jin
commited on
Commit
·
18a40e5
1
Parent(s):
82d36b3
support pipeline mode
Browse files- examples/lightrag_oracle_demo.py +23 -25
- lightrag/kg/oracle_impl.py +63 -161
- lightrag/lightrag.py +266 -122
- lightrag/operate.py +14 -13
- lightrag/utils.py +7 -1
examples/lightrag_oracle_demo.py
CHANGED
@@ -87,12 +87,14 @@ async def main():
|
|
87 |
# We use Oracle DB as the KV/vector/graph storage
|
88 |
# You can add `addon_params={"example_number": 1, "language": "Simplfied Chinese"}` to control the prompt
|
89 |
rag = LightRAG(
|
90 |
-
|
|
|
91 |
entity_extract_max_gleaning = 1,
|
92 |
|
93 |
-
enable_llm_cache=
|
94 |
-
embedding_cache_config= None, # {"enabled": True,"similarity_threshold": 0.90},
|
95 |
enable_llm_cache_for_entity_extract = True,
|
|
|
|
|
96 |
|
97 |
chunk_token_size=CHUNK_TOKEN_SIZE,
|
98 |
llm_model_max_token_size = MAX_TOKENS,
|
@@ -106,34 +108,30 @@ async def main():
|
|
106 |
graph_storage = "OracleGraphStorage",
|
107 |
kv_storage = "OracleKVStorage",
|
108 |
vector_storage="OracleVectorDBStorage",
|
109 |
-
doc_status_storage="OracleDocStatusStorage",
|
110 |
|
111 |
-
addon_params = {"example_number":1,
|
|
|
|
|
|
|
|
|
112 |
)
|
113 |
|
114 |
# Setthe KV/vector/graph storage's `db` property, so all operation will use same connection pool
|
115 |
-
rag.
|
116 |
-
|
117 |
-
rag.graph_storage_cls.db = oracle_db
|
118 |
-
rag.doc_status_storage_cls.db = oracle_db
|
119 |
-
rag.doc_status.db = oracle_db
|
120 |
-
rag.full_docs.db = oracle_db
|
121 |
-
rag.text_chunks.db = oracle_db
|
122 |
-
rag.llm_response_cache.db = oracle_db
|
123 |
-
rag.key_string_value_json_storage_cls.db = oracle_db
|
124 |
-
rag.chunks_vdb.db = oracle_db
|
125 |
-
rag.relationships_vdb.db = oracle_db
|
126 |
-
rag.entities_vdb.db = oracle_db
|
127 |
-
rag.graph_storage_cls.db = oracle_db
|
128 |
-
rag.chunk_entity_relation_graph.db = oracle_db
|
129 |
-
rag.llm_response_cache.db = oracle_db
|
130 |
-
|
131 |
-
rag.chunk_entity_relation_graph.embedding_func = rag.embedding_func
|
132 |
-
|
133 |
# Extract and Insert into LightRAG storage
|
134 |
-
with open("
|
135 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
|
|
|
|
|
|
|
137 |
# Perform search in different modes
|
138 |
modes = ["naive", "local", "global", "hybrid"]
|
139 |
for mode in modes:
|
|
|
87 |
# We use Oracle DB as the KV/vector/graph storage
|
88 |
# You can add `addon_params={"example_number": 1, "language": "Simplfied Chinese"}` to control the prompt
|
89 |
rag = LightRAG(
|
90 |
+
# log_level="DEBUG",
|
91 |
+
working_dir=WORKING_DIR,
|
92 |
entity_extract_max_gleaning = 1,
|
93 |
|
94 |
+
enable_llm_cache=True,
|
|
|
95 |
enable_llm_cache_for_entity_extract = True,
|
96 |
+
embedding_cache_config= None, # {"enabled": True,"similarity_threshold": 0.90},
|
97 |
+
|
98 |
|
99 |
chunk_token_size=CHUNK_TOKEN_SIZE,
|
100 |
llm_model_max_token_size = MAX_TOKENS,
|
|
|
108 |
graph_storage = "OracleGraphStorage",
|
109 |
kv_storage = "OracleKVStorage",
