ArnoChen
commited on
Commit
·
056dbb4
1
Parent(s):
1e09d54
better handling of namespace
Browse files- examples/copy_llm_cache_to_another_storage.py +5 -4
- lightrag/kg/mongo_impl.py +5 -5
- lightrag/kg/oracle_impl.py +25 -17
- lightrag/kg/postgres_impl.py +30 -24
- lightrag/kg/postgres_impl_test.py +5 -3
- lightrag/kg/tidb_impl.py +38 -23
- lightrag/lightrag.py +23 -17
- lightrag/namespace.py +25 -0
examples/copy_llm_cache_to_another_storage.py
CHANGED
@@ -11,6 +11,7 @@ from dotenv import load_dotenv
|
|
11 |
|
12 |
from lightrag.kg.postgres_impl import PostgreSQLDB, PGKVStorage
|
13 |
from lightrag.storage import JsonKVStorage
|
|
|
14 |
|
15 |
load_dotenv()
|
16 |
ROOT_DIR = os.environ.get("ROOT_DIR")
|
@@ -39,14 +40,14 @@ async def copy_from_postgres_to_json():
|
|
39 |
await postgres_db.initdb()
|
40 |
|
41 |
from_llm_response_cache = PGKVStorage(
|
42 |
-
namespace=
|
43 |
global_config={"embedding_batch_num": 6},
|
44 |
embedding_func=None,
|
45 |
db=postgres_db,
|
46 |
)
|
47 |
|
48 |
to_llm_response_cache = JsonKVStorage(
|
49 |
-
namespace=
|
50 |
global_config={"working_dir": WORKING_DIR},
|
51 |
embedding_func=None,
|
52 |
)
|
@@ -72,13 +73,13 @@ async def copy_from_json_to_postgres():
|
|
72 |
await postgres_db.initdb()
|
73 |
|
74 |
from_llm_response_cache = JsonKVStorage(
|
75 |
-
namespace=
|
76 |
global_config={"working_dir": WORKING_DIR},
|
77 |
embedding_func=None,
|
78 |
)
|
79 |
|
80 |
to_llm_response_cache = PGKVStorage(
|
81 |
-
namespace=
|
82 |
global_config={"embedding_batch_num": 6},
|
83 |
embedding_func=None,
|
84 |
db=postgres_db,
|
|
|
11 |
|
12 |
from lightrag.kg.postgres_impl import PostgreSQLDB, PGKVStorage
|
13 |
from lightrag.storage import JsonKVStorage
|
14 |
+
from lightrag.namespace import NameSpace
|
15 |
|
16 |
load_dotenv()
|
17 |
ROOT_DIR = os.environ.get("ROOT_DIR")
|
|
|
40 |
await postgres_db.initdb()
|
41 |
|
42 |
from_llm_response_cache = PGKVStorage(
|
43 |
+
namespace=NameSpace.KV_STORE_LLM_RESPONSE_CACHE,
|
44 |
global_config={"embedding_batch_num": 6},
|
45 |
embedding_func=None,
|
46 |
db=postgres_db,
|
47 |
)
|
48 |
|
49 |
to_llm_response_cache = JsonKVStorage(
|
50 |
+
namespace=NameSpace.KV_STORE_LLM_RESPONSE_CACHE,
|
51 |
global_config={"working_dir": WORKING_DIR},
|
52 |
embedding_func=None,
|
53 |
)
|
|
|
73 |
await postgres_db.initdb()
|
74 |
|
75 |
from_llm_response_cache = JsonKVStorage(
|
76 |
+
namespace=NameSpace.KV_STORE_LLM_RESPONSE_CACHE,
|
77 |
global_config={"working_dir": WORKING_DIR},
|
78 |
embedding_func=None,
|
79 |
)
|
80 |
|
81 |
to_llm_response_cache = PGKVStorage(
|
82 |
+
namespace=NameSpace.KV_STORE_LLM_RESPONSE_CACHE,
|
83 |
global_config={"embedding_batch_num": 6},
|
84 |
embedding_func=None,
|
85 |
db=postgres_db,
|
lightrag/kg/mongo_impl.py
CHANGED
@@ -13,10 +13,10 @@ if not pm.is_installed("motor"):
|
|
13 |
from pymongo import MongoClient
|
14 |
from motor.motor_asyncio import AsyncIOMotorClient
|
15 |
from typing import Union, List, Tuple
|
16 |
-
from lightrag.utils import logger
|
17 |
|
18 |
-
from
|
19 |
-
from
|
|
|
20 |
|
21 |
|
22 |
@dataclass
|
@@ -52,7 +52,7 @@ class MongoKVStorage(BaseKVStorage):
|
|
52 |
return set([s for s in data if s not in existing_ids])
|
53 |
|
54 |
async def upsert(self, data: dict[str, dict]):
|
55 |
-
if self.namespace.
|
56 |
for mode, items in data.items():
|
57 |
for k, v in tqdm_async(items.items(), desc="Upserting"):
|
58 |
key = f"{mode}_{k}"
|
@@ -69,7 +69,7 @@ class MongoKVStorage(BaseKVStorage):
|
|
69 |
return data
|
70 |
|
71 |
async def get_by_mode_and_id(self, mode: str, id: str) -> Union[dict, None]:
|
72 |
-
if self.namespace.
|
73 |
res = {}
|
74 |
v = self._data.find_one({"_id": mode + "_" + id})
|
75 |
if v:
|
|
|
13 |
from pymongo import MongoClient
|
14 |
from motor.motor_asyncio import AsyncIOMotorClient
|
15 |
from typing import Union, List, Tuple
|
|
|
16 |
|
17 |
+
from ..utils import logger
|
18 |
+
from ..base import BaseKVStorage, BaseGraphStorage
|
19 |
+
from ..namespace import NameSpace, is_namespace
|
20 |
|
21 |
|
22 |
@dataclass
|
|
|
52 |
return set([s for s in data if s not in existing_ids])
|
53 |
|
54 |
async def upsert(self, data: dict[str, dict]):
|
55 |
+
if is_namespace(self.namespace, NameSpace.KV_STORE_LLM_RESPONSE_CACHE):
|
56 |
for mode, items in data.items():
|
57 |
for k, v in tqdm_async(items.items(), desc="Upserting"):
|
58 |
key = f"{mode}_{k}"
|
|
|
69 |
return data
|
70 |
|
71 |
async def get_by_mode_and_id(self, mode: str, id: str) -> Union[dict, None]:
|
72 |
+
if is_namespace(self.namespace, NameSpace.KV_STORE_LLM_RESPONSE_CACHE):
|
73 |
res = {}
|
74 |
v = self._data.find_one({"_id": mode + "_" + id})
|
75 |
if v:
|
lightrag/kg/oracle_impl.py
CHANGED
@@ -19,6 +19,7 @@ from ..base import (
|
|
19 |
BaseKVStorage,
|
20 |
BaseVectorStorage,
|
21 |
)
|
|
|
22 |
|
23 |
import oracledb
|
24 |
|
@@ -185,7 +186,7 @@ class OracleKVStorage(BaseKVStorage):
|
|
185 |
SQL = SQL_TEMPLATES["get_by_id_" + self.namespace]
|
186 |
params = {"workspace": self.db.workspace, "id": id}
|
187 |
# print("get_by_id:"+SQL)
|
188 |
-
if self.namespace.
