|
6 |
+
including embedding capabilities.
|
7 |
+
|
8 |
+
Author: Lightrag team
|
9 |
+
Created: 2024-01-24
|
10 |
+
License: MIT License
|
11 |
+
|
12 |
+
Copyright (c) 2024 Lightrag
|
13 |
+
|
14 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
15 |
+
of this software and associated documentation files (the "Software"), to deal
|
16 |
+
in the Software without restriction, including without limitation the rights
|
17 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
18 |
+
copies of the Software, and to permit persons to whom the Software is
|
19 |
+
furnished to do so, subject to the following conditions:
|
20 |
+
|
21 |
+
Version: 1.0.0
|
22 |
+
|
23 |
+
Change Log:
|
24 |
+
- 1.0.0 (2024-01-24): Initial release
|
25 |
+
* Added embedding generation
|
26 |
+
|
27 |
+
Dependencies:
|
28 |
+
- tenacity
|
29 |
+
- numpy
|
30 |
+
- pipmaster
|
31 |
+
- Python >= 3.10
|
32 |
+
|
33 |
+
Usage:
|
34 |
+
from llm_interfaces.jina import jina_embed
|
35 |
+
"""
|
36 |
+
|
37 |
+
__version__ = "1.0.0"
|
38 |
+
__author__ = "lightrag Team"
|
39 |
+
__status__ = "Production"
|
40 |
+
|
41 |
+
import os
|
42 |
+
import pipmaster as pm # Pipmaster for dynamic library install
|
43 |
+
|
44 |
+
# install specific modules
|
45 |
+
if not pm.is_installed("lmdeploy"):
|
46 |
+
pm.install("lmdeploy")
|
47 |
+
if not pm.is_installed("tenacity"):
|
48 |
+
pm.install("tenacity")
|
49 |
+
|
50 |
+
from tenacity import (
|
51 |
+
retry,
|
52 |
+
stop_after_attempt,
|
53 |
+
wait_exponential,
|
54 |
+
retry_if_exception_type,
|
55 |
+
)
|
56 |
+
|
57 |
+
from lightrag.utils import (
|
58 |
+
wrap_embedding_func_with_attrs,
|
59 |
+
locate_json_string_body_from_string,
|
60 |
+
safe_unicode_decode,
|
61 |
+
logger,
|
62 |
+
)
|
63 |
+
|
64 |
+
from lightrag.types import GPTKeywordExtractionFormat
|
65 |
+
from functools import lru_cache
|
66 |
+
|
67 |
+
import numpy as np
|
68 |
+
from typing import Union
|
69 |
+
import aiohttp
|
70 |
+
|
71 |
+
|
72 |
+
async def fetch_data(url, headers, data):
|
73 |
+
async with aiohttp.ClientSession() as session:
|
74 |
+
async with session.post(url, headers=headers, json=data) as response:
|
75 |
+
response_json = await response.json()
|
76 |
+
data_list = response_json.get("data", [])
|
77 |
+
return data_list
|
78 |
+
|
79 |
+
|
80 |
+
async def jina_embed(
|
81 |
+
texts: list[str],
|
82 |
+
dimensions: int = 1024,
|
83 |
+
late_chunking: bool = False,
|
84 |
+
base_url: str = None,
|
85 |
+
api_key: str = None,
|
86 |
+
) -> np.ndarray:
|
87 |
+
if api_key:
|
88 |
+
os.environ["JINA_API_KEY"] = api_key
|
89 |
+
url = "https://api.jina.ai/v1/embeddings" if not base_url else base_url
|
90 |
+
headers = {
|
91 |
+
"Content-Type": "application/json",
|
92 |
+
"Authorization": f"Bearer {os.environ['JINA_API_KEY']}",
|
93 |
+
}
|
94 |
+
data = {
|
95 |
+
"model": "jina-embeddings-v3",
|
96 |
+
"normalized": True,
|
97 |
+
"embedding_type": "float",
|
98 |
+
"dimensions": f"{dimensions}",
|
99 |
+
"late_chunking": late_chunking,
|
100 |
+
"input": texts,
|
101 |
+
}
|
102 |
+
data_list = await fetch_data(url, headers, data)
|
103 |
+
return np.array([dp["embedding"] for dp in data_list])
|
104 |
+
|
lightrag/llm/lmdeploy.py
ADDED
@@ -0,0 +1,190 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
LMDeploy LLM Interface Module
|
3 |
+
==========================
|
4 |
+
|
5 |
+
This module provides interfaces for interacting with LMDeploy's language models,
|
6 |
+
including text generation and embedding capabilities.
|
7 |
+
|
8 |
+
Author: Lightrag team
|
9 |
+
Created: 2024-01-24
|
10 |
+
License: MIT License
|
11 |
+
|
12 |
+
Copyright (c) 2024 Lightrag
|
13 |
+
|
14 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
15 |
+
of this software and associated documentation files (the "Software"), to deal
|
16 |
+
in the Software without restriction, including without limitation the rights
|
17 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
18 |
+
copies of the Software, and to permit persons to whom the Software is
|
19 |
+
furnished to do so, subject to the following conditions:
|
20 |
+
|
21 |
+
Version: 1.0.0
|
22 |
+
|
23 |
+
Change Log:
|
24 |
+
- 1.0.0 (2024-01-24): Initial release
|
25 |
+
* Added async chat completion support
|
26 |
+
* Added embedding generation
|
27 |
+
* Added stream response capability
|
28 |
+
|
29 |
+
Dependencies:
|
30 |
+
- tenacity
|
31 |
+
- numpy
|
32 |
+
- pipmaster
|
33 |
+
- Python >= 3.10
|
34 |
+
|
35 |
+
Usage:
|
36 |
+
from llm_interfaces.lmdeploy import lmdeploy_model_complete, lmdeploy_embed
|
37 |
+
"""
|
38 |
+
|
39 |
+
__version__ = "1.0.0"
|
40 |
+
__author__ = "lightrag Team"
|
41 |
+
__status__ = "Production"
|
42 |
+
|
43 |
+
import pipmaster as pm # Pipmaster for dynamic library install
|
44 |
+
|
45 |
+
# install specific modules
|
46 |
+
if not pm.is_installed("lmdeploy"):
|
47 |
+
pm.install("lmdeploy[all]")
|
48 |
+
if not pm.is_installed("tenacity"):
|
49 |
+
pm.install("tenacity")
|
50 |
+
|
51 |
+
from lightrag.exceptions import (
|
52 |
+
APIConnectionError,
|
53 |
+
RateLimitError,
|
54 |
+
APITimeoutError,
|
55 |
+
)
|
56 |
+
from tenacity import (
|
57 |
+
retry,
|
58 |
+
stop_after_attempt,
|
59 |
+
wait_exponential,
|
60 |
+
retry_if_exception_type,
|
61 |
+
)
|
62 |
+
|
63 |
+
|
64 |
+
from functools import lru_cache
|
65 |
+
|
66 |
+
@lru_cache(maxsize=1)
|
67 |
+
def initialize_lmdeploy_pipeline(
|
68 |
+
model,
|
69 |
+
tp=1,
|
70 |
+
chat_template=None,
|
71 |
+
log_level="WARNING",
|
72 |
+
model_format="hf",
|
73 |
+
quant_policy=0,
|
74 |
+
):
|
75 |
+
from lmdeploy import pipeline, ChatTemplateConfig, TurbomindEngineConfig
|
76 |
+
|
77 |
+
lmdeploy_pipe = pipeline(
|
78 |
+
model_path=model,
|
79 |
+
backend_config=TurbomindEngineConfig(
|
80 |
+
tp=tp, model_format=model_format, quant_policy=quant_policy
|
81 |
+
),
|
82 |
+
chat_template_config=(
|
83 |
+
ChatTemplateConfig(model_name=chat_template) if chat_template else None
|
84 |
+
),
|
85 |
+
log_level="WARNING",
|
86 |
+
)
|
87 |
+
return lmdeploy_pipe
|
88 |
+
|
89 |
+
|
90 |
+
@retry(
|
91 |
+
stop=stop_after_attempt(3),
|
92 |
+
wait=wait_exponential(multiplier=1, min=4, max=10),
|
93 |
+
retry=retry_if_exception_type(
|
94 |
+
(RateLimitError, APIConnectionError, APITimeoutError)
|
95 |
+
),
|
96 |
+
)
|
97 |
+
async def lmdeploy_model_if_cache(
|
98 |
+
model,
|
99 |
+
prompt,
|
100 |
+
system_prompt=None,
|
101 |
+
history_messages=[],
|
102 |
+
chat_template=None,
|
103 |
+
model_format="hf",
|
104 |
+
quant_policy=0,
|
105 |
+
**kwargs,
|
106 |
+
) -> str:
|
107 |
+
"""
|
108 |
+
Args:
|
109 |
+
model (str): The path to the model.
