Pankaj Kaushal
commited on
Commit
·
0fc6305
1
Parent(s):
51012ad
feat: Add ChromaDB integration for vector storage
Browse files- Implemented `ChromaVectorDBStorage` class in `lightrag/kg/chroma_impl.py` to support ChromaDB as a vector storage backend.
- Updated `lightrag.py` to include `ChromaVectorDBStorage` in the storage class mapping.
- Added a test script `test_chromadb.py` to demonstrate the usage of ChromaDB with LightRAG, including configuration for embedding functions and ChromaDB connection settings.
- fix lazy import function to support package context for dynamic class loading.
https://github.com/HKUDS/LightRAG/pull/444/commits/288d4b8355eb3fd1fdfaf165f1380501b58aaf67
- lightrag/kg/chroma_impl.py +172 -0
- lightrag/lightrag.py +15 -7
- test_chromadb.py +113 -0
lightrag/kg/chroma_impl.py
ADDED
|
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import asyncio
|
| 2 |
+
from dataclasses import dataclass
|
| 3 |
+
from typing import Union
|
| 4 |
+
import numpy as np
|
| 5 |
+
from chromadb import HttpClient
|
| 6 |
+
from chromadb.config import Settings
|
| 7 |
+
from lightrag.base import BaseVectorStorage
|
| 8 |
+
from lightrag.utils import logger
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
@dataclass
|
| 12 |
+
class ChromaVectorDBStorage(BaseVectorStorage):
|
| 13 |
+
"""ChromaDB vector storage implementation."""
|
| 14 |
+
|
| 15 |
+
cosine_better_than_threshold: float = 0.2
|
| 16 |
+
|
| 17 |
+
def __post_init__(self):
|
| 18 |
+
try:
|
| 19 |
+
# Use global config value if specified, otherwise use default
|
| 20 |
+
self.cosine_better_than_threshold = self.global_config.get(
|
| 21 |
+
"cosine_better_than_threshold", self.cosine_better_than_threshold
|
| 22 |
+
)
|
| 23 |
+
|
| 24 |
+
config = self.global_config.get("vector_db_storage_cls_kwargs", {})
|
| 25 |
+
user_collection_settings = config.get("collection_settings", {})
|
| 26 |
+
# Default HNSW index settings for ChromaDB
|
| 27 |
+
default_collection_settings = {
|
| 28 |
+
# Distance metric used for similarity search (cosine similarity)
|
| 29 |
+
"hnsw:space": "cosine",
|
| 30 |
+
# Number of nearest neighbors to explore during index construction
|
| 31 |
+
# Higher values = better recall but slower indexing
|
| 32 |
+
"hnsw:construction_ef": 128,
|
| 33 |
+
# Number of nearest neighbors to explore during search
|
| 34 |
+
# Higher values = better recall but slower search
|
| 35 |
+
"hnsw:search_ef": 128,
|
| 36 |
+
# Number of connections per node in the HNSW graph
|
| 37 |
+
# Higher values = better recall but more memory usage
|
| 38 |
+
"hnsw:M": 16,
|
| 39 |
+
# Number of vectors to process in one batch during indexing
|
| 40 |
+
"hnsw:batch_size": 100,
|
| 41 |
+
# Number of updates before forcing index synchronization
|
| 42 |
+
# Lower values = more frequent syncs but slower indexing
|
| 43 |
+
"hnsw:sync_threshold": 1000,
|
| 44 |
+
}
|
| 45 |
+
collection_settings = {
|
| 46 |
+
**default_collection_settings,
|
| 47 |
+
**user_collection_settings,
|
| 48 |
+
}
|
| 49 |
+
|
| 50 |
+
auth_provider = config.get(
|
| 51 |
+
"auth_provider", "chromadb.auth.token_authn.TokenAuthClientProvider"