|
110 |
vector_storage="OracleVectorDBStorage",
|
|
|
111 |
|
112 |
+
addon_params = {"example_number":1,
|
113 |
+
"language":"Simplfied Chinese",
|
114 |
+
"entity_types": ["organization", "person", "geo", "event"],
|
115 |
+
"insert_batch_size":2,
|
116 |
+
}
|
117 |
)
|
118 |
|
119 |
# Setthe KV/vector/graph storage's `db` property, so all operation will use same connection pool
|
120 |
+
rag.set_storage_client(db_client = oracle_db)
|
121 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
# Extract and Insert into LightRAG storage
|
123 |
+
with open(WORKING_DIR+"/docs.txt", "r", encoding="utf-8") as f:
|
124 |
+
all_text = f.read()
|
125 |
+
texts = [x for x in all_text.split("\n") if x]
|
126 |
+
|
127 |
+
# New mode use pipeline
|
128 |
+
await rag.apipeline_process_documents(texts)
|
129 |
+
await rag.apipeline_process_chunks()
|
130 |
+
await rag.apipeline_process_extract_graph()
|
131 |
|
132 |
+
# Old method use ainsert
|
133 |
+
#await rag.ainsert(texts)
|
134 |
+
|
135 |
# Perform search in different modes
|
136 |
modes = ["naive", "local", "global", "hybrid"]
|
137 |
for mode in modes:
|
lightrag/kg/oracle_impl.py
CHANGED
@@ -12,9 +12,6 @@ from ..base import (
|
|
12 |
BaseGraphStorage,
|
13 |
BaseKVStorage,
|
14 |
BaseVectorStorage,
|
15 |
-
DocStatusStorage,
|
16 |
-
DocStatus,
|
17 |
-
DocProcessingStatus,
|
18 |
)
|
19 |
|
20 |
import oracledb
|
@@ -156,8 +153,6 @@ class OracleDB:
|
|
156 |
if data is None:
|
157 |
await cursor.execute(sql)
|
158 |
else:
|
159 |
-
# print(data)
|
160 |
-
# print(sql)
|
161 |
await cursor.execute(sql, data)
|
162 |
await connection.commit()
|
163 |
except Exception as e:
|
@@ -175,7 +170,7 @@ class OracleKVStorage(BaseKVStorage):
|
|
175 |
|
176 |
def __post_init__(self):
|
177 |
self._data = {}
|
178 |
-
self._max_batch_size = self.global_config
|
179 |
|
180 |
################ QUERY METHODS ################
|
181 |
|
@@ -204,12 +199,11 @@ class OracleKVStorage(BaseKVStorage):
|
|
204 |
array_res = await self.db.query(SQL, params, multirows=True)
|
205 |
res = {}
|
206 |
for row in array_res:
|
207 |
-
res[row["id"]] = row
|
208 |
return res
|
209 |
else:
|
210 |
return None
|
211 |
-
|
212 |
-
# Query by id
|
213 |
async def get_by_ids(self, ids: list[str], fields=None) -> Union[list[dict], None]:
|
214 |
"""get doc_chunks data based on id"""
|
215 |
SQL = SQL_TEMPLATES["get_by_ids_" + self.namespace].format(
|
@@ -228,8 +222,7 @@ class OracleKVStorage(BaseKVStorage):
|
|
228 |
dict_res[mode] = {}
|
229 |
for row in res:
|
230 |
dict_res[row["mode"]][row["id"]] = row
|
231 |
-
res = [{k: v} for k, v in dict_res.items()]
|
232 |
-
|
233 |
if res:
|
234 |
data = res # [{"data":i} for i in res]
|
235 |
# print(data)
|
@@ -237,38 +230,42 @@ class OracleKVStorage(BaseKVStorage):
|
|
237 |
else:
|
238 |
return None
|
239 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
240 |
async def filter_keys(self, keys: list[str]) -> set[str]:
|
241 |
-
"""
|