|
110 |
+
It could be one of the following options:
|
111 |
+
- i) A local directory path of a turbomind model which is
|
112 |
+
converted by `lmdeploy convert` command or download
|
113 |
+
from ii) and iii).
|
114 |
+
- ii) The model_id of a lmdeploy-quantized model hosted
|
115 |
+
inside a model repo on huggingface.co, such as
|
116 |
+
"InternLM/internlm-chat-20b-4bit",
|
117 |
+
"lmdeploy/llama2-chat-70b-4bit", etc.
|
118 |
+
- iii) The model_id of a model hosted inside a model repo
|
119 |
+
on huggingface.co, such as "internlm/internlm-chat-7b",
|
120 |
+
"Qwen/Qwen-7B-Chat ", "baichuan-inc/Baichuan2-7B-Chat"
|
121 |
+
and so on.
|
122 |
+
chat_template (str): needed when model is a pytorch model on
|
123 |
+
huggingface.co, such as "internlm-chat-7b",
|
124 |
+
"Qwen-7B-Chat ", "Baichuan2-7B-Chat" and so on,
|
125 |
+
and when the model name of local path did not match the original model name in HF.
|
126 |
+
tp (int): tensor parallel
|
127 |
+
prompt (Union[str, List[str]]): input texts to be completed.
|
128 |
+
do_preprocess (bool): whether pre-process the messages. Default to
|
129 |
+
True, which means chat_template will be applied.
|
130 |
+
skip_special_tokens (bool): Whether or not to remove special tokens
|
131 |
+
in the decoding. Default to be True.
|
132 |
+
do_sample (bool): Whether or not to use sampling, use greedy decoding otherwise.
|
133 |
+
Default to be False, which means greedy decoding will be applied.
|
134 |
+
"""
|
135 |
+
try:
|
136 |
+
import lmdeploy
|
137 |
+
from lmdeploy import version_info, GenerationConfig
|
138 |
+
except Exception:
|
139 |
+
raise ImportError("Please install lmdeploy before initialize lmdeploy backend.")
|
140 |
+
kwargs.pop("hashing_kv", None)
|
141 |
+
kwargs.pop("response_format", None)
|
142 |
+
max_new_tokens = kwargs.pop("max_tokens", 512)
|
143 |
+
tp = kwargs.pop("tp", 1)
|
144 |
+
skip_special_tokens = kwargs.pop("skip_special_tokens", True)
|
145 |
+
do_preprocess = kwargs.pop("do_preprocess", True)
|
146 |
+
do_sample = kwargs.pop("do_sample", False)
|
147 |
+
gen_params = kwargs
|
148 |
+
|
149 |
+
version = version_info
|
150 |
+
if do_sample is not None and version < (0, 6, 0):
|
151 |
+
raise RuntimeError(
|
152 |
+
"`do_sample` parameter is not supported by lmdeploy until "
|
153 |
+
f"v0.6.0, but currently using lmdeloy {lmdeploy.__version__}"
|
154 |
+
)
|
155 |
+
else:
|
156 |
+
do_sample = True
|
157 |
+
gen_params.update(do_sample=do_sample)
|
158 |
+
|
159 |
+
lmdeploy_pipe = initialize_lmdeploy_pipeline(
|
160 |
+
model=model,
|
161 |
+
tp=tp,
|
162 |
+
chat_template=chat_template,
|
163 |
+
model_format=model_format,
|
164 |
+
quant_policy=quant_policy,
|
165 |
+
log_level="WARNING",
|
166 |
+
)
|
167 |
+
|
168 |
+
messages = []
|
169 |
+
if system_prompt:
|
170 |
+
messages.append({"role": "system", "content": system_prompt})
|
171 |
+
|
172 |
+
messages.extend(history_messages)
|
173 |
+
messages.append({"role": "user", "content": prompt})
|
174 |
+
|
175 |
+
gen_config = GenerationConfig(
|
176 |
+
skip_special_tokens=skip_special_tokens,
|
177 |
+
max_new_tokens=max_new_tokens,
|
178 |
+
**gen_params,
|
179 |
+
)
|
180 |
+
|
181 |
+
response = ""
|
182 |
+
async for res in lmdeploy_pipe.generate(
|
183 |
+
messages,
|
184 |
+
gen_config=gen_config,
|
185 |
+
do_preprocess=do_preprocess,
|
186 |
+
stream_response=False,
|
187 |
+
session_id=1,
|
188 |
+
):
|
189 |
+
response += res.response
|
190 |
+
return response
|
lightrag/llm/lollms.py
ADDED
@@ -0,0 +1,222 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
LoLLMs (Lord of Large Language Models) Interface Module
|
3 |
+
=====================================================
|
4 |
+
|
5 |
+
This module provides the official interface for interacting with LoLLMs (Lord of Large Language and multimodal Systems),
|
6 |
+
a unified framework for AI model interaction and deployment.
|
7 |
+
|
8 |
+
LoLLMs is designed as a "one tool to rule them all" solution, providing seamless integration
|
9 |
+
with various AI models while maintaining high performance and user-friendly interfaces.
|
10 |
+
|
11 |
+
Author: ParisNeo
|
12 |
+
Created: 2024-01-24
|
13 |
+
License: Apache 2.0
|
14 |
+
|
15 |
+
Copyright (c) 2024 ParisNeo
|
16 |
+
|
17 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
18 |
+
you may not use this file except in compliance with the License.
|
19 |
+
You may obtain a copy of the License at
|
20 |
+
|
21 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
22 |
+
|
23 |
+
Unless required by applicable law or agreed to in writing, software
|
24 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
25 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
26 |
+
See the License for the specific language governing permissions and
|
27 |
+
limitations under the License.