|
| 52 |
+
)
|
| 53 |
+
auth_credentials = config.get("auth_token", "secret-token")
|
| 54 |
+
headers = {}
|
| 55 |
+
|
| 56 |
+
if "token_authn" in auth_provider:
|
| 57 |
+
headers = {
|
| 58 |
+
config.get("auth_header_name", "X-Chroma-Token"): auth_credentials
|
| 59 |
+
}
|
| 60 |
+
elif "basic_authn" in auth_provider:
|
| 61 |
+
auth_credentials = config.get("auth_credentials", "admin:admin")
|
| 62 |
+
|
| 63 |
+
self._client = HttpClient(
|
| 64 |
+
host=config.get("host", "localhost"),
|
| 65 |
+
port=config.get("port", 8000),
|
| 66 |
+
headers=headers,
|
| 67 |
+
settings=Settings(
|
| 68 |
+
chroma_api_impl="rest",
|
| 69 |
+
chroma_client_auth_provider=auth_provider,
|
| 70 |
+
chroma_client_auth_credentials=auth_credentials,
|
| 71 |
+
allow_reset=True,
|
| 72 |
+
anonymized_telemetry=False,
|
| 73 |
+
),
|
| 74 |
+
)
|
| 75 |
+
|
| 76 |
+
self._collection = self._client.get_or_create_collection(
|
| 77 |
+
name=self.namespace,
|
| 78 |
+
metadata={
|
| 79 |
+
**collection_settings,
|
| 80 |
+
"dimension": self.embedding_func.embedding_dim,
|
| 81 |
+
},
|
| 82 |
+
)
|
| 83 |
+
# Use batch size from collection settings if specified
|
| 84 |
+
self._max_batch_size = self.global_config.get(
|
| 85 |
+
"embedding_batch_num", collection_settings.get("hnsw:batch_size", 32)
|
| 86 |
+
)
|
| 87 |
+
except Exception as e:
|
| 88 |
+
logger.error(f"ChromaDB initialization failed: {str(e)}")
|
| 89 |
+
raise
|
| 90 |
+
|
| 91 |
+
async def upsert(self, data: dict[str, dict]):
|
| 92 |
+
if not data:
|
| 93 |
+
logger.warning("Empty data provided to vector DB")
|
| 94 |
+
return []
|
| 95 |
+
|
| 96 |
+
try:
|
| 97 |
+
ids = list(data.keys())
|
| 98 |
+
documents = [v["content"] for v in data.values()]
|
| 99 |
+
metadatas = [
|
| 100 |
+
{k: v for k, v in item.items() if k in self.meta_fields}
|
| 101 |
+
or {"_default": "true"}
|
| 102 |
+
for item in data.values()
|
| 103 |
+
]
|
| 104 |
+
|
| 105 |
+
# Process in batches
|
| 106 |
+
batches = [
|
| 107 |
+
documents[i : i + self._max_batch_size]
|
| 108 |
+
for i in range(0, len(documents), self._max_batch_size)
|
| 109 |
+
]
|
| 110 |
+
|
| 111 |
+
embedding_tasks = [self.embedding_func(batch) for batch in batches]
|
| 112 |
+
embeddings_list = []
|
| 113 |
+
|
| 114 |
+
# Pre-allocate embeddings_list with known size
|
| 115 |
+
embeddings_list = [None] * len(embedding_tasks)
|
| 116 |
+
|
| 117 |
+
# Use asyncio.gather instead of as_completed if order doesn't matter
|
| 118 |
+
embeddings_results = await asyncio.gather(*embedding_tasks)
|
| 119 |
+
embeddings_list = list(embeddings_results)
|
| 120 |
+
|
| 121 |
+
embeddings = np.concatenate(embeddings_list)
|
| 122 |
+
|
| 123 |
+
# Upsert in batches
|
| 124 |
+
for i in range(0, len(ids), self._max_batch_size):
|
| 125 |
+
batch_slice = slice(i, i + self._max_batch_size)
|
| 126 |
+
|
| 127 |
+
self._collection.upsert(
|
| 128 |
+
ids=ids[batch_slice],
|
| 129 |
+
embeddings=embeddings[batch_slice].tolist(),
|
| 130 |
+
documents=documents[batch_slice],
|
| 131 |
+
metadatas=metadatas[batch_slice],
|
| 132 |
+
)
|
| 133 |
+
|
| 134 |
+
return ids
|
| 135 |
+
|
| 136 |
+