|
189 |
array_res = await self.db.query(SQL, params, multirows=True)
|
190 |
res = {}
|
191 |
for row in array_res:
|
@@ -201,7 +202,7 @@ class OracleKVStorage(BaseKVStorage):
|
|
201 |
"""Specifically for llm_response_cache."""
|
202 |
SQL = SQL_TEMPLATES["get_by_mode_id_" + self.namespace]
|
203 |
params = {"workspace": self.db.workspace, "cache_mode": mode, "id": id}
|
204 |
-
if self.namespace.
|
205 |
array_res = await self.db.query(SQL, params, multirows=True)
|
206 |
res = {}
|
207 |
for row in array_res:
|
@@ -218,7 +219,7 @@ class OracleKVStorage(BaseKVStorage):
|
|
218 |
params = {"workspace": self.db.workspace}
|
219 |
# print("get_by_ids:"+SQL)
|
220 |
res = await self.db.query(SQL, params, multirows=True)
|
221 |
-
if self.namespace.
|
222 |
modes = set()
|
223 |
dict_res: dict[str, dict] = {}
|
224 |
for row in res:
|
@@ -256,7 +257,7 @@ class OracleKVStorage(BaseKVStorage):
|
|
256 |
async def filter_keys(self, keys: list[str]) -> set[str]:
|
257 |
"""Return keys that don't exist in storage"""
|
258 |
SQL = SQL_TEMPLATES["filter_keys"].format(
|
259 |
-
table_name=
|
260 |
)
|
261 |
params = {"workspace": self.db.workspace}
|
262 |
res = await self.db.query(SQL, params, multirows=True)
|
@@ -269,7 +270,7 @@ class OracleKVStorage(BaseKVStorage):
|
|
269 |
|
270 |
################ INSERT METHODS ################
|
271 |
async def upsert(self, data: dict[str, dict]):
|
272 |
-
if self.namespace.
|
273 |
list_data = [
|
274 |
{
|
275 |
"id": k,
|
@@ -302,7 +303,7 @@ class OracleKVStorage(BaseKVStorage):
|
|
302 |
"status": item["status"],
|
303 |
}
|
304 |
await self.db.execute(merge_sql, _data)
|
305 |
-
if self.namespace.
|
306 |
for k, v in data.items():
|
307 |
# values.clear()
|
308 |
merge_sql = SQL_TEMPLATES["merge_doc_full"]
|
@@ -313,7 +314,7 @@ class OracleKVStorage(BaseKVStorage):
|
|
313 |
}
|
314 |
await self.db.execute(merge_sql, _data)
|
315 |
|
316 |
-
if self.namespace.
|
317 |
for mode, items in data.items():
|
318 |
for k, v in items.items():
|
319 |
upsert_sql = SQL_TEMPLATES["upsert_llm_response_cache"]
|
@@ -329,15 +330,16 @@ class OracleKVStorage(BaseKVStorage):
|
|
329 |
return None
|
330 |
|
331 |
async def change_status(self, id: str, status: str):
|
332 |
-
SQL = SQL_TEMPLATES["change_status"].format(table_name=
|
333 |
params = {"workspace": self.db.workspace, "id": id, "status": status}
|
334 |
await self.db.execute(SQL, params)
|
335 |
|
336 |
async def index_done_callback(self):
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
|
|
341 |
|
342 |
|
343 |
@dataclass
|
@@ -614,13 +616,19 @@ class OracleGraphStorage(BaseGraphStorage):
|
|
614 |
|
615 |
|
616 |
N_T = {
|
617 |
-
|
618 |
-
|
619 |
-
|
620 |
-
|
621 |
-
|
622 |
}
|
623 |
|
|
|
|
|
|
|
|
|
|
|
|
|
624 |
TABLES = {
|
625 |
"LIGHTRAG_DOC_FULL": {
|
626 |
"ddl": """CREATE TABLE LIGHTRAG_DOC_FULL (
|
|
|
19 |
BaseKVStorage,
|
20 |
BaseVectorStorage,
|
21 |
)
|
22 |
+
from ..namespace import NameSpace, is_namespace
|
23 |
|
24 |
import oracledb
|
25 |
|
|
|
186 |
SQL = SQL_TEMPLATES["get_by_id_" + self.namespace]
|
187 |
params = {"workspace": self.db.workspace, "id": id}
|
188 |
# print("get_by_id:"+SQL)
|
189 |
+
if is_namespace(self.namespace, NameSpace.KV_STORE_LLM_RESPONSE_CACHE):
|
190 |
array_res = await self.db.query(SQL, params, multirows=True)
|
191 |
res = {}
|
192 |
for row in array_res:
|
|
|
202 |
"""Specifically for llm_response_cache."""