|
28 |
+
|
29 |
+
Version: 2.0.0
|
30 |
+
|
31 |
+
Change Log:
|
32 |
+
- 2.0.0 (2024-01-24):
|
33 |
+
* Added async support for model inference
|
34 |
+
* Implemented streaming capabilities
|
35 |
+
* Added embedding generation functionality
|
36 |
+
* Enhanced parameter handling
|
37 |
+
* Improved error handling and timeout management
|
38 |
+
|
39 |
+
Dependencies:
|
40 |
+
- aiohttp
|
41 |
+
- numpy
|
42 |
+
- Python >= 3.10
|
43 |
+
|
44 |
+
Features:
|
45 |
+
- Async text generation with streaming support
|
46 |
+
- Embedding generation
|
47 |
+
- Configurable model parameters
|
48 |
+
- System prompt and chat history support
|
49 |
+
- Timeout handling
|
50 |
+
- API key authentication
|
51 |
+
|
52 |
+
Usage:
|
53 |
+
from llm_interfaces.lollms import lollms_model_complete, lollms_embed
|
54 |
+
|
55 |
+
Project Repository: https://github.com/ParisNeo/lollms
|
56 |
+
Documentation: https://github.com/ParisNeo/lollms/docs
|
57 |
+
"""
|
58 |
+
|
59 |
+
__version__ = "1.0.0"
|
60 |
+
__author__ = "ParisNeo"
|
61 |
+
__status__ = "Production"
|
62 |
+
__project_url__ = "https://github.com/ParisNeo/lollms"
|
63 |
+
__doc_url__ = "https://github.com/ParisNeo/lollms/docs"
|
64 |
+
import sys
|
65 |
+
if sys.version_info < (3, 9):
|
66 |
+
from typing import AsyncIterator
|
67 |
+
else:
|
68 |
+
from collections.abc import AsyncIterator
|
69 |
+
import pipmaster as pm # Pipmaster for dynamic library install
|
70 |
+
if not pm.is_installed("aiohttp"):
|
71 |
+
pm.install("aiohttp")
|
72 |
+
if not pm.is_installed("tenacity"):
|
73 |
+
pm.install("tenacity")
|
74 |
+
|
75 |
+
import aiohttp
|
76 |
+
from tenacity import (
|
77 |
+
retry,
|
78 |
+
stop_after_attempt,
|
79 |
+
wait_exponential,
|
80 |
+
retry_if_exception_type,
|
81 |
+
)
|
82 |
+
|
83 |
+
from lightrag.exceptions import (
|
84 |
+
APIConnectionError,
|
85 |
+
RateLimitError,
|
86 |
+
APITimeoutError,
|
87 |
+
)
|
88 |
+
|
89 |
+
from typing import Union, List
|
90 |
+
import numpy as np
|
91 |
+
|
92 |
+
@retry(
|
93 |
+
stop=stop_after_attempt(3),
|
94 |
+
wait=wait_exponential(multiplier=1, min=4, max=10),
|
95 |
+
retry=retry_if_exception_type(
|
96 |
+
(RateLimitError, APIConnectionError, APITimeoutError)
|
97 |
+
),
|
98 |
+
)
|
99 |
+
async def lollms_model_if_cache(
|
100 |
+
model,
|
101 |
+
prompt,
|
102 |
+
system_prompt=None,
|
103 |
+
history_messages=[],
|
104 |
+
base_url="http://localhost:9600",
|
105 |
+
**kwargs,
|
106 |
+
) -> Union[str, AsyncIterator[str]]:
|
107 |
+
"""Client implementation for lollms generation."""
|
108 |
+
|
109 |
+
stream = True if kwargs.get("stream") else False
|
110 |
+
api_key = kwargs.pop("api_key", None)
|
111 |
+
headers = (
|
112 |
+
{"Content-Type": "application/json", "Authorization": f"Bearer {api_key}"}
|
113 |
+
if api_key
|
114 |
+
else {"Content-Type": "application/json"}
|
115 |
+
)
|
116 |
+
|
117 |
+
# Extract lollms specific parameters
|
118 |
+
request_data = {
|
119 |
+
"prompt": prompt,
|
120 |
+
"model_name": model,
|
121 |
+
"personality": kwargs.get("personality", -1),
|
122 |
+
"n_predict": kwargs.get("n_predict", None),
|
123 |
+
"stream": stream,
|
124 |
+
"temperature": kwargs.get("temperature", 0.1),
|
125 |
+
"top_k": kwargs.get("top_k", 50),
|
126 |
+
"top_p": kwargs.get("top_p", 0.95),
|
127 |
+
"repeat_penalty": kwargs.get("repeat_penalty", 0.8),
|
128 |
+
"repeat_last_n": kwargs.get("repeat_last_n", 40),
|
129 |
+
"seed": kwargs.get("seed", None),
|
130 |
+
"n_threads": kwargs.get("n_threads", 8),
|
131 |
+
}
|
132 |
+
|
133 |
+
# Prepare the full prompt including history
|
134 |
+
full_prompt = ""
|
135 |
+
if system_prompt:
|
136 |
+
full_prompt += f"{system_prompt}\n"
|
137 |
+
for msg in history_messages:
|
138 |
+
full_prompt += f"{msg['role']}: {msg['content']}\n"
|
139 |
+
full_prompt += prompt
|
140 |
+
|
141 |
+
request_data["prompt"] = full_prompt
|
142 |
+
timeout = aiohttp.ClientTimeout(total=kwargs.get("timeout", None))
|
143 |
+
|
144 |
+
async with aiohttp.ClientSession(timeout=timeout, headers=headers) as session:
|
145 |
+
if stream:
|
146 |
+
|
147 |
+
async def inner():
|
148 |
+
async with session.post(
|
149 |
+
f"{base_url}/lollms_generate", json=request_data
|
150 |
+
) as response:
|
151 |
+
async for line in response.content:
|
152 |
+
yield line.decode().strip()
|
153 |
+
|
154 |
+
return inner()
|
155 |
+
else:
|
156 |
+
async with session.post(
|
157 |
+
f"{base_url}/lollms_generate", json=request_data
|
158 |
+
) as response:
|
159 |
+
return await response.text()
|
160 |
+
|
161 |
+
|
162 |
+
async def lollms_model_complete(
|
163 |
+
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
164 |
+
) -> Union[str, AsyncIterator[str]]:
|
165 |
+
"""Complete function for lollms model generation."""
|
166 |
+
|
167 |
+
# Extract and remove keyword_extraction from kwargs if present
|
168 |
+
keyword_extraction = kwargs.pop("keyword_extraction", None)
|
169 |
+
|
170 |
+
# Get model name from config
|
171 |
+
model_name = kwargs["hashing_kv"].global_config["llm_model_name"]
|
172 |
+
|
173 |
+
# If keyword extraction is needed, we might need to modify the prompt
|
174 |
+
# or add specific parameters for JSON output (if lollms supports it)
|
175 |
+
if keyword_extraction:
|
176 |
+
# Note: You might need to adjust this based on how lollms handles structured output
|
177 |
+
pass
|
178 |
+
|
179 |
+
return await lollms_model_if_cache(
|
180 |
+
model_name,
|
181 |
+
prompt,
|
182 |
+
system_prompt=system_prompt,
|
183 |
+
history_messages=history_messages,
|
184 |
+
**kwargs,
|
185 |
+
)
|
186 |
+
|
187 |
+
|
188 |
+
|
189 |
+
async def lollms_embed(
|
190 |
+
texts: List[str], embed_model=None, base_url="http://localhost:9600", **kwargs
|
191 |
+
) -> np.ndarray:
|
192 |
+
"""
|
193 |
+
Generate embeddings for a list of texts using lollms server.
|
194 |
+
|
195 |
+
Args:
|
196 |
+
texts: List of strings to embed
|
197 |
+
embed_model: Model name (not used directly as lollms uses configured vectorizer)
|
198 |
+
base_url: URL of the lollms server
|
199 |
+
**kwargs: Additional arguments passed to the request
|
200 |
+
|
201 |
+
Returns:
|
202 |
+
np.ndarray: Array of embeddings
|
203 |
+
"""
|
204 |
+
api_key = kwargs.pop("api_key", None)
|
205 |
+
headers = (
|
206 |
+
{"Content-Type": "application/json", "Authorization": api_key}
|
207 |
+
if api_key
|
208 |
+
else {"Content-Type": "application/json"}
|
209 |
+
)
|
210 |
+
async with aiohttp.ClientSession(headers=headers) as session:
|
211 |
+
embeddings = []
|
212 |
+
for text in texts:
|
213 |
+
request_data = {"text": text}
|
214 |
+
|
215 |
+
async with session.post(
|
216 |
+
f"{base_url}/lollms_embed",
|
217 |
+
json=request_data,
|
218 |
+
) as response:
|
219 |
+
result = await response.json()
|
220 |
+
embeddings.append(result["vector"])
|
221 |
+
|
222 |
+
return np.array(embeddings)
|
lightrag/llm/nvidia_openai.py
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
OpenAI LLM Interface Module
|
3 |
+
==========================
|
4 |
+
|
5 |
+
This module provides interfaces for interacting with openai's language models,
|
6 |
+
including text generation and embedding capabilities.