except Exception as e:
|
| 137 |
+
logger.error(f"Error during ChromaDB upsert: {str(e)}")
|
| 138 |
+
raise
|
| 139 |
+
|
| 140 |
+
async def query(self, query: str, top_k=5) -> Union[dict, list[dict]]:
|
| 141 |
+
try:
|
| 142 |
+
embedding = await self.embedding_func([query])
|
| 143 |
+
|
| 144 |
+
results = self._collection.query(
|
| 145 |
+
query_embeddings=embedding.tolist(),
|
| 146 |
+
n_results=top_k * 2, # Request more results to allow for filtering
|
| 147 |
+
include=["metadatas", "distances", "documents"],
|
| 148 |
+
)
|
| 149 |
+
|
| 150 |
+
# Filter results by cosine similarity threshold and take top k
|
| 151 |
+
# We request 2x results initially to have enough after filtering
|
| 152 |
+
# ChromaDB returns cosine similarity (1 = identical, 0 = orthogonal)
|
| 153 |
+
# We convert to distance (0 = identical, 1 = orthogonal) via (1 - similarity)
|
| 154 |
+
# Only keep results with distance below threshold, then take top k
|
| 155 |
+
return [
|
| 156 |
+
{
|
| 157 |
+
"id": results["ids"][0][i],
|
| 158 |
+
"distance": 1 - results["distances"][0][i],
|
| 159 |
+
"content": results["documents"][0][i],
|
| 160 |
+
**results["metadatas"][0][i],
|
| 161 |
+
}
|
| 162 |
+
for i in range(len(results["ids"][0]))
|
| 163 |
+
if (1 - results["distances"][0][i]) >= self.cosine_better_than_threshold
|
| 164 |
+
][:top_k]
|
| 165 |
+
|
| 166 |
+
except Exception as e:
|
| 167 |
+
logger.error(f"Error during ChromaDB query: {str(e)}")
|
| 168 |
+
raise
|
| 169 |
+
|
| 170 |
+
async def index_done_callback(self):
|
| 171 |
+
# ChromaDB handles persistence automatically
|
| 172 |
+
pass
|
lightrag/lightrag.py
CHANGED
|
@@ -48,18 +48,24 @@ from .storage import (
|
|
| 48 |
|
| 49 |
|
| 50 |
def lazy_external_import(module_name: str, class_name: str):
|
| 51 |
-
"""Lazily import an external module
|
| 52 |
|
| 53 |
-
def import_class():
|
|
|
|
| 54 |
import importlib
|
| 55 |
|
| 56 |
-
#
|
| 57 |
-
|
|
|
|
|
|
|
| 58 |
|
| 59 |
-
#
|
| 60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
|
| 62 |
-
# Return the import_class function itself, not its result
|
| 63 |
return import_class
|
| 64 |
|
| 65 |
|
|
@@ -69,6 +75,7 @@ OracleGraphStorage = lazy_external_import(".kg.oracle_impl", "OracleGraphStorage
|
|
| 69 |
OracleVectorDBStorage = lazy_external_import(".kg.oracle_impl", "OracleVectorDBStorage")
|
| 70 |
MilvusVectorDBStorge = lazy_external_import(".kg.milvus_impl", "MilvusVectorDBStorge")
|
| 71 |
MongoKVStorage = lazy_external_import(".kg.mongo_impl", "MongoKVStorage")
|
|
|
|
| 72 |
|
| 73 |
|
| 74 |
def always_get_an_event_loop() -> asyncio.AbstractEventLoop:
|
|
@@ -256,6 +263,7 @@ class LightRAG:
|
|
| 256 |
"NanoVectorDBStorage": NanoVectorDBStorage,
|
| 257 |
"OracleVectorDBStorage": OracleVectorDBStorage,
|
| 258 |
"MilvusVectorDBStorge": MilvusVectorDBStorge,
|
|
|
|
| 259 |
# graph storage
|
| 260 |
"NetworkXStorage": NetworkXStorage,
|
| 261 |
"Neo4JStorage": Neo4JStorage,
|
|
|
|
| 48 |
|
| 49 |
|
| 50 |
def lazy_external_import(module_name: str, class_name: str):
|
| 51 |
+
"""Lazily import a class from an external module based on the package of the caller."""