|
203 |
SQL = SQL_TEMPLATES["get_by_mode_id_" + self.namespace]
|
204 |
params = {"workspace": self.db.workspace, "cache_mode": mode, "id": id}
|
205 |
+
if is_namespace(self.namespace, NameSpace.KV_STORE_LLM_RESPONSE_CACHE):
|
206 |
array_res = await self.db.query(SQL, params, multirows=True)
|
207 |
res = {}
|
208 |
for row in array_res:
|
|
|
219 |
params = {"workspace": self.db.workspace}
|
220 |
# print("get_by_ids:"+SQL)
|
221 |
res = await self.db.query(SQL, params, multirows=True)
|
222 |
+
if is_namespace(self.namespace, NameSpace.KV_STORE_LLM_RESPONSE_CACHE):
|
223 |
modes = set()
|
224 |
dict_res: dict[str, dict] = {}
|
225 |
for row in res:
|
|
|
257 |
async def filter_keys(self, keys: list[str]) -> set[str]:
|
258 |
"""Return keys that don't exist in storage"""
|
259 |
SQL = SQL_TEMPLATES["filter_keys"].format(
|
260 |
+
table_name=namespace_to_table_name(self.namespace), ids=",".join([f"'{id}'" for id in keys])
|
261 |
)
|
262 |
params = {"workspace": self.db.workspace}
|
263 |
res = await self.db.query(SQL, params, multirows=True)
|
|
|
270 |
|
271 |
################ INSERT METHODS ################
|
272 |
async def upsert(self, data: dict[str, dict]):
|
273 |
+
if is_namespace(self.namespace, NameSpace.KV_STORE_TEXT_CHUNKS):
|
274 |
list_data = [
|
275 |
{
|
276 |
"id": k,
|
|
|
303 |
"status": item["status"],
|
304 |
}
|
305 |
await self.db.execute(merge_sql, _data)
|
306 |
+
if is_namespace(self.namespace, NameSpace.KV_STORE_FULL_DOCS):
|
307 |
for k, v in data.items():
|
308 |
# values.clear()
|
309 |
merge_sql = SQL_TEMPLATES["merge_doc_full"]
|
|
|
314 |
}
|
315 |
await self.db.execute(merge_sql, _data)
|
316 |
|
317 |
+
if is_namespace(self.namespace, NameSpace.KV_STORE_LLM_RESPONSE_CACHE):
|
318 |
for mode, items in data.items():
|
319 |
for k, v in items.items():
|
320 |
upsert_sql = SQL_TEMPLATES["upsert_llm_response_cache"]
|
|
|
330 |
return None
|
331 |
|
332 |
async def change_status(self, id: str, status: str):
|
333 |
+
SQL = SQL_TEMPLATES["change_status"].format(table_name=namespace_to_table_name(self.namespace))
|
334 |
params = {"workspace": self.db.workspace, "id": id, "status": status}
|
335 |
await self.db.execute(SQL, params)
|
336 |
|
337 |
async def index_done_callback(self):
|
338 |
+
if is_namespace(
|
339 |
+
self.namespace,
|
340 |
+
(NameSpace.KV_STORE_FULL_DOCS, NameSpace.KV_STORE_TEXT_CHUNKS),
|
341 |
+
):
|
342 |
+
logger.info("full doc and chunk data had been saved into oracle db!")
|
343 |
|
344 |
|
345 |
@dataclass
|
|
|
616 |
|
617 |
|
618 |
N_T = {
|
619 |
+
NameSpace.KV_STORE_FULL_DOCS: "LIGHTRAG_DOC_FULL",
|
620 |
+
NameSpace.KV_STORE_TEXT_CHUNKS: "LIGHTRAG_DOC_CHUNKS",
|
621 |
+
NameSpace.VECTOR_STORE_CHUNKS: "LIGHTRAG_DOC_CHUNKS",
|
622 |
+
NameSpace.VECTOR_STORE_ENTITIES: "LIGHTRAG_GRAPH_NODES",
|
623 |
+
NameSpace.VECTOR_STORE_RELATIONSHIPS: "LIGHTRAG_GRAPH_EDGES",
|
624 |
}
|
625 |
|
626 |
+
def namespace_to_table_name(namespace: str) -> str:
|
627 |
+
for k, v in N_T.items():
|
628 |
+
if is_namespace(namespace, k):
|
629 |
+
return v
|
630 |
+
|
631 |
+
|
632 |
TABLES = {
|
633 |
"LIGHTRAG_DOC_FULL": {
|
634 |
"ddl": """CREATE TABLE LIGHTRAG_DOC_FULL (
|
lightrag/kg/postgres_impl.py
CHANGED
@@ -32,6 +32,7 @@ from ..base import (
|
|
32 |
BaseGraphStorage,
|
33 |
T,
|
34 |
)
|
|
|
35 |
|
36 |
if sys.platform.startswith("win"):
|
37 |
import asyncio.windows_events
|
@@ -187,7 +188,7 @@ class PGKVStorage(BaseKVStorage):
|
|
187 |
"""Get doc_full data by id."""
|
188 |
sql = SQL_TEMPLATES["get_by_id_" + self.namespace]
|
189 |
params = {"workspace": self.db.workspace, "id": id}
|
190 |
-
if self.namespace.
|
191 |
array_res = await self.db.query(sql, params, multirows=True)
|
192 |
res = {}
|
193 |
for row in array_res:
|
@@ -203,7 +204,7 @@ class PGKVStorage(BaseKVStorage):
|
|
203 |
"""Specifically for llm_response_cache."""
|
204 |
sql = SQL_TEMPLATES["get_by_mode_id_" + self.namespace]
|
205 |
params = {"workspace": self.db.workspace, mode: mode, "id": id}
|
206 |
-
if self.namespace.
|
207 |
array_res = await self.db.query(sql, params, multirows=True)
|
208 |
res = {}
|
209 |
for row in array_res:
|
@@ -219,7 +220,7 @@ class PGKVStorage(BaseKVStorage):
|
|
219 |
ids=",".join([f"'{id}'" for id in ids])
|
220 |
)
|
221 |
params = {"workspace": self.db.workspace}
|
222 |
-
if self.namespace.
|
223 |
array_res = await self.db.query(sql, params, multirows=True)
|
224 |
modes = set()
|
225 |
dict_res: dict[str, dict] = {}
|
@@ -239,7 +240,7 @@ class PGKVStorage(BaseKVStorage):
|
|
239 |
return None
|
240 |
|
241 |
async def all_keys(self) -> list[dict]:
|
242 |
-
if self.namespace.
|
243 |
sql = "select workspace,mode,id from lightrag_llm_cache"
|
244 |
res = await self.db.query(sql, multirows=True)
|
245 |
return res
|
@@ -251,7 +252,7 @@ class PGKVStorage(BaseKVStorage):
|
|
251 |
async def filter_keys(self, keys: List[str]) -> Set[str]:
|
252 |
"""Filter out duplicated content"""
|
253 |
sql = SQL_TEMPLATES["filter_keys"].format(
|
254 |
-
table_name=
|
255 |
ids=",".join([f"'{id}'" for id in keys]),
|
256 |
)
|
257 |
params = {"workspace": self.db.workspace}
|
@@ -270,9 +271,9 @@ class PGKVStorage(BaseKVStorage):
|
|
270 |
|
271 |
################ INSERT METHODS ################
|
272 |
async def upsert(self, data: Dict[str, dict]):
|
273 |
-
if self.namespace.
|
274 |
pass
|
275 |
-
elif self.namespace.
|
276 |
for k, v in data.items():
|
277 |
upsert_sql = SQL_TEMPLATES["upsert_doc_full"]
|
278 |
_data = {
|
@@ -281,7 +282,7 @@ class PGKVStorage(BaseKVStorage):
|
|
281 |
"workspace": self.db.workspace,
|
282 |
}
|
283 |
await self.db.execute(upsert_sql, _data)
|
284 |
-
elif self.namespace.