|
7 |
+
|
8 |
+
Author: Lightrag team
|
9 |
+
Created: 2024-01-24
|
10 |
+
License: MIT License
|
11 |
+
|
12 |
+
Copyright (c) 2024 Lightrag
|
13 |
+
|
14 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
15 |
+
of this software and associated documentation files (the "Software"), to deal
|
16 |
+
in the Software without restriction, including without limitation the rights
|
17 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
18 |
+
copies of the Software, and to permit persons to whom the Software is
|
19 |
+
furnished to do so, subject to the following conditions:
|
20 |
+
|
21 |
+
Version: 1.0.0
|
22 |
+
|
23 |
+
Change Log:
|
24 |
+
- 1.0.0 (2024-01-24): Initial release
|
25 |
+
* Added async chat completion support
|
26 |
+
* Added embedding generation
|
27 |
+
* Added stream response capability
|
28 |
+
|
29 |
+
Dependencies:
|
30 |
+
- openai
|
31 |
+
- numpy
|
32 |
+
- pipmaster
|
33 |
+
- Python >= 3.10
|
34 |
+
|
35 |
+
Usage:
|
36 |
+
from llm_interfaces.nvidia_openai import nvidia_openai_model_complete, nvidia_openai_embed
|
37 |
+
"""
|
38 |
+
|
39 |
+
__version__ = "1.0.0"
|
40 |
+
__author__ = "lightrag Team"
|
41 |
+
__status__ = "Production"
|
42 |
+
|
43 |
+
|
44 |
+
|
45 |
+
import sys
|
46 |
+
import os
|
47 |
+
|
48 |
+
if sys.version_info < (3, 9):
|
49 |
+
from typing import AsyncIterator
|
50 |
+
else:
|
51 |
+
from collections.abc import AsyncIterator
|
52 |
+
import pipmaster as pm # Pipmaster for dynamic library install
|
53 |
+
|
54 |
+
# install specific modules
|
55 |
+
if not pm.is_installed("openai"):
|
56 |
+
pm.install("openai")
|
57 |
+
|
58 |
+
from openai import (
|
59 |
+
AsyncOpenAI,
|
60 |
+
APIConnectionError,
|
61 |
+
RateLimitError,
|
62 |
+
APITimeoutError,
|
63 |
+
)
|
64 |
+
from tenacity import (
|
65 |
+
retry,
|
66 |
+
stop_after_attempt,
|
67 |
+
wait_exponential,
|
68 |
+
retry_if_exception_type,
|
69 |
+
)
|
70 |
+
|
71 |
+
from lightrag.utils import (
|
72 |
+
wrap_embedding_func_with_attrs,
|
73 |
+
locate_json_string_body_from_string,
|
74 |
+
safe_unicode_decode,
|
75 |
+
logger,
|
76 |
+
)
|
77 |
+
|
78 |
+
from lightrag.types import GPTKeywordExtractionFormat
|
79 |
+
|
80 |
+
import numpy as np
|
81 |
+
|
82 |
+
@wrap_embedding_func_with_attrs(embedding_dim=2048, max_token_size=512)
|
83 |
+
@retry(
|
84 |
+
stop=stop_after_attempt(3),
|
85 |
+
wait=wait_exponential(multiplier=1, min=4, max=60),
|
86 |
+
retry=retry_if_exception_type(
|
87 |
+
(RateLimitError, APIConnectionError, APITimeoutError)
|
88 |
+
),
|
89 |
+
)
|
90 |
+
async def nvidia_openai_embed(
|
91 |
+
texts: list[str],
|
92 |
+
model: str = "nvidia/llama-3.2-nv-embedqa-1b-v1",
|
93 |
+
# refer to https://build.nvidia.com/nim?filters=usecase%3Ausecase_text_to_embedding
|
94 |
+
base_url: str = "https://integrate.api.nvidia.com/v1",
|
95 |
+
api_key: str = None,
|
96 |
+
input_type: str = "passage", # query for retrieval, passage for embedding
|
97 |
+
trunc: str = "NONE", # NONE or START or END
|
98 |
+
encode: str = "float", # float or base64
|
99 |
+
) -> np.ndarray:
|
100 |
+
if api_key:
|
101 |
+
os.environ["OPENAI_API_KEY"] = api_key
|
102 |
+
|
103 |
+
openai_async_client = (
|
104 |
+
AsyncOpenAI() if base_url is None else AsyncOpenAI(base_url=base_url)
|
105 |
+
)
|
106 |
+
response = await openai_async_client.embeddings.create(
|
107 |
+
model=model,
|
108 |
+
input=texts,
|
109 |
+
encoding_format=encode,
|
110 |
+
extra_body={"input_type": input_type, "truncate": trunc},
|
111 |
+
)
|
112 |
+
return np.array([dp.embedding for dp in response.data])
|
lightrag/llm/ollama.py
ADDED
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Ollama LLM Interface Module
|
3 |
+
==========================
|
4 |
+
|
5 |
+
This module provides interfaces for interacting with Ollama's language models,
|
6 |
+
including text generation and embedding capabilities.
|
7 |
+
|
8 |
+
Author: Lightrag team
|
9 |
+
Created: 2024-01-24
|
10 |
+
License: MIT License
|
11 |
+
|
12 |
+
Copyright (c) 2024 Lightrag
|
13 |
+
|
14 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
15 |
+
of this software and associated documentation files (the "Software"), to deal
|
16 |
+
in the Software without restriction, including without limitation the rights
|
17 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
18 |
+
copies of the Software, and to permit persons to whom the Software is
|
19 |
+
furnished to do so, subject to the following conditions:
|
20 |
+
|
21 |
+
Version: 1.0.0
|
22 |
+
|
23 |
+
Change Log:
|
24 |
+
- 1.0.0 (2024-01-24): Initial release
|
25 |
+
* Added async chat completion support
|
26 |
+
* Added embedding generation
|
27 |
+
* Added stream response capability
|
28 |
+
|
29 |
+
Dependencies:
|
30 |
+
- ollama
|
31 |
+
- numpy
|
32 |
+
- pipmaster
|
33 |
+
- Python >= 3.10
|
34 |
+
|
35 |
+
Usage:
|
36 |
+
from llm_interfaces.ollama_interface import ollama_model_complete, ollama_embed
|
37 |
+
"""
|
38 |
+
|
39 |
+
__version__ = "1.0.0"
|
40 |
+
__author__ = "lightrag Team"
|
41 |
+
__status__ = "Production"
|
42 |
+
|
43 |
+
import sys
|
44 |
+
if sys.version_info < (3, 9):
|
45 |
+
from typing import AsyncIterator
|
46 |
+
else:
|
47 |
+
from collections.abc import AsyncIterator
|
48 |
+
import pipmaster as pm # Pipmaster for dynamic library install
|
49 |
+
|
50 |
+
# install specific modules
|
51 |
+
if not pm.is_installed("ollama"):
|
52 |
+
pm.install("ollama")
|
53 |
+
if not pm.is_installed("tenacity"):
|
54 |
+
pm.install("tenacity")
|
55 |
+
|
56 |
+
import ollama
|
57 |
+
from tenacity import (
|
58 |
+
retry,
|
59 |
+
stop_after_attempt,
|
60 |
+
wait_exponential,
|
61 |
+
retry_if_exception_type,
|
62 |
+
)
|
63 |
+
from lightrag.exceptions import (
|
64 |
+
APIConnectionError,
|
65 |
+
RateLimitError,
|
66 |
+