|
| 52 |
|
| 53 |
+
def import_class(*args, **kwargs):
|
| 54 |
+
import inspect
|
| 55 |
import importlib
|
| 56 |
|
| 57 |
+
# Get the caller's module and package
|
| 58 |
+
caller_frame = inspect.currentframe().f_back
|
| 59 |
+
module = inspect.getmodule(caller_frame)
|
| 60 |
+
package = module.__package__ if module else None
|
| 61 |
|
| 62 |
+
# Import the module using importlib with package context
|
| 63 |
+
module = importlib.import_module(module_name, package=package)
|
| 64 |
+
|
| 65 |
+
# Get the class from the module and instantiate it
|
| 66 |
+
cls = getattr(module, class_name)
|
| 67 |
+
return cls(*args, **kwargs)
|
| 68 |
|
|
|
|
| 69 |
return import_class
|
| 70 |
|
| 71 |
|
|
|
|
| 75 |
OracleVectorDBStorage = lazy_external_import(".kg.oracle_impl", "OracleVectorDBStorage")
|
| 76 |
MilvusVectorDBStorge = lazy_external_import(".kg.milvus_impl", "MilvusVectorDBStorge")
|
| 77 |
MongoKVStorage = lazy_external_import(".kg.mongo_impl", "MongoKVStorage")
|
| 78 |
+
ChromaVectorDBStorage = lazy_external_import(".kg.chroma_impl", "ChromaVectorDBStorage")
|
| 79 |
|
| 80 |
|
| 81 |
def always_get_an_event_loop() -> asyncio.AbstractEventLoop:
|
|
|
|
| 263 |
"NanoVectorDBStorage": NanoVectorDBStorage,
|
| 264 |
"OracleVectorDBStorage": OracleVectorDBStorage,
|
| 265 |
"MilvusVectorDBStorge": MilvusVectorDBStorge,
|
| 266 |
+
"ChromaVectorDBStorage": ChromaVectorDBStorage,
|
| 267 |
# graph storage
|
| 268 |
"NetworkXStorage": NetworkXStorage,
|
| 269 |
"Neo4JStorage": Neo4JStorage,
|
test_chromadb.py
ADDED
|
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import asyncio
|
| 3 |
+
from lightrag import LightRAG, QueryParam
|
| 4 |
+
from lightrag.llm import gpt_4o_mini_complete, openai_embedding
|
| 5 |
+
from lightrag.utils import EmbeddingFunc
|
| 6 |
+
import numpy as np
|
| 7 |
+
|
| 8 |
+
#########
|
| 9 |
+
# Uncomment the below two lines if running in a jupyter notebook to handle the async nature of rag.insert()
|
| 10 |
+
# import nest_asyncio
|
| 11 |
+
# nest_asyncio.apply()
|
| 12 |
+
#########
|
| 13 |
+
WORKING_DIR = "./chromadb_test_dir"
|
| 14 |
+
if not os.path.exists(WORKING_DIR):
|
| 15 |
+
os.mkdir(WORKING_DIR)
|
| 16 |
+
|
| 17 |
+
# ChromaDB Configuration
|
| 18 |
+
CHROMADB_HOST = os.environ.get("CHROMADB_HOST", "localhost")
|
| 19 |
+
CHROMADB_PORT = int(os.environ.get("CHROMADB_PORT", 8000))
|
| 20 |
+
CHROMADB_AUTH_TOKEN = os.environ.get("CHROMADB_AUTH_TOKEN", "secret-token")
|
| 21 |
+
CHROMADB_AUTH_PROVIDER = os.environ.get(
|
| 22 |
+
"CHROMADB_AUTH_PROVIDER", "chromadb.auth.token_authn.TokenAuthClientProvider"
|
| 23 |
+
)
|
| 24 |
+
CHROMADB_AUTH_HEADER = os.environ.get("CHROMADB_AUTH_HEADER", "X-Chroma-Token")
|
| 25 |
+
|
| 26 |
+
# Embedding Configuration and Functions
|
| 27 |
+
EMBEDDING_MODEL = os.environ.get("EMBEDDING_MODEL", "text-embedding-3-large")
|
| 28 |
+
EMBEDDING_MAX_TOKEN_SIZE = int(os.environ.get("EMBEDDING_MAX_TOKEN_SIZE", 8192))
|
| 29 |
+
|
| 30 |
+
# ChromaDB requires knowing the dimension of embeddings upfront when
|
| 31 |
+
# creating a collection. The embedding dimension is model-specific
|
| 32 |
+
# (e.g. text-embedding-3-large uses 3072 dimensions)
|
| 33 |
+
# we dynamically determine it by running a test embedding
|
| 34 |
+
# and then pass it to the ChromaDBStorage class
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
async def embedding_func(texts: list[str]) -> np.ndarray:
|
| 38 |
+
return await openai_embedding(
|
| 39 |
+
texts,
|
| 40 |
+
model=EMBEDDING_MODEL,
|
| 41 |
+
)
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
async def get_embedding_dimension():
|
| 45 |
+
test_text = ["This is a test sentence."]