|
285 |
for mode, items in data.items():
|
286 |
for k, v in items.items():
|
287 |
upsert_sql = SQL_TEMPLATES["upsert_llm_response_cache"]
|
@@ -296,12 +297,11 @@ class PGKVStorage(BaseKVStorage):
|
|
296 |
await self.db.execute(upsert_sql, _data)
|
297 |
|
298 |
async def index_done_callback(self):
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
break
|
305 |
|
306 |
|
307 |
@dataclass
|
@@ -393,11 +393,11 @@ class PGVectorStorage(BaseVectorStorage):
|
|
393 |
for i, d in enumerate(list_data):
|
394 |
d["__vector__"] = embeddings[i]
|
395 |
for item in list_data:
|
396 |
-
if self.namespace.
|
397 |
upsert_sql, data = self._upsert_chunks(item)
|
398 |
-
elif self.namespace.
|
399 |
upsert_sql, data = self._upsert_entities(item)
|
400 |
-
elif self.namespace.
|
401 |
upsert_sql, data = self._upsert_relationships(item)
|
402 |
else:
|
403 |
raise ValueError(f"{self.namespace} is not supported")
|
@@ -1027,16 +1027,22 @@ class PGGraphStorage(BaseGraphStorage):
|
|
1027 |
|
1028 |
|
1029 |
NAMESPACE_TABLE_MAP = {
|
1030 |
-
|
1031 |
-
|
1032 |
-
|
1033 |
-
|
1034 |
-
|
1035 |
-
|
1036 |
-
|
1037 |
}
|
1038 |
|
1039 |
|
|
|
|
|
|
|
|
|
|
|
|
|
1040 |
TABLES = {
|
1041 |
"LIGHTRAG_DOC_FULL": {
|
1042 |
"ddl": """CREATE TABLE LIGHTRAG_DOC_FULL (
|
|
|
32 |
BaseGraphStorage,
|
33 |
T,
|
34 |
)
|
35 |
+
from ..namespace import NameSpace, is_namespace
|
36 |
|
37 |
if sys.platform.startswith("win"):
|
38 |
import asyncio.windows_events
|
|
|
188 |
"""Get doc_full data by id."""
|
189 |
sql = SQL_TEMPLATES["get_by_id_" + self.namespace]
|
190 |
params = {"workspace": self.db.workspace, "id": id}
|
191 |
+
if is_namespace(self.namespace, NameSpace.KV_STORE_LLM_RESPONSE_CACHE):
|
192 |
array_res = await self.db.query(sql, params, multirows=True)
|
193 |
res = {}
|
194 |
for row in array_res:
|
|
|
204 |
"""Specifically for llm_response_cache."""
|
205 |
sql = SQL_TEMPLATES["get_by_mode_id_" + self.namespace]
|
206 |
params = {"workspace": self.db.workspace, mode: mode, "id": id}
|
207 |
+
if is_namespace(self.namespace, NameSpace.KV_STORE_LLM_RESPONSE_CACHE):
|
208 |
array_res = await self.db.query(sql, params, multirows=True)
|
209 |
res = {}
|
210 |
for row in array_res:
|
|
|
220 |
ids=",".join([f"'{id}'" for id in ids])
|
221 |
)
|
222 |
params = {"workspace": self.db.workspace}
|
223 |
+
if is_namespace(self.namespace, NameSpace.KV_STORE_LLM_RESPONSE_CACHE):
|
224 |
array_res = await self.db.query(sql, params, multirows=True)
|
225 |
modes = set()
|
226 |
dict_res: dict[str, dict] = {}
|
|
|
240 |
return None
|
241 |
|
242 |
async def all_keys(self) -> list[dict]:
|
243 |
+
if is_namespace(self.namespace, NameSpace.KV_STORE_LLM_RESPONSE_CACHE):
|
244 |
sql = "select workspace,mode,id from lightrag_llm_cache"
|
245 |
res = await self.db.query(sql, multirows=True)
|
246 |
return res
|
|
|
252 |
async def filter_keys(self, keys: List[str]) -> Set[str]:
|
253 |
"""Filter out duplicated content"""
|
254 |
sql = SQL_TEMPLATES["filter_keys"].format(
|
255 |
+
table_name=namespace_to_table_name(self.namespace),
|
256 |
ids=",".join([f"'{id}'" for id in keys]),
|
257 |
)
|
258 |
params = {"workspace": self.db.workspace}
|
|
|
271 |
|
272 |
################ INSERT METHODS ################
|
273 |
async def upsert(self, data: Dict[str, dict]):
|
274 |
+
if is_namespace(self.namespace, NameSpace.KV_STORE_TEXT_CHUNKS):
|
275 |
pass
|
276 |
+
elif is_namespace(self.namespace, NameSpace.KV_STORE_FULL_DOCS):
|
277 |
for k, v in data.items():
|
278 |
upsert_sql = SQL_TEMPLATES["upsert_doc_full"]
|
279 |
_data = {
|
|
|
282 |
"workspace": self.db.workspace,
|
283 |
}
|
284 |
await self.db.execute(upsert_sql, _data)
|
285 |
+
elif is_namespace(self.namespace, NameSpace.KV_STORE_LLM_RESPONSE_CACHE):
|
286 |
for mode, items in data.items():
|
287 |
for k, v in items.items():
|
288 |
upsert_sql = SQL_TEMPLATES["upsert_llm_response_cache"]
|
|
|
297 |
await self.db.execute(upsert_sql, _data)
|
298 |
|
299 |
async def index_done_callback(self):
|
300 |
+
if is_namespace(
|
301 |
+
self.namespace,
|
302 |
+
(NameSpace.KV_STORE_FULL_DOCS, NameSpace.KV_STORE_TEXT_CHUNKS),
|
303 |
+
):
|
304 |
+
logger.info("full doc and chunk data had been saved into postgresql db!")