APITimeoutError,
|
67 |
+
)
|
68 |
+
import numpy as np
|
69 |
+
from typing import Union
|
70 |
+
|
71 |
+
|
72 |
+
@retry(
|
73 |
+
stop=stop_after_attempt(3),
|
74 |
+
wait=wait_exponential(multiplier=1, min=4, max=10),
|
75 |
+
retry=retry_if_exception_type(
|
76 |
+
(RateLimitError, APIConnectionError, APITimeoutError)
|
77 |
+
),
|
78 |
+
)
|
79 |
+
async def ollama_model_if_cache(
|
80 |
+
model,
|
81 |
+
prompt,
|
82 |
+
system_prompt=None,
|
83 |
+
history_messages=[],
|
84 |
+
**kwargs,
|
85 |
+
) -> Union[str, AsyncIterator[str]]:
|
86 |
+
stream = True if kwargs.get("stream") else False
|
87 |
+
kwargs.pop("max_tokens", None)
|
88 |
+
# kwargs.pop("response_format", None) # allow json
|
89 |
+
host = kwargs.pop("host", None)
|
90 |
+
timeout = kwargs.pop("timeout", None)
|
91 |
+
kwargs.pop("hashing_kv", None)
|
92 |
+
api_key = kwargs.pop("api_key", None)
|
93 |
+
headers = (
|
94 |
+
{"Content-Type": "application/json", "Authorization": f"Bearer {api_key}"}
|
95 |
+
if api_key
|
96 |
+
else {"Content-Type": "application/json"}
|
97 |
+
)
|
98 |
+
ollama_client = ollama.AsyncClient(host=host, timeout=timeout, headers=headers)
|
99 |
+
messages = []
|
100 |
+
if system_prompt:
|
101 |
+
messages.append({"role": "system", "content": system_prompt})
|
102 |
+
messages.extend(history_messages)
|
103 |
+
messages.append({"role": "user", "content": prompt})
|
104 |
+
|
105 |
+
response = await ollama_client.chat(model=model, messages=messages, **kwargs)
|
106 |
+
if stream:
|
107 |
+
"""cannot cache stream response"""
|
108 |
+
|
109 |
+
async def inner():
|
110 |
+
async for chunk in response:
|
111 |
+
yield chunk["message"]["content"]
|
112 |
+
|
113 |
+
return inner()
|
114 |
+
else:
|
115 |
+
return response["message"]["content"]
|
116 |
+
|
117 |
+
async def ollama_model_complete(
|
118 |
+
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
119 |
+
) -> Union[str, AsyncIterator[str]]:
|
120 |
+
keyword_extraction = kwargs.pop("keyword_extraction", None)
|
121 |
+
if keyword_extraction:
|
122 |
+
kwargs["format"] = "json"
|
123 |
+
model_name = kwargs["hashing_kv"].global_config["llm_model_name"]
|
124 |
+
return await ollama_model_if_cache(
|
125 |
+
model_name,
|
126 |
+
prompt,
|
127 |
+
system_prompt=system_prompt,
|
128 |
+
history_messages=history_messages,
|
129 |
+
**kwargs,
|
130 |
+
)
|
131 |
+
|
132 |
+
async def ollama_embedding(texts: list[str], embed_model, **kwargs) -> np.ndarray:
|
133 |
+
"""
|
134 |
+
Deprecated in favor of `embed`.
|
135 |
+
"""
|
136 |
+
embed_text = []
|
137 |
+
ollama_client = ollama.Client(**kwargs)
|
138 |
+
for text in texts:
|
139 |
+
data = ollama_client.embeddings(model=embed_model, prompt=text)
|
140 |
+
embed_text.append(data["embedding"])
|
141 |
+
|
142 |
+
return embed_text
|
143 |
+
|
144 |
+
|
145 |
+
async def ollama_embed(texts: list[str], embed_model, **kwargs) -> np.ndarray:
|
146 |
+
api_key = kwargs.pop("api_key", None)
|
147 |
+
headers = (
|
148 |
+
{"Content-Type": "application/json", "Authorization": api_key}
|
149 |
+
if api_key
|
150 |
+
else {"Content-Type": "application/json"}
|
151 |
+
)
|
152 |
+
kwargs["headers"] = headers
|
153 |
+
ollama_client = ollama.Client(**kwargs)
|
154 |
+
data = ollama_client.embed(model=embed_model, input=texts)
|
155 |
+
return data["embeddings"]
|
lightrag/llm/openai.py
ADDED
@@ -0,0 +1,232 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
OpenAI LLM Interface Module
|
3 |
+
==========================
|
4 |
+
|
5 |
+
This module provides interfaces for interacting with openai's language models,
|
6 |
+
including text generation and embedding capabilities.
|
7 |
+
|
8 |
+
Author: Lightrag team
|
9 |
+
Created: 2024-01-24
|
10 |
+
License: MIT License
|
11 |
+
|
12 |
+
Copyright (c) 2024 Lightrag
|
13 |
+
|
14 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
15 |
+
of this software and associated documentation files (the "Software"), to deal
|
16 |
+
in the Software without restriction, including without limitation the rights
|
17 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
18 |
+
copies of the Software, and to permit persons to whom the Software is
|
19 |
+
furnished to do so, subject to the following conditions:
|
20 |
+
|
21 |
+
Version: 1.0.0
|
22 |
+
|
23 |
+
Change Log:
|
24 |
+
- 1.0.0 (2024-01-24): Initial release
|
25 |
+
* Added async chat completion support
|
26 |
+
* Added embedding generation
|
27 |
+
* Added stream response capability
|
28 |
+
|
29 |
+
Dependencies:
|
30 |
+
- openai
|
31 |
+
- numpy
|
32 |
+
- pipmaster
|
33 |
+
- Python >= 3.10
|
34 |
+
|
35 |
+
Usage:
|
36 |
+
from llm_interfaces.openai import openai_model_complete, openai_embed
|
37 |
+
"""
|
38 |
+
|
39 |
+
__version__ = "1.0.0"
|
40 |
+
__author__ = "lightrag Team"
|
41 |
+
__status__ = "Production"
|
42 |
+
|
43 |
+
|
44 |
+
|
45 |
+
import sys
|
46 |
+
import os
|
47 |
+
|
48 |
+
if sys.version_info < (3, 9):
|
49 |
+
from typing import AsyncIterator
|
50 |
+
else:
|
51 |
+
from collections.abc import AsyncIterator
|
52 |
+
import pipmaster as pm # Pipmaster for dynamic library install
|
53 |
+
|
54 |
+
# install specific modules
|
55 |
+
if not pm.is_installed("openai"):
|
56 |
+
pm.install("openai")
|
57 |
+
|
58 |
+
from openai import (
|
59 |
+
AsyncOpenAI,
|
60 |
+
APIConnectionError,
|
61 |
+
RateLimitError,
|
62 |
+
APITimeoutError,
|
63 |
+
)
|
64 |
+
from tenacity import (
|
65 |
+
retry,
|
66 |
+
stop_after_attempt,
|
67 |
+
wait_exponential,
|
68 |
+
retry_if_exception_type,
|
69 |
+
)
|
70 |
+
from lightrag.utils import (
|
71 |
+
wrap_embedding_func_with_attrs,
|
72 |
+
locate_json_string_body_from_string,
|
73 |
+
safe_unicode_decode,
|
74 |
+
logger,
|
75 |
+
)
|
76 |
+
from lightrag.types import GPTKeywordExtractionFormat
|
77 |
+
|
