gzdaniel commited on
Commit
0a10dfb
·
1 Parent(s): f110586

Update README.md

Browse files
Files changed (2) hide show
  1. README-zh.md +13 -9
  2. README.md +13 -9
README-zh.md CHANGED
@@ -90,6 +90,8 @@ LightRAG服务器旨在提供Web UI和API支持。Web UI便于文档索引、知
90
 
91
  ```bash
92
  pip install "lightrag-hku[api]"
 
 
93
  ```
94
 
95
  * 从源代码安装
@@ -100,6 +102,8 @@ cd LightRAG
100
  # 如有必要,创建Python虚拟环境
101
  # 以可编辑模式安装并支持API
102
  pip install -e ".[api]"
 
 
103
  ```
104
 
105
  * 使用 Docker Compose 启动 LightRAG 服务器
@@ -820,7 +824,7 @@ rag = LightRAG(
820
  create INDEX CONCURRENTLY entity_idx_node_id ON dickens."Entity" (ag_catalog.agtype_access_operator(properties, '"node_id"'::agtype));
821
  CREATE INDEX CONCURRENTLY entity_node_id_gin_idx ON dickens."Entity" using gin(properties);
822
  ALTER TABLE dickens."DIRECTED" CLUSTER ON directed_sid_idx;
823
-
824
  -- 如有必要可以删除
825
  drop INDEX entity_p_idx;
826
  drop INDEX vertex_p_idx;
@@ -1166,17 +1170,17 @@ LightRAG 现已与 [RAG-Anything](https://github.com/HKUDS/RAG-Anything) 实现
1166
  from lightrag.llm.openai import openai_complete_if_cache, openai_embed
1167
  from lightrag.utils import EmbeddingFunc
1168
  import os
1169
-
1170
  async def load_existing_lightrag():
1171
  # 首先,创建或加载现有的 LightRAG 实例
1172
  lightrag_working_dir = "./existing_lightrag_storage"
1173
-
1174
  # 检查是否存在之前的 LightRAG 实例
1175
  if os.path.exists(lightrag_working_dir) and os.listdir(lightrag_working_dir):
1176
  print("✅ Found existing LightRAG instance, loading...")
1177
  else:
1178
  print("❌ No existing LightRAG instance found, will create new one")
1179
-
1180
  # 使用您的配置创建/加载 LightRAG 实例
1181
  lightrag_instance = LightRAG(
1182
  working_dir=lightrag_working_dir,
@@ -1199,10 +1203,10 @@ LightRAG 现已与 [RAG-Anything](https://github.com/HKUDS/RAG-Anything) 实现
1199
  ),
1200
  )
1201
  )
1202
-
1203
  # 初始化存储(如果有现有数据,这将加载现有数据)
1204
  await lightrag_instance.initialize_storages()
1205
-
1206
  # 现在使用现有的 LightRAG 实例初始化 RAGAnything
1207
  rag = RAGAnything(
1208
  lightrag=lightrag_instance, # 传递现有的 LightRAG 实例
@@ -1231,20 +1235,20 @@ LightRAG 现已与 [RAG-Anything](https://github.com/HKUDS/RAG-Anything) 实现
1231
  )
1232
  # 注意:working_dir、llm_model_func、embedding_func 等都从 lightrag_instance 继承
1233
  )
1234
-
1235
  # 查询现有的知识库
1236
  result = await rag.query_with_multimodal(
1237
  "What data has been processed in this LightRAG instance?",
1238
  mode="hybrid"
1239
  )
1240
  print("Query result:", result)
1241
-
1242
  # 向现有的 LightRAG 实例添加新的多模态文档
1243
  await rag.process_document_complete(
1244
  file_path="path/to/new/multimodal_document.pdf",
1245
  output_dir="./output"
1246
  )
1247
-
1248
  if __name__ == "__main__":
1249
  asyncio.run(load_existing_lightrag())
1250
  ```
 
90
 
91
  ```bash
92
  pip install "lightrag-hku[api]"
93
+ cp env.example .env
94
+ lightrag-server
95
  ```
96
 