|
| 46 |
+
embedding = await embedding_func(test_text)
|
| 47 |
+
return embedding.shape[1]
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
async def create_embedding_function_instance():
|
| 51 |
+
# Get embedding dimension
|
| 52 |
+
embedding_dimension = await get_embedding_dimension()
|
| 53 |
+
# Create embedding function instance
|
| 54 |
+
return EmbeddingFunc(
|
| 55 |
+
embedding_dim=embedding_dimension,
|
| 56 |
+
max_token_size=EMBEDDING_MAX_TOKEN_SIZE,
|
| 57 |
+
func=embedding_func,
|
| 58 |
+
)
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
async def initialize_rag():
|
| 62 |
+
embedding_func_instance = await create_embedding_function_instance()
|
| 63 |
+
|
| 64 |
+
return LightRAG(
|
| 65 |
+
working_dir=WORKING_DIR,
|
| 66 |
+
llm_model_func=gpt_4o_mini_complete,
|
| 67 |
+
embedding_func=embedding_func_instance,
|
| 68 |
+
vector_storage="ChromaVectorDBStorage",
|
| 69 |
+
log_level="DEBUG",
|
| 70 |
+
embedding_batch_num=32,
|
| 71 |
+
vector_db_storage_cls_kwargs={
|
| 72 |
+
"host": CHROMADB_HOST,
|
| 73 |
+
"port": CHROMADB_PORT,
|
| 74 |
+
"auth_token": CHROMADB_AUTH_TOKEN,
|
| 75 |
+
"auth_provider": CHROMADB_AUTH_PROVIDER,
|
| 76 |
+
"auth_header_name": CHROMADB_AUTH_HEADER,
|
| 77 |
+
"collection_settings": {
|
| 78 |
+
"hnsw:space": "cosine",
|
| 79 |
+
"hnsw:construction_ef": 128,
|
| 80 |
+
"hnsw:search_ef": 128,
|
| 81 |
+
"hnsw:M": 16,
|
| 82 |
+
"hnsw:batch_size": 100,
|
| 83 |
+
"hnsw:sync_threshold": 1000,
|
| 84 |
+
},
|
| 85 |
+
},
|
| 86 |
+
)
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
# Run the initialization
|
| 90 |
+
rag = asyncio.run(initialize_rag())
|
| 91 |
+
|
| 92 |
+
# with open("./dickens/book.txt", "r", encoding="utf-8") as f:
|
| 93 |
+
# rag.insert(f.read())
|
| 94 |
+
|
| 95 |
+
# Perform naive search
|
| 96 |
+
print(
|
| 97 |
+
rag.query("What are the top themes in this story?", param=QueryParam(mode="naive"))
|
| 98 |
+
)
|
| 99 |
+
|
| 100 |
+
# Perform local search
|
| 101 |
+
print(
|
| 102 |
+
rag.query("What are the top themes in this story?", param=QueryParam(mode="local"))
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
+
# Perform global search
|
| 106 |
+
print(
|
| 107 |
+
rag.query("What are the top themes in this story?", param=QueryParam(mode="global"))
|
| 108 |
+
)
|
| 109 |
+
|
| 110 |
+
# Perform hybrid search
|
| 111 |
+
print(
|
| 112 |
+
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
|
| 113 |
+
)
|