78 |
+
import numpy as np
|
79 |
+
from typing import Union
|
80 |
+
|
81 |
+
@retry(
|
82 |
+
stop=stop_after_attempt(3),
|
83 |
+
wait=wait_exponential(multiplier=1, min=4, max=10),
|
84 |
+
retry=retry_if_exception_type(
|
85 |
+
(RateLimitError, APIConnectionError, APITimeoutError)
|
86 |
+
),
|
87 |
+
)
|
88 |
+
async def openai_complete_if_cache(
|
89 |
+
model,
|
90 |
+
prompt,
|
91 |
+
system_prompt=None,
|
92 |
+
history_messages=[],
|
93 |
+
base_url=None,
|
94 |
+
api_key=None,
|
95 |
+
**kwargs,
|
96 |
+
) -> str:
|
97 |
+
if api_key:
|
98 |
+
os.environ["OPENAI_API_KEY"] = api_key
|
99 |
+
|
100 |
+
openai_async_client = (
|
101 |
+
AsyncOpenAI() if base_url is None else AsyncOpenAI(base_url=base_url)
|
102 |
+
)
|
103 |
+
kwargs.pop("hashing_kv", None)
|
104 |
+
kwargs.pop("keyword_extraction", None)
|
105 |
+
messages = []
|
106 |
+
if system_prompt:
|
107 |
+
messages.append({"role": "system", "content": system_prompt})
|
108 |
+
messages.extend(history_messages)
|
109 |
+
messages.append({"role": "user", "content": prompt})
|
110 |
+
|
111 |
+
# 添加日志输出
|
112 |
+
logger.debug("===== Query Input to LLM =====")
|
113 |
+
logger.debug(f"Query: {prompt}")
|
114 |
+
logger.debug(f"System prompt: {system_prompt}")
|
115 |
+
logger.debug("Full context:")
|
116 |
+
if "response_format" in kwargs:
|
117 |
+
response = await openai_async_client.beta.chat.completions.parse(
|
118 |
+
model=model, messages=messages, **kwargs
|
119 |
+
)
|
120 |
+
else:
|
121 |
+
response = await openai_async_client.chat.completions.create(
|
122 |
+
model=model, messages=messages, **kwargs
|
123 |
+
)
|
124 |
+
|
125 |
+
if hasattr(response, "__aiter__"):
|
126 |
+
|
127 |
+
async def inner():
|
128 |
+
async for chunk in response:
|
129 |
+
content = chunk.choices[0].delta.content
|
130 |
+
if content is None:
|
131 |
+
continue
|
132 |
+
if r"\u" in content:
|
133 |
+
content = safe_unicode_decode(content.encode("utf-8"))
|
134 |
+
yield content
|
135 |
+
|
136 |
+
return inner()
|
137 |
+
else:
|
138 |
+
content = response.choices[0].message.content
|
139 |
+
if r"\u" in content:
|
140 |
+
content = safe_unicode_decode(content.encode("utf-8"))
|
141 |
+
return content
|
142 |
+
|
143 |
+
|
144 |
+
|
145 |
+
async def openai_complete(
|
146 |
+
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
147 |
+
) -> Union[str, AsyncIterator[str]]:
|
148 |
+
keyword_extraction = kwargs.pop("keyword_extraction", None)
|
149 |
+
if keyword_extraction:
|
150 |
+
kwargs["response_format"] = "json"
|
151 |
+
model_name = kwargs["hashing_kv"].global_config["llm_model_name"]
|
152 |
+
return await openai_complete_if_cache(
|
153 |
+
model_name,
|
154 |
+
prompt,
|
155 |
+
system_prompt=system_prompt,
|
156 |
+
history_messages=history_messages,
|
157 |
+
**kwargs,
|
158 |
+
)
|
159 |
+
|
160 |
+
|
161 |
+
async def gpt_4o_complete(
|
162 |
+
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
163 |
+
) -> str:
|
164 |
+
keyword_extraction = kwargs.pop("keyword_extraction", None)
|
165 |
+
if keyword_extraction:
|
166 |
+
kwargs["response_format"] = GPTKeywordExtractionFormat
|
167 |
+
return await openai_complete_if_cache(
|
168 |
+
"gpt-4o",
|
169 |
+
prompt,
|
170 |
+
system_prompt=system_prompt,
|
171 |
+
history_messages=history_messages,
|
172 |
+
**kwargs,
|
173 |
+
)
|
174 |
+
|
175 |
+
|
176 |
+
async def gpt_4o_mini_complete(
|
177 |
+
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
178 |
+
) -> str:
|
179 |
+
keyword_extraction = kwargs.pop("keyword_extraction", None)
|
180 |
+
if keyword_extraction:
|
181 |
+
kwargs["response_format"] = GPTKeywordExtractionFormat
|
182 |
+
return await openai_complete_if_cache(
|
183 |
+
"gpt-4o-mini",
|
184 |
+
prompt,
|
185 |
+
system_prompt=system_prompt,
|
186 |
+
history_messages=history_messages,
|
187 |
+
**kwargs,
|
188 |
+
)
|
189 |
+
|
190 |
+
|
191 |
+
async def nvidia_openai_complete(
|
192 |
+
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
193 |
+
) -> str:
|
194 |
+
keyword_extraction = kwargs.pop("keyword_extraction", None)
|
195 |
+
result = await openai_complete_if_cache(
|
196 |
+
"nvidia/llama-3.1-nemotron-70b-instruct", # context length 128k
|
197 |
+
prompt,
|
198 |
+
system_prompt=system_prompt,
|
199 |
+
history_messages=history_messages,
|
200 |
+
base_url="https://integrate.api.nvidia.com/v1",
|
201 |
+
**kwargs,
|
202 |
+
)
|
203 |
+
if keyword_extraction: # TODO: use JSON API
|
204 |
+
return locate_json_string_body_from_string(result)
|
205 |
+
return result
|
206 |
+
|
207 |
+
|
208 |
+
|
209 |
+
@wrap_embedding_func_with_attrs(embedding_dim=1536, max_token_size=8192)
|
210 |
+
@retry(
|
211 |
+
stop=stop_after_attempt(3),
|
212 |
+
wait=wait_exponential(multiplier=1, min=4, max=60),
|
213 |
+
retry=retry_if_exception_type(
|
214 |
+
(RateLimitError, APIConnectionError, APITimeoutError)
|
215 |
+
),
|
216 |
+
)
|
217 |
+
async def openai_embed(
|
218 |
+
texts: list[str],
|
219 |
+
model: str = "text-embedding-3-small",
|
220 |
+
base_url: str = None,
|
221 |
+
api_key: str = None,
|
222 |
+
) -> np.ndarray:
|
223 |
+
if api_key:
|
224 |
+
os.environ["OPENAI_API_KEY"] = api_key
|
225 |
+
|
226 |
+
openai_async_client = (
|
227 |
+
AsyncOpenAI() if base_url is None else AsyncOpenAI(base_url=base_url)
|
228 |
+
)
|
229 |
+
response = await openai_async_client.embeddings.create(
|
230 |
+
model=model, input=texts, encoding_format="float"
|
231 |
+
)
|
232 |
+
return np.array([dp.embedding for dp in response.data])
|
lightrag/llm/siliconcloud.py
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
SiliconCloud Embedding Interface Module
|
3 |
+
==========================
|
4 |
+
|
5 |
+
This module provides interfaces for interacting with SiliconCloud system,
|
6 |
+
including embedding capabilities.