97
  * 从源代码安装
 
102
  # 如有必要,创建Python虚拟环境
103
  # 以可编辑模式安装并支持API
104
  pip install -e ".[api]"
105
+ cp env.example .env
106
+ lightrag-server
107
  ```
108
 
109
  * 使用 Docker Compose 启动 LightRAG 服务器
 
824
  create INDEX CONCURRENTLY entity_idx_node_id ON dickens."Entity" (ag_catalog.agtype_access_operator(properties, '"node_id"'::agtype));
825
  CREATE INDEX CONCURRENTLY entity_node_id_gin_idx ON dickens."Entity" using gin(properties);
826
  ALTER TABLE dickens."DIRECTED" CLUSTER ON directed_sid_idx;
827
+
828
  -- 如有必要可以删除
829
  drop INDEX entity_p_idx;
830
  drop INDEX vertex_p_idx;
 
1170
  from lightrag.llm.openai import openai_complete_if_cache, openai_embed
1171
  from lightrag.utils import EmbeddingFunc
1172
  import os
1173
+
1174
  async def load_existing_lightrag():
1175
  # 首先,创建或加载现有的 LightRAG 实例
1176
  lightrag_working_dir = "./existing_lightrag_storage"
1177
+
1178
  # 检查是否存在之前的 LightRAG 实例
1179
  if os.path.exists(lightrag_working_dir) and os.listdir(lightrag_working_dir):
1180
  print("✅ Found existing LightRAG instance, loading...")
1181
  else:
1182
  print("❌ No existing LightRAG instance found, will create new one")
1183
+
1184
  # 使用您的配置创建/加载 LightRAG 实例
1185
  lightrag_instance = LightRAG(
1186
  working_dir=lightrag_working_dir,
 
1203
  ),
1204
  )
1205
  )
1206
+
1207
  # 初始化存储(如果有现有数据,这将加载现有数据)
1208
  await lightrag_instance.initialize_storages()
1209
+
1210
  # 现在使用现有的 LightRAG 实例初始化 RAGAnything
1211
  rag = RAGAnything(
1212
  lightrag=lightrag_instance, # 传递现有的 LightRAG 实例
 
1235
  )
1236
  # 注意:working_dir、llm_model_func、embedding_func 等都从 lightrag_instance 继承
1237
  )
1238
+
1239
  # 查询现有的知识库
1240
  result = await rag.query_with_multimodal(
1241
  "What data has been processed in this LightRAG instance?",
1242
  mode="hybrid"
1243
  )
1244
  print("Query result:", result)
1245
+
1246
  # 向现有的 LightRAG 实例添加新的多模态文档
1247
  await rag.process_document_complete(
1248
  file_path="path/to/new/multimodal_document.pdf",
1249
  output_dir="./output"
1250
  )
1251
+
1252
  if __name__ == "__main__":
1253
  asyncio.run(load_existing_lightrag())
1254
  ```
README.md CHANGED
@@ -89,6 +89,8 @@ The LightRAG Server is designed to provide Web UI and API support. The Web UI fa
89
 
90
  ```bash
91
  pip install "lightrag-hku[api]"
 
 
92
  ```
93
 
94
  * Installation from Source
@@ -99,6 +101,8 @@ cd LightRAG
99
  # create a Python virtual enviroment if neccesary
100
  # Install in editable mode with API support
101
  pip install -e ".[api]"
 