|
|
|
305 |
|
306 |
|
307 |
@dataclass
|
|
|
393 |
for i, d in enumerate(list_data):
|
394 |
d["__vector__"] = embeddings[i]
|
395 |
for item in list_data:
|
396 |
+
if is_namespace(self.namespace, NameSpace.VECTOR_STORE_CHUNKS):
|
397 |
upsert_sql, data = self._upsert_chunks(item)
|
398 |
+
elif is_namespace(self.namespace, NameSpace.VECTOR_STORE_ENTITIES):
|
399 |
upsert_sql, data = self._upsert_entities(item)
|
400 |
+
elif is_namespace(self.namespace, NameSpace.VECTOR_STORE_RELATIONSHIPS):
|
401 |
upsert_sql, data = self._upsert_relationships(item)
|
402 |
else:
|
403 |
raise ValueError(f"{self.namespace} is not supported")
|
|
|
1027 |
|
1028 |
|
1029 |
NAMESPACE_TABLE_MAP = {
|
1030 |
+
NameSpace.KV_STORE_FULL_DOCS: "LIGHTRAG_DOC_FULL",
|
1031 |
+
NameSpace.KV_STORE_TEXT_CHUNKS: "LIGHTRAG_DOC_CHUNKS",
|
1032 |
+
NameSpace.VECTOR_STORE_CHUNKS: "LIGHTRAG_DOC_CHUNKS",
|
1033 |
+
NameSpace.VECTOR_STORE_ENTITIES: "LIGHTRAG_VDB_ENTITY",
|
1034 |
+
NameSpace.VECTOR_STORE_RELATIONSHIPS: "LIGHTRAG_VDB_RELATION",
|
1035 |
+
NameSpace.DOC_STATUS: "LIGHTRAG_DOC_STATUS",
|
1036 |
+
NameSpace.KV_STORE_LLM_RESPONSE_CACHE: "LIGHTRAG_LLM_CACHE",
|
1037 |
}
|
1038 |
|
1039 |
|
1040 |
+
def namespace_to_table_name(namespace: str) -> str:
|
1041 |
+
for k, v in NAMESPACE_TABLE_MAP.items():
|
1042 |
+
if is_namespace(namespace, k):
|
1043 |
+
return v
|
1044 |
+
|
1045 |
+
|
1046 |
TABLES = {
|
1047 |
"LIGHTRAG_DOC_FULL": {
|
1048 |
"ddl": """CREATE TABLE LIGHTRAG_DOC_FULL (
|
lightrag/kg/postgres_impl_test.py
CHANGED
@@ -12,7 +12,9 @@ if not pm.is_installed("asyncpg"):
|
|
12 |
import asyncpg
|
13 |
import psycopg
|
14 |
from psycopg_pool import AsyncConnectionPool
|
15 |
-
|
|
|
|
|
16 |
|
17 |
DB = "rag"
|
18 |
USER = "rag"
|
@@ -76,7 +78,7 @@ db = PostgreSQLDB(
|
|
76 |
async def query_with_age():
|
77 |
await db.initdb()
|
78 |
graph = PGGraphStorage(
|
79 |
-
namespace=
|
80 |
global_config={},
|
81 |
embedding_func=None,
|
82 |
)
|
@@ -92,7 +94,7 @@ async def query_with_age():
|
|
92 |
async def create_edge_with_age():
|
93 |
await db.initdb()
|
94 |
graph = PGGraphStorage(
|
95 |
-
namespace=
|
96 |
global_config={},
|
97 |
embedding_func=None,
|
98 |
)
|
|
|
12 |
import asyncpg
|
13 |
import psycopg
|
14 |
from psycopg_pool import AsyncConnectionPool
|
15 |
+
|
16 |
+
from ..kg.postgres_impl import PostgreSQLDB, PGGraphStorage
|
17 |
+
from ..namespace import NameSpace
|
18 |
|
19 |
DB = "rag"
|
20 |
USER = "rag"
|
|
|
78 |
async def query_with_age():
|
79 |
await db.initdb()
|
80 |
graph = PGGraphStorage(
|
81 |
+
namespace=NameSpace.GRAPH_STORE_CHUNK_ENTITY_RELATION,
|
82 |
global_config={},
|
83 |
embedding_func=None,
|
84 |
)
|
|
|
94 |
async def create_edge_with_age():
|
95 |
await db.initdb()
|
96 |
graph = PGGraphStorage(
|
97 |
+
namespace=NameSpace.GRAPH_STORE_CHUNK_ENTITY_RELATION,
|
98 |
global_config={},
|
99 |
embedding_func=None,
|
100 |
)
|
lightrag/kg/tidb_impl.py
CHANGED
@@ -14,8 +14,9 @@ if not pm.is_installed("sqlalchemy"):
|
|
14 |
from sqlalchemy import create_engine, text
|
15 |
from tqdm import tqdm
|
16 |
|
17 |
-
from
|
18 |
-
from
|
|
|
19 |
|
20 |
|
21 |
class TiDB(object):
|
@@ -138,8 +139,8 @@ class TiDBKVStorage(BaseKVStorage):
|
|
138 |
async def filter_keys(self, keys: list[str]) -> set[str]:
|
139 |
"""过滤掉重复内容"""
|
140 |
SQL = SQL_TEMPLATES["filter_keys"].format(
|
141 |
-
table_name=
|
142 |
-
id_field=
|
143 |
ids=",".join([f"'{id}'" for id in keys]),
|
144 |
)
|
145 |
try:
|
@@ -160,7 +161,7 @@ class TiDBKVStorage(BaseKVStorage):
|
|
160 |
async def upsert(self, data: dict[str, dict]):
|
161 |
left_data = {k: v for k, v in data.items() if k not in self._data}
|
162 |
self._data.update(left_data)
|
163 |
-
if self.namespace.
|
164 |
list_data = [
|
165 |
{
|
166 |
"__id__": k,
|
@@ -196,7 +197,7 @@ class TiDBKVStorage(BaseKVStorage):
|
|
196 |
)
|
197 |
await self.db.execute(merge_sql, data)
|
198 |
|
199 |
-
if self.namespace.
|
200 |
merge_sql = SQL_TEMPLATES["upsert_doc_full"]
|
201 |
data = []
|
202 |
for k, v in self._data.items():
|
@@ -211,10 +212,11 @@ class TiDBKVStorage(BaseKVStorage):
|
|
211 |
return left_data
|
212 |
|
213 |
async def index_done_callback(self):
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
|
|
218 |
|
219 |
|
220 |
@dataclass
|
@@ -260,7 +262,7 @@ class TiDBVectorDBStorage(BaseVectorStorage):
|
|
260 |
if not len(data):
|
261 |
logger.warning("You insert an empty data to vector DB")
|
262 |
return []
|
263 |
-
if self.namespace.
|
264 |
return []
|
265 |
logger.info(f"Inserting {len(data)} vectors to {self.namespace}")
|
266 |
|
@@ -290,7 +292,7 @@ class TiDBVectorDBStorage(BaseVectorStorage):
|
|
290 |
for i, d in enumerate(list_data):
|
291 |
d["content_vector"] = embeddings[i]
|
292 |
|
293 |
-
if self.namespace.
|
294 |
data = []
|
295 |
for item in list_data:
|
296 |
param = {
|
@@ -311,7 +313,7 @@ class TiDBVectorDBStorage(BaseVectorStorage):
|
|
311 |
merge_sql = SQL_TEMPLATES["insert_entity"]
|
312 |
await self.db.execute(merge_sql, data)
|
313 |
|
314 |
-
elif self.namespace.