|
7 |
+
|
8 |
+
Author: Lightrag team
|
9 |
+
Created: 2024-01-24
|
10 |
+
License: MIT License
|
11 |
+
|
12 |
+
Copyright (c) 2024 Lightrag
|
13 |
+
|
14 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
15 |
+
of this software and associated documentation files (the "Software"), to deal
|
16 |
+
in the Software without restriction, including without limitation the rights
|
17 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
18 |
+
copies of the Software, and to permit persons to whom the Software is
|
19 |
+
furnished to do so, subject to the following conditions:
|
20 |
+
|
21 |
+
Version: 1.0.0
|
22 |
+
|
23 |
+
Change Log:
|
24 |
+
- 1.0.0 (2024-01-24): Initial release
|
25 |
+
* Added embedding generation
|
26 |
+
|
27 |
+
Dependencies:
|
28 |
+
- tenacity
|
29 |
+
- numpy
|
30 |
+
- pipmaster
|
31 |
+
- Python >= 3.10
|
32 |
+
|
33 |
+
Usage:
|
34 |
+
from llm_interfaces.siliconcloud import siliconcloud_model_complete, siliconcloud_embed
|
35 |
+
"""
|
36 |
+
|
37 |
+
__version__ = "1.0.0"
|
38 |
+
__author__ = "lightrag Team"
|
39 |
+
__status__ = "Production"
|
40 |
+
|
41 |
+
import sys
|
42 |
+
import copy
|
43 |
+
import os
|
44 |
+
import json
|
45 |
+
|
46 |
+
if sys.version_info < (3, 9):
|
47 |
+
from typing import AsyncIterator
|
48 |
+
else:
|
49 |
+
from collections.abc import AsyncIterator
|
50 |
+
import pipmaster as pm # Pipmaster for dynamic library install
|
51 |
+
|
52 |
+
# install specific modules
|
53 |
+
if not pm.is_installed("lmdeploy"):
|
54 |
+
pm.install("lmdeploy")
|
55 |
+
|
56 |
+
from openai import (
|
57 |
+
AsyncOpenAI,
|
58 |
+
AsyncAzureOpenAI,
|
59 |
+
APIConnectionError,
|
60 |
+
RateLimitError,
|
61 |
+
APITimeoutError,
|
62 |
+
)
|
63 |
+
from tenacity import (
|
64 |
+
retry,
|
65 |
+
stop_after_attempt,
|
66 |
+
wait_exponential,
|
67 |
+
retry_if_exception_type,
|
68 |
+
)
|
69 |
+
|
70 |
+
from lightrag.utils import (
|
71 |
+
wrap_embedding_func_with_attrs,
|
72 |
+
locate_json_string_body_from_string,
|
73 |
+
safe_unicode_decode,
|
74 |
+
logger,
|
75 |
+
)
|
76 |
+
|
77 |
+
from lightrag.types import GPTKeywordExtractionFormat
|
78 |
+
from functools import lru_cache
|
79 |
+
|
80 |
+
import numpy as np
|
81 |
+
from typing import Union
|
82 |
+
import aiohttp
|
83 |
+
|
84 |
+
@retry(
|
85 |
+
stop=stop_after_attempt(3),
|
86 |
+
wait=wait_exponential(multiplier=1, min=4, max=60),
|
87 |
+
retry=retry_if_exception_type(
|
88 |
+
(RateLimitError, APIConnectionError, APITimeoutError)
|
89 |
+
),
|
90 |
+
)
|
91 |
+
async def siliconcloud_embedding(
|
92 |
+
texts: list[str],
|
93 |
+
model: str = "netease-youdao/bce-embedding-base_v1",
|
94 |
+
base_url: str = "https://api.siliconflow.cn/v1/embeddings",
|
95 |
+
max_token_size: int = 512,
|
96 |
+
api_key: str = None,
|
97 |
+
) -> np.ndarray:
|
98 |
+
if api_key and not api_key.startswith("Bearer "):
|
99 |
+
api_key = "Bearer " + api_key
|
100 |
+
|
101 |
+
headers = {"Authorization": api_key, "Content-Type": "application/json"}
|
102 |
+
|
103 |
+
truncate_texts = [text[0:max_token_size] for text in texts]
|
104 |
+
|
105 |
+
payload = {"model": model, "input": truncate_texts, "encoding_format": "base64"}
|
106 |
+
|
107 |
+
base64_strings = []
|
108 |
+
async with aiohttp.ClientSession() as session:
|
109 |
+
async with session.post(base_url, headers=headers, json=payload) as response:
|
110 |
+
content = await response.json()
|
111 |
+
if "code" in content:
|
112 |
+
raise ValueError(content)
|
113 |
+
base64_strings = [item["embedding"] for item in content["data"]]
|
114 |
+
|
115 |
+
embeddings = []
|
116 |
+
for string in base64_strings:
|
117 |
+
decode_bytes = base64.b64decode(string)
|
118 |
+
n = len(decode_bytes) // 4
|
119 |
+
float_array = struct.unpack("<" + "f" * n, decode_bytes)
|
120 |
+
embeddings.append(float_array)
|
121 |
+
return np.array(embeddings)
|
lightrag/llm/zhipu.py
ADDED
@@ -0,0 +1,250 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Zhipu LLM Interface Module
|
3 |
+
==========================
|
4 |
+
|
5 |
+
This module provides interfaces for interacting with LMDeploy's language models,
|
6 |
+
including text generation and embedding capabilities.
|
7 |
+
|
8 |
+
Author: Lightrag team
|
9 |
+
Created: 2024-01-24
|
10 |
+
License: MIT License
|
11 |
+
|
12 |
+
Copyright (c) 2024 Lightrag
|
13 |
+
|
14 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
15 |
+
of this software and associated documentation files (the "Software"), to deal
|
16 |
+
in the Software without restriction, including without limitation the rights
|
17 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
18 |
+
copies of the Software, and to permit persons to whom the Software is
|
19 |
+
furnished to do so, subject to the following conditions:
|
20 |
+
|
21 |
+
Version: 1.0.0
|
22 |
+
|
23 |
+
Change Log:
|
24 |
+
- 1.0.0 (2024-01-24): Initial release
|
25 |
+
* Added async chat completion support
|
26 |
+
* Added embedding generation
|
27 |
+
* Added stream response capability
|
28 |
+
|
29 |
+
Dependencies:
|
30 |
+
- tenacity
|
31 |
+
- numpy
|
32 |
+
- pipmaster
|
33 |
+
- Python >= 3.10
|
34 |
+
|
35 |
+
Usage:
|
36 |
+
from llm_interfaces.zhipu import zhipu_model_complete, zhipu_embed
|
37 |
+
"""
|
38 |
+
|
39 |
+
__version__ = "1.0.0"
|
40 |
+
__author__ = "lightrag Team"
|
41 |
+
__status__ = "Production"
|
42 |
+
|
43 |
+
import sys
|
44 |
+
import re
|
45 |
+
import json
|
46 |
+
|
47 |
+
if sys.version_info < (3, 9):
|
48 |
+
from typing import AsyncIterator
|
49 |
+
else:
|
50 |
+
from collections.abc import AsyncIterator
|
51 |
+
import pipmaster as pm # Pipmaster for dynamic library install
|
52 |
+
|
53 |
+
# install specific modules
|
54 |
+
if not pm.is_installed("zhipuai"):
|
55 |
+
pm.install("zhipuai")
|
56 |
+
|
57 |
+
from openai import (
|
58 |
+
AsyncOpenAI,
|
59 |
+
AsyncAzureOpenAI,
|
60 |
+
APIConnectionError,
|
61 |
+
RateLimitError,
|
62 |
+
APITimeoutError,
|
63 |
+
)
|
64 |
+
from tenacity import (
|
65 |
+
retry,
|
66 |
+
stop_after_attempt,
|
67 |
+
wait_exponential,
|
68 |
+
retry_if_exception_type,
|
69 |
+
)
|
70 |
+
|
71 |
+
from lightrag.utils import (
|
72 |
+
wrap_embedding_func_with_attrs,
|
73 |
+
locate_json_string_body_from_string,
|
74 |
+
safe_unicode_decode,
|
75 |
+
logger,
|
76 |
+
)
|
77 |
+
|
78 |
+
from lightrag.types import GPTKeywordExtractionFormat
|
79 |
+
from functools import lru_cache
|
80 |
+
|
81 |
+
import numpy as np
|
82 |
+
from typing import Union, List, Optional, Dict
|
83 |
+
|
84 |
+
@retry(
|
85 |
+
stop=stop_after_attempt(3),
|
86 |
+
wait=wait_exponential(multiplier=1, min=4, max=10),
|
87 |
+
retry=retry_if_exception_type(
|
88 |
+
(RateLimitError, APIConnectionError, APITimeoutError)
|
89 |
+
),
|
90 |
+
)
|
91 |
+
async def zhipu_complete_if_cache(
|
92 |
+
prompt: Union[str, List[Dict[str, str]]],
|
93 |
+
model: str = "glm-4-flashx", # The most cost/performance balance model in glm-4 series
|
94 |
+
api_key: Optional[str] = None,
|
95 |
+
system_prompt: Optional[str] = None,
|
96 |
+
history_messages: List[Dict[str, str]] = [],
|
97 |
+
**kwargs,
|
98 |
+
) -> str:
|
99 |
+
# dynamically load ZhipuAI
|
100 |
+
try:
|
101 |
+
from zhipuai import ZhipuAI
|
102 |
+
except ImportError:
|
103 |
+
raise ImportError("Please install zhipuai before initialize zhipuai backend.")