 
102
  ```
103
 
104
  * Launching the LightRAG Server with Docker Compose
@@ -792,7 +796,7 @@ For production level scenarios you will most likely want to leverage an enterpri
792
  create INDEX CONCURRENTLY entity_idx_node_id ON dickens."Entity" (ag_catalog.agtype_access_operator(properties, '"node_id"'::agtype));
793
  CREATE INDEX CONCURRENTLY entity_node_id_gin_idx ON dickens."Entity" using gin(properties);
794
  ALTER TABLE dickens."DIRECTED" CLUSTER ON directed_sid_idx;
795
-
796
  -- drop if necessary
797
  drop INDEX entity_p_idx;
798
  drop INDEX vertex_p_idx;
@@ -1180,17 +1184,17 @@ LightRAG now seamlessly integrates with [RAG-Anything](https://github.com/HKUDS/
1180
  from lightrag.llm.openai import openai_complete_if_cache, openai_embed
1181
  from lightrag.utils import EmbeddingFunc
1182
  import os
1183
-
1184
  async def load_existing_lightrag():
1185
  # First, create or load an existing LightRAG instance
1186
  lightrag_working_dir = "./existing_lightrag_storage"
1187
-
1188
  # Check if previous LightRAG instance exists
1189
  if os.path.exists(lightrag_working_dir) and os.listdir(lightrag_working_dir):
1190
  print("✅ Found existing LightRAG instance, loading...")
1191
  else:
1192
  print("❌ No existing LightRAG instance found, will create new one")
1193
-
1194
  # Create/Load LightRAG instance with your configurations
1195
  lightrag_instance = LightRAG(
1196
  working_dir=lightrag_working_dir,
@@ -1213,10 +1217,10 @@ LightRAG now seamlessly integrates with [RAG-Anything](https://github.com/HKUDS/
1213
  ),
1214
  )
1215
  )
1216
-
1217
  # Initialize storage (this will load existing data if available)
1218
  await lightrag_instance.initialize_storages()
1219
-
1220
  # Now initialize RAGAnything with the existing LightRAG instance
1221
  rag = RAGAnything(
1222
  lightrag=lightrag_instance, # Pass the existing LightRAG instance
@@ -1245,20 +1249,20 @@ LightRAG now seamlessly integrates with [RAG-Anything](https://github.com/HKUDS/
1245
  )
1246
  # Note: working_dir, llm_model_func, embedding_func, etc. are inherited from lightrag_instance
1247
  )
1248
-
1249
  # Query the existing knowledge base
1250
  result = await rag.query_with_multimodal(
1251
  "What data has been processed in this LightRAG instance?",
1252
  mode="hybrid"
1253
  )
1254
  print("Query result:", result)
1255
-
1256
  # Add new multimodal documents to the existing LightRAG instance
1257
  await rag.process_document_complete(
1258
  file_path="path/to/new/multimodal_document.pdf",
1259
  output_dir="./output"
1260
  )
1261
-
1262
  if __name__ == "__main__":
1263
  asyncio.run(load_existing_lightrag())
1264
  ```
 
89
 
90
  ```bash
91
  pip install "lightrag-hku[api]"
92
+ cp env.example .env
93
+ lightrag-server
94
  ```
95
 
96
  * Installation from Source
 
101
  # create a Python virtual enviroment if neccesary
102
  # Install in editable mode with API support
103
  pip install -e ".[api]"
104
+ cp env.example .env
105
+ lightrag-server
106
  ```
107
 
108
  * Launching the LightRAG Server with Docker Compose
 
796
  create INDEX CONCURRENTLY entity_idx_node_id ON dickens."Entity" (ag_catalog.agtype_access_operator(properties, '"node_id"'::agtype));
797
  CREATE INDEX CONCURRENTLY entity_node_id_gin_idx ON dickens."Entity" using gin(properties);
798
  ALTER TABLE dickens."DIRECTED" CLUSTER ON directed_sid_idx;
799
+
800
  -- drop if necessary
801
  drop INDEX entity_p_idx;
802
  drop INDEX vertex_p_idx;
 
1184
  from lightrag.llm.openai import openai_complete_if_cache, openai_embed
1185
  from lightrag.utils import EmbeddingFunc
1186
  import os
1187
+
1188
  async def load_existing_lightrag():
1189
  # First, create or load an existing LightRAG instance
1190
  lightrag_working_dir = "./existing_lightrag_storage"
1191
+
1192
  # Check if previous LightRAG instance exists
1193
  if os.path.exists(lightrag_working_dir) and os.listdir(lightrag_working_dir):
1194
  print("✅ Found existing LightRAG instance, loading...")
1195
  else:
1196
  print("❌ No existing LightRAG instance found, will create new one")
1197
+
1198
  # Create/Load LightRAG instance with your configurations
1199
  lightrag_instance = LightRAG(
1200
  working_dir=lightrag_working_dir,
 
1217
  ),
1218
  )
1219
  )
1220
+
1221
  # Initialize storage (this will load existing data if available)
1222
  await lightrag_instance.initialize_storages()
1223
+
1224
  # Now initialize RAGAnything with the existing LightRAG instance
1225
  rag = RAGAnything(
1226
  lightrag=lightrag_instance, # Pass the existing LightRAG instance
 
1249
  )
1250
  # Note: working_dir, llm_model_func, embedding_func, etc. are inherited from lightrag_instance
1251
  )
1252
+
1253
  # Query the existing knowledge base
1254
  result = await rag.query_with_multimodal(
1255
  "What data has been processed in this LightRAG instance?",
1256
  mode="hybrid"
1257
  )
1258
  print("Query result:", result)
1259
+
1260
  # Add new multimodal documents to the existing LightRAG instance
1261
  await rag.process_document_complete(
1262
  file_path="path/to/new/multimodal_document.pdf",
1263
  output_dir="./output"
1264
  )
1265
+
1266
  if __name__ == "__main__":
1267
  asyncio.run(load_existing_lightrag())
1268
  ```