|
315 |
data = []
|
316 |
for item in list_data:
|
317 |
param = {
|
@@ -470,20 +472,33 @@ class TiDBGraphStorage(BaseGraphStorage):
|
|
470 |
|
471 |
|
472 |
N_T = {
|
473 |
-
|
474 |
-
|
475 |
-
|
476 |
-
|
477 |
-
|
478 |
}
|
479 |
N_ID = {
|
480 |
-
|
481 |
-
|
482 |
-
|
483 |
-
|
484 |
-
|
485 |
}
|
486 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
487 |
TABLES = {
|
488 |
"LIGHTRAG_DOC_FULL": {
|
489 |
"ddl": """
|
|
|
14 |
from sqlalchemy import create_engine, text
|
15 |
from tqdm import tqdm
|
16 |
|
17 |
+
from ..base import BaseVectorStorage, BaseKVStorage, BaseGraphStorage
|
18 |
+
from ..utils import logger
|
19 |
+
from ..namespace import NameSpace, is_namespace
|
20 |
|
21 |
|
22 |
class TiDB(object):
|
|
|
139 |
async def filter_keys(self, keys: list[str]) -> set[str]:
|
140 |
"""过滤掉重复内容"""
|
141 |
SQL = SQL_TEMPLATES["filter_keys"].format(
|
142 |
+
table_name=namespace_to_table_name(self.namespace),
|
143 |
+
id_field=namespace_to_id(self.namespace),
|
144 |
ids=",".join([f"'{id}'" for id in keys]),
|
145 |
)
|
146 |
try:
|
|
|
161 |
async def upsert(self, data: dict[str, dict]):
|
162 |
left_data = {k: v for k, v in data.items() if k not in self._data}
|
163 |
self._data.update(left_data)
|
164 |
+
if is_namespace(self.namespace, NameSpace.KV_STORE_TEXT_CHUNKS):
|
165 |
list_data = [
|
166 |
{
|
167 |
"__id__": k,
|
|
|
197 |
)
|
198 |
await self.db.execute(merge_sql, data)
|
199 |
|
200 |
+
if is_namespace(self.namespace, NameSpace.KV_STORE_FULL_DOCS):
|
201 |
merge_sql = SQL_TEMPLATES["upsert_doc_full"]
|
202 |
data = []
|
203 |
for k, v in self._data.items():
|
|
|
212 |
return left_data
|
213 |
|
214 |
async def index_done_callback(self):
|
215 |
+
if is_namespace(
|
216 |
+
self.namespace,
|
217 |
+
(NameSpace.KV_STORE_FULL_DOCS, NameSpace.KV_STORE_TEXT_CHUNKS),
|
218 |
+
):
|
219 |
+
logger.info("full doc and chunk data had been saved into TiDB db!")
|
220 |
|
221 |
|
222 |
@dataclass
|
|
|
262 |
if not len(data):
|
263 |
logger.warning("You insert an empty data to vector DB")
|
264 |
return []
|
265 |
+
if is_namespace(self.namespace, NameSpace.VECTOR_STORE_CHUNKS):
|
266 |
return []
|
267 |
logger.info(f"Inserting {len(data)} vectors to {self.namespace}")
|
268 |
|
|
|
292 |
for i, d in enumerate(list_data):
|
293 |
d["content_vector"] = embeddings[i]
|
294 |
|
295 |
+
if is_namespace(self.namespace, NameSpace.VECTOR_STORE_ENTITIES):
|
296 |
data = []
|
297 |
for item in list_data:
|
298 |
param = {
|
|
|
313 |
merge_sql = SQL_TEMPLATES["insert_entity"]
|
314 |
await self.db.execute(merge_sql, data)
|
315 |
|
316 |
+
elif is_namespace(self.namespace, NameSpace.VECTOR_STORE_RELATIONSHIPS):
|
317 |
data = []
|
318 |
for item in list_data:
|
319 |
param = {
|
|
|
472 |
|
473 |
|
474 |
N_T = {
|
475 |
+
NameSpace.KV_STORE_FULL_DOCS: "LIGHTRAG_DOC_FULL",
|
476 |
+
NameSpace.KV_STORE_TEXT_CHUNKS: "LIGHTRAG_DOC_CHUNKS",
|
477 |
+
NameSpace.VECTOR_STORE_CHUNKS: "LIGHTRAG_DOC_CHUNKS",
|
478 |
+
NameSpace.VECTOR_STORE_ENTITIES: "LIGHTRAG_GRAPH_NODES",
|
479 |
+
NameSpace.VECTOR_STORE_RELATIONSHIPS: "LIGHTRAG_GRAPH_EDGES",
|
480 |
}
|
481 |
N_ID = {
|
482 |
+
NameSpace.KV_STORE_FULL_DOCS: "doc_id",
|
483 |
+
NameSpace.KV_STORE_TEXT_CHUNKS: "chunk_id",
|
484 |
+
NameSpace.VECTOR_STORE_CHUNKS: "chunk_id",
|
485 |
+
NameSpace.VECTOR_STORE_ENTITIES: "entity_id",
|
486 |
+
NameSpace.VECTOR_STORE_RELATIONSHIPS: "relation_id",
|
487 |
}
|
488 |
|
489 |
+
|
490 |
+
def namespace_to_table_name(namespace: str) -> str:
|
491 |
+
for k, v in N_T.items():
|
492 |
+
if is_namespace(namespace, k):
|
493 |
+
return v
|
494 |
+
|
495 |
+
|
496 |
+
def namespace_to_id(namespace: str) -> str:
|
497 |
+
for k, v in N_ID.items():
|
498 |
+
if is_namespace(namespace, k):
|
499 |
+
return v
|
500 |
+
|
501 |
+
|
502 |
TABLES = {
|
503 |
"LIGHTRAG_DOC_FULL": {
|
504 |
"ddl": """
|
lightrag/lightrag.py
CHANGED
@@ -35,6 +35,8 @@ from .base import (
|
|
35 |
DocStatus,
|
36 |
)
|
37 |
|
|
|
|
|
38 |
from .prompt import GRAPH_FIELD_SEP
|
39 |
|
40 |
STORAGES = {
|
@@ -228,8 +230,13 @@ class LightRAG:
|
|
228 |
self.graph_storage_cls, global_config=global_config
|
229 |
)
|
230 |
|
|
|
|
|
|
|
|
|
|
|
231 |
self.llm_response_cache = self.key_string_value_json_storage_cls(
|
232 |
-
namespace=self.namespace_prefix
|
233 |
embedding_func=self.embedding_func,
|
234 |
)
|
235 |
|
@@ -237,34 +244,33 @@ class LightRAG:
|
|
237 |
# add embedding func by walter
|
238 |
####
|
239 |
self.full_docs = self.key_string_value_json_storage_cls(
|
240 |
-
namespace=self.namespace_prefix
|
241 |
embedding_func=self.embedding_func,
|
242 |
)
|
243 |
self.text_chunks = self.key_string_value_json_storage_cls(
|
244 |
-
namespace=self.namespace_prefix
|
245 |
embedding_func=self.embedding_func,
|
246 |
)
|
247 |
self.chunk_entity_relation_graph = self.graph_storage_cls(
|
248 |
-
namespace=self.namespace_prefix