|
104 |
+
|
105 |
+
if api_key:
|
106 |
+
client = ZhipuAI(api_key=api_key)
|
107 |
+
else:
|
108 |
+
# please set ZHIPUAI_API_KEY in your environment
|
109 |
+
# os.environ["ZHIPUAI_API_KEY"]
|
110 |
+
client = ZhipuAI()
|
111 |
+
|
112 |
+
messages = []
|
113 |
+
|
114 |
+
if not system_prompt:
|
115 |
+
system_prompt = "You are a helpful assistant. Note that sensitive words in the content should be replaced with ***"
|
116 |
+
|
117 |
+
# Add system prompt if provided
|
118 |
+
if system_prompt:
|
119 |
+
messages.append({"role": "system", "content": system_prompt})
|
120 |
+
messages.extend(history_messages)
|
121 |
+
messages.append({"role": "user", "content": prompt})
|
122 |
+
|
123 |
+
# Add debug logging
|
124 |
+
logger.debug("===== Query Input to LLM =====")
|
125 |
+
logger.debug(f"Query: {prompt}")
|
126 |
+
logger.debug(f"System prompt: {system_prompt}")
|
127 |
+
|
128 |
+
# Remove unsupported kwargs
|
129 |
+
kwargs = {
|
130 |
+
k: v for k, v in kwargs.items() if k not in ["hashing_kv", "keyword_extraction"]
|
131 |
+
}
|
132 |
+
|
133 |
+
response = client.chat.completions.create(model=model, messages=messages, **kwargs)
|
134 |
+
|
135 |
+
return response.choices[0].message.content
|
136 |
+
|
137 |
+
|
138 |
+
async def zhipu_complete(
|
139 |
+
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
140 |
+
):
|
141 |
+
# Pop keyword_extraction from kwargs to avoid passing it to zhipu_complete_if_cache
|
142 |
+
keyword_extraction = kwargs.pop("keyword_extraction", None)
|
143 |
+
|
144 |
+
if keyword_extraction:
|
145 |
+
# Add a system prompt to guide the model to return JSON format
|
146 |
+
extraction_prompt = """You are a helpful assistant that extracts keywords from text.
|
147 |
+
Please analyze the content and extract two types of keywords:
|
148 |
+
1. High-level keywords: Important concepts and main themes
|
149 |
+
2. Low-level keywords: Specific details and supporting elements
|
150 |
+
|
151 |
+
Return your response in this exact JSON format:
|
152 |
+
{
|
153 |
+
"high_level_keywords": ["keyword1", "keyword2"],
|
154 |
+
"low_level_keywords": ["keyword1", "keyword2", "keyword3"]
|
155 |
+
}
|
156 |
+
|
157 |
+
Only return the JSON, no other text."""
|
158 |
+
|
159 |
+
# Combine with existing system prompt if any
|
160 |
+
if system_prompt:
|
161 |
+
system_prompt = f"{system_prompt}\n\n{extraction_prompt}"
|
162 |
+
else:
|
163 |
+
system_prompt = extraction_prompt
|
164 |
+
|
165 |
+
try:
|
166 |
+
response = await zhipu_complete_if_cache(
|
167 |
+
prompt=prompt,
|
168 |
+
system_prompt=system_prompt,
|
169 |
+
history_messages=history_messages,
|
170 |
+
**kwargs,
|
171 |
+
)
|
172 |
+
|
173 |
+
# Try to parse as JSON
|
174 |
+
try:
|
175 |
+
data = json.loads(response)
|
176 |
+
return GPTKeywordExtractionFormat(
|
177 |
+
high_level_keywords=data.get("high_level_keywords", []),
|
178 |
+
low_level_keywords=data.get("low_level_keywords", []),
|
179 |
+
)
|
180 |
+
except json.JSONDecodeError:
|
181 |
+
# If direct JSON parsing fails, try to extract JSON from text
|
182 |
+
match = re.search(r"\{[\s\S]*\}", response)
|
183 |
+
if match:
|
184 |
+
try:
|
185 |
+
data = json.loads(match.group())
|
186 |
+
return GPTKeywordExtractionFormat(
|
187 |
+
high_level_keywords=data.get("high_level_keywords", []),
|
188 |
+
low_level_keywords=data.get("low_level_keywords", []),
|
189 |
+
)
|
190 |
+
except json.JSONDecodeError:
|
191 |
+
pass
|
192 |
+
|
193 |
+
# If all parsing fails, log warning and return empty format
|
194 |
+
logger.warning(
|
195 |
+
f"Failed to parse keyword extraction response: {response}"
|
196 |
+
)
|
197 |
+
return GPTKeywordExtractionFormat(
|
198 |
+
high_level_keywords=[], low_level_keywords=[]
|
199 |
+
)
|
200 |
+
except Exception as e:
|
201 |
+
logger.error(f"Error during keyword extraction: {str(e)}")
|
202 |
+
return GPTKeywordExtractionFormat(
|
203 |
+
high_level_keywords=[], low_level_keywords=[]
|
204 |
+
)
|
205 |
+
else:
|
206 |
+
# For non-keyword-extraction, just return the raw response string
|
207 |
+
return await zhipu_complete_if_cache(
|
208 |
+
prompt=prompt,
|
209 |
+
system_prompt=system_prompt,
|
210 |
+
history_messages=history_messages,
|
211 |
+
**kwargs,
|
212 |
+
)
|
213 |
+
|
214 |
+
|
215 |
+
@wrap_embedding_func_with_attrs(embedding_dim=1024, max_token_size=8192)
|
216 |
+
@retry(
|
217 |
+
stop=stop_after_attempt(3),
|
218 |
+
wait=wait_exponential(multiplier=1, min=4, max=60),
|
219 |
+
retry=retry_if_exception_type(
|
220 |
+
(RateLimitError, APIConnectionError, APITimeoutError)
|
221 |
+
),
|
222 |
+
)
|
223 |
+
async def zhipu_embedding(
|
224 |
+
texts: list[str], model: str = "embedding-3", api_key: str = None, **kwargs
|
225 |
+
) -> np.ndarray:
|
226 |
+
# dynamically load ZhipuAI
|
227 |
+
try:
|
228 |
+
from zhipuai import ZhipuAI
|
229 |
+
except ImportError:
|
230 |
+
raise ImportError("Please install zhipuai before initialize zhipuai backend.")
|
231 |
+
if api_key:
|
232 |
+
client = ZhipuAI(api_key=api_key)
|
233 |
+
else:
|
234 |
+
# please set ZHIPUAI_API_KEY in your environment
|
235 |
+
# os.environ["ZHIPUAI_API_KEY"]
|
236 |
+
client = ZhipuAI()
|
237 |
+
|
238 |
+
# Convert single text to list if needed
|
239 |
+
if isinstance(texts, str):
|
240 |
+
texts = [texts]
|
241 |
+
|
242 |
+
embeddings = []
|
243 |
+
for text in texts:
|
244 |
+
try:
|
245 |
+
response = client.embeddings.create(model=model, input=[text], **kwargs)
|
246 |
+
embeddings.append(response.data[0].embedding)
|
247 |
+
except Exception as e:
|
248 |
+
raise Exception(f"Error calling ChatGLM Embedding API: {str(e)}")
|
249 |
+
|
250 |
+
return np.array(embeddings)
|
lightrag/storage.py
CHANGED
@@ -6,6 +6,8 @@ from dataclasses import dataclass
|
|
6 |
from typing import Any, Union, cast, Dict
|
7 |
import networkx as nx
|
8 |
import numpy as np
|
|
|
|
|
9 |
from nano_vectordb import NanoVectorDB
|
10 |
import time
|
11 |
|
|
|
6 |
from typing import Any, Union, cast, Dict
|
7 |
import networkx as nx
|
8 |
import numpy as np
|
9 |
+
import pipmaster as pm
|
10 |
+
|
11 |
from nano_vectordb import NanoVectorDB
|
12 |
import time
|
13 |
|