|
249 |
embedding_func=self.embedding_func,
|
250 |
)
|
251 |
-
|
252 |
####
|
253 |
# add embedding func by walter over
|
254 |
####
|
255 |
|
256 |
self.entities_vdb = self.vector_db_storage_cls(
|
257 |
-
namespace=self.namespace_prefix
|
258 |
embedding_func=self.embedding_func,
|
259 |
meta_fields={"entity_name"},
|
260 |
)
|
261 |
self.relationships_vdb = self.vector_db_storage_cls(
|
262 |
-
namespace=self.namespace_prefix
|
263 |
embedding_func=self.embedding_func,
|
264 |
meta_fields={"src_id", "tgt_id"},
|
265 |
)
|
266 |
self.chunks_vdb = self.vector_db_storage_cls(
|
267 |
-
namespace=self.namespace_prefix
|
268 |
embedding_func=self.embedding_func,
|
269 |
)
|
270 |
|
@@ -274,7 +280,7 @@ class LightRAG:
|
|
274 |
hashing_kv = self.llm_response_cache
|
275 |
else:
|
276 |
hashing_kv = self.key_string_value_json_storage_cls(
|
277 |
-
namespace=self.namespace_prefix
|
278 |
embedding_func=self.embedding_func,
|
279 |
)
|
280 |
|
@@ -289,7 +295,7 @@ class LightRAG:
|
|
289 |
# Initialize document status storage
|
290 |
self.doc_status_storage_cls = self._get_storage_class(self.doc_status_storage)
|
291 |
self.doc_status = self.doc_status_storage_cls(
|
292 |
-
namespace=self.namespace_prefix
|
293 |
global_config=global_config,
|
294 |
embedding_func=None,
|
295 |
)
|
@@ -925,7 +931,7 @@ class LightRAG:
|
|
925 |
if self.llm_response_cache
|
926 |
and hasattr(self.llm_response_cache, "global_config")
|
927 |
else self.key_string_value_json_storage_cls(
|
928 |
-
namespace=self.namespace_prefix
|
929 |
global_config=asdict(self),
|
930 |
embedding_func=self.embedding_func,
|
931 |
),
|
@@ -942,7 +948,7 @@ class LightRAG:
|
|
942 |
if self.llm_response_cache
|
943 |
and hasattr(self.llm_response_cache, "global_config")
|
944 |
else self.key_string_value_json_storage_cls(
|
945 |
-
namespace=self.namespace_prefix
|
946 |
global_config=asdict(self),
|
947 |
embedding_func=self.embedding_func,
|
948 |
),
|
@@ -961,7 +967,7 @@ class LightRAG:
|
|
961 |
if self.llm_response_cache
|
962 |
and hasattr(self.llm_response_cache, "global_config")
|
963 |
else self.key_string_value_json_storage_cls(
|
964 |
-
namespace=self.namespace_prefix
|
965 |
global_config=asdict(self),
|
966 |
embedding_func=self.embedding_func,
|
967 |
),
|
@@ -1002,7 +1008,7 @@ class LightRAG:
|
|
1002 |
global_config=asdict(self),
|
1003 |
hashing_kv=self.llm_response_cache
|
1004 |
or self.key_string_value_json_storage_cls(
|
1005 |
-
namespace=self.namespace_prefix
|
1006 |
global_config=asdict(self),
|
1007 |
embedding_func=self.embedding_func,
|
1008 |
),
|
@@ -1033,7 +1039,7 @@ class LightRAG:
|
|
1033 |
if self.llm_response_cache
|
1034 |
and hasattr(self.llm_response_cache, "global_config")
|
1035 |
else self.key_string_value_json_storage_cls(
|
1036 |
-
namespace=self.namespace_prefix
|
1037 |
global_config=asdict(self),
|
1038 |
embedding_func=self.embedding_funcne,
|
1039 |
),
|
@@ -1049,7 +1055,7 @@ class LightRAG:
|
|
1049 |
if self.llm_response_cache
|
1050 |
and hasattr(self.llm_response_cache, "global_config")
|
1051 |
else self.key_string_value_json_storage_cls(
|
1052 |
-
namespace=self.namespace_prefix
|
1053 |
global_config=asdict(self),
|
1054 |
embedding_func=self.embedding_func,
|
1055 |
),
|
@@ -1068,7 +1074,7 @@ class LightRAG:
|
|
1068 |
if self.llm_response_cache
|
1069 |
and hasattr(self.llm_response_cache, "global_config")
|
1070 |
else self.key_string_value_json_storage_cls(
|
1071 |
-
namespace=self.namespace_prefix
|
1072 |
global_config=asdict(self),
|
1073 |
embedding_func=self.embedding_func,
|
1074 |
),
|
|
|
35 |
DocStatus,
|
36 |
)
|
37 |
|
38 |
+
from .namespace import NameSpace, make_namespace
|
39 |
+
|
40 |
from .prompt import GRAPH_FIELD_SEP
|
41 |
|
42 |
STORAGES = {
|
|
|
230 |
self.graph_storage_cls, global_config=global_config
|
231 |
)
|
232 |
|
233 |
+
self.json_doc_status_storage = self.key_string_value_json_storage_cls(
|
234 |
+
namespace=self.namespace_prefix + "json_doc_status_storage",
|
235 |
+
embedding_func=None,
|
236 |
+
)
|
237 |
+
|
238 |
self.llm_response_cache = self.key_string_value_json_storage_cls(
|
239 |
+
namespace=make_namespace(self.namespace_prefix, NameSpace.KV_STORE_LLM_RESPONSE_CACHE),
|
240 |
embedding_func=self.embedding_func,
|
241 |
)
|
242 |
|
|
|
244 |
# add embedding func by walter
|
245 |
####
|
246 |
self.full_docs = self.key_string_value_json_storage_cls(
|
247 |
+
namespace=make_namespace(self.namespace_prefix, NameSpace.KV_STORE_FULL_DOCS),
|
248 |
embedding_func=self.embedding_func,
|
249 |
)
|
250 |
self.text_chunks = self.key_string_value_json_storage_cls(
|
251 |
+
namespace=make_namespace(self.namespace_prefix, NameSpace.KV_STORE_TEXT_CHUNKS),
|
252 |
embedding_func=self.embedding_func,
|
253 |
)
|
254 |
self.chunk_entity_relation_graph = self.graph_storage_cls(
|
255 |
+
namespace=make_namespace(self.namespace_prefix, NameSpace.GRAPH_STORE_CHUNK_ENTITY_RELATION),
|
256 |
embedding_func=self.embedding_func,
|
257 |
)
|
|
|
258 |
####
|
259 |
# add embedding func by walter over
|
260 |
####
|
261 |
|
262 |
self.entities_vdb = self.vector_db_storage_cls(
|
263 |
+
namespace=make_namespace(self.namespace_prefix, NameSpace.VECTOR_STORE_ENTITIES),
|
264 |
embedding_func=self.embedding_func,
|
265 |
meta_fields={"entity_name"},
|
266 |
)
|
267 |
self.relationships_vdb = self.vector_db_storage_cls(
|
268 |
+
namespace=make_namespace(self.namespace_prefix, NameSpace.VECTOR_STORE_RELATIONSHIPS),
|
269 |
embedding_func=self.embedding_func,
|
270 |
meta_fields={"src_id", "tgt_id"},
|
271 |
)
|
272 |
self.chunks_vdb = self.vector_db_storage_cls(
|
273 |
+
namespace=make_namespace(self.namespace_prefix, NameSpace.VECTOR_STORE_CHUNKS),
|
274 |
embedding_func=self.embedding_func,
|
275 |
)
|
276 |
|
|
|
280 |
hashing_kv = self.llm_response_cache
|
281 |
else:
|
282 |
hashing_kv = self.key_string_value_json_storage_cls(
|
283 |
+
namespace=make_namespace(self.namespace_prefix, NameSpace.KV_STORE_LLM_RESPONSE_CACHE),
|
284 |
embedding_func=self.embedding_func,
|
285 |
)
|
286 |
|
|
|
295 |
# Initialize document status storage
|
296 |
self.doc_status_storage_cls = self._get_storage_class(self.doc_status_storage)
|
297 |
self.doc_status = self.doc_status_storage_cls(
|
298 |
+
namespace=make_namespace(self.namespace_prefix, NameSpace.DOC_STATUS),
|
299 |
global_config=global_config,
|
300 |
embedding_func=None,
|
301 |
)
|
|
|
931 |
if self.llm_response_cache
|
932 |
and hasattr(self.llm_response_cache, "global_config")
|
933 |
else self.key_string_value_json_storage_cls(
|
934 |
+
namespace=make_namespace(self.namespace_prefix, NameSpace.KV_STORE_LLM_RESPONSE_CACHE),
|
935 |
global_config=asdict(self),
|
936 |
embedding_func=self.embedding_func,
|
937 |
),
|
|
|
948 |
if self.llm_response_cache
|
949 |
and hasattr(self.llm_response_cache, "global_config")
|
950 |
else self.key_string_value_json_storage_cls(
|
951 |
+
namespace=make_namespace(self.namespace_prefix, NameSpace.KV_STORE_LLM_RESPONSE_CACHE),
|
952 |
global_config=asdict(self),
|
953 |
embedding_func=self.embedding_func,
|
954 |
),
|
|
|
967 |
if self.llm_response_cache
|
968 |
and hasattr(self.llm_response_cache, "global_config")
|
969 |
else self.key_string_value_json_storage_cls(
|
970 |
+
namespace=make_namespace(self.namespace_prefix, NameSpace.KV_STORE_LLM_RESPONSE_CACHE),
|
971 |
global_config=asdict(self),
|
972 |
embedding_func=self.embedding_func,
|
973 |
),
|
|
|
1008 |
global_config=asdict(self),
|
1009 |
hashing_kv=self.llm_response_cache
|
1010 |
or self.key_string_value_json_storage_cls(
|
1011 |
+
namespace=make_namespace(self.namespace_prefix, NameSpace.KV_STORE_LLM_RESPONSE_CACHE),
|
1012 |
global_config=asdict(self),
|
1013 |
embedding_func=self.embedding_func,
|
1014 |
),
|
|
|
1039 |
if self.llm_response_cache
|
1040 |
and hasattr(self.llm_response_cache, "global_config")
|
1041 |
else self.key_string_value_json_storage_cls(
|
1042 |
+
namespace=make_namespace(self.namespace_prefix, NameSpace.KV_STORE_LLM_RESPONSE_CACHE),
|
1043 |
global_config=asdict(self),
|
1044 |
embedding_func=self.embedding_funcne,
|
1045 |
),
|
|
|
1055 |
if self.llm_response_cache
|
1056 |
and hasattr(self.llm_response_cache, "global_config")
|
1057 |
else self.key_string_value_json_storage_cls(
|
1058 |
+
namespace=make_namespace(self.namespace_prefix, NameSpace.KV_STORE_LLM_RESPONSE_CACHE),
|
1059 |
global_config=asdict(self),
|
1060 |
embedding_func=self.embedding_func,
|
1061 |
),
|
|
|
1074 |
if self.llm_response_cache
|
1075 |
and hasattr(self.llm_response_cache, "global_config")
|
1076 |
else self.key_string_value_json_storage_cls(
|
1077 |
+
namespace=make_namespace(self.namespace_prefix, NameSpace.KV_STORE_LLM_RESPONSE_CACHE),
|
1078 |
global_config=asdict(self),
|
1079 |
embedding_func=self.embedding_func,
|
1080 |
),
|
lightrag/namespace.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Iterable
|
2 |
+
|
3 |
+
|
4 |
+
class NameSpace:
|
5 |
+
KV_STORE_FULL_DOCS = "full_docs"
|
6 |
+
KV_STORE_TEXT_CHUNKS = "text_chunks"
|
7 |
+
KV_STORE_LLM_RESPONSE_CACHE = "llm_response_cache"
|
8 |
+
|
9 |
+
VECTOR_STORE_ENTITIES = "entities"
|
10 |
+
VECTOR_STORE_RELATIONSHIPS = "relationships"
|
11 |
+
VECTOR_STORE_CHUNKS = "chunks"
|
12 |
+
|
13 |
+
GRAPH_STORE_CHUNK_ENTITY_RELATION = "chunk_entity_relation"
|
14 |
+
|
15 |
+
DOC_STATUS = "doc_status"
|
16 |
+
|
17 |
+
|
18 |
+
def make_namespace(prefix: str, base_namespace: str):
|
19 |
+
return prefix + base_namespace
|
20 |
+
|
21 |
+
|
22 |
+
def is_namespace(namespace: str, base_namespace: str | Iterable[str]):
|
23 |
+
if isinstance(base_namespace, str):
|
24 |
+
return namespace.endswith(base_namespace)
|
25 |
+
return any(is_namespace(namespace, ns) for ns in base_namespace)
|