242 |
SQL = SQL_TEMPLATES["filter_keys"].format(
|
243 |
table_name=N_T[self.namespace], ids=",".join([f"'{id}'" for id in keys])
|
244 |
)
|
245 |
params = {"workspace": self.db.workspace}
|
246 |
-
try:
|
247 |
-
await self.db.query(SQL, params)
|
248 |
-
except Exception as e:
|
249 |
-
logger.error(f"Oracle database error: {e}")
|
250 |
-
print(SQL)
|
251 |
-
print(params)
|
252 |
res = await self.db.query(SQL, params, multirows=True)
|
253 |
-
data = None
|
254 |
if res:
|
255 |
exist_keys = [key["id"] for key in res]
|
256 |
data = set([s for s in keys if s not in exist_keys])
|
|
|
257 |
else:
|
258 |
-
|
259 |
-
|
260 |
-
return data
|
261 |
|
262 |
################ INSERT METHODS ################
|
263 |
async def upsert(self, data: dict[str, dict]):
|
264 |
-
left_data = {k: v for k, v in data.items() if k not in self._data}
|
265 |
-
self._data.update(left_data)
|
266 |
-
# print(self._data)
|
267 |
-
# values = []
|
268 |
if self.namespace == "text_chunks":
|
269 |
list_data = [
|
270 |
{
|
271 |
-
"
|
272 |
**{k1: v1 for k1, v1 in v.items()},
|
273 |
}
|
274 |
for k, v in data.items()
|
@@ -284,33 +281,30 @@ class OracleKVStorage(BaseKVStorage):
|
|
284 |
embeddings = np.concatenate(embeddings_list)
|
285 |
for i, d in enumerate(list_data):
|
286 |
d["__vector__"] = embeddings[i]
|
287 |
-
|
|
|
288 |
for item in list_data:
|
289 |
-
|
290 |
-
|
291 |
-
"check_id": item["__id__"],
|
292 |
-
"id": item["__id__"],
|
293 |
"content": item["content"],
|
294 |
"workspace": self.db.workspace,
|
295 |
"tokens": item["tokens"],
|
296 |
"chunk_order_index": item["chunk_order_index"],
|
297 |
"full_doc_id": item["full_doc_id"],
|
298 |
"content_vector": item["__vector__"],
|
|
|
299 |
}
|
300 |
-
|
301 |
-
await self.db.execute(merge_sql, data)
|
302 |
-
|
303 |
if self.namespace == "full_docs":
|
304 |
-
for k, v in
|
305 |
# values.clear()
|
306 |
merge_sql = SQL_TEMPLATES["merge_doc_full"]
|
307 |
-
|
308 |
"id": k,
|
309 |
"content": v["content"],
|
310 |
"workspace": self.db.workspace,
|
311 |
}
|
312 |
-
|
313 |
-
await self.db.execute(merge_sql, data)
|
314 |
|
315 |
if self.namespace == "llm_response_cache":
|
316 |
for mode, items in data.items():
|
@@ -325,102 +319,20 @@ class OracleKVStorage(BaseKVStorage):
|
|
325 |
}
|
326 |
|
327 |
await self.db.execute(upsert_sql, _data)
|
328 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
329 |
|
330 |
async def index_done_callback(self):
|
331 |
if self.namespace in ["full_docs", "text_chunks"]:
|
332 |
logger.info("full doc and chunk data had been saved into oracle db!")
|
333 |
|
334 |
|
335 |
-
@dataclass
|
336 |
-
class OracleDocStatusStorage(DocStatusStorage):
|
337 |
-
"""Oracle implementation of document status storage"""
|
338 |
-
# should pass db object to self.db
|
339 |
-
db: OracleDB = None
|
340 |
-
meta_fields = None
|
341 |
-
|
342 |
-
def __post_init__(self):
|
343 |
-
pass
|
344 |
-
|
345 |
-
async def filter_keys(self, ids: list[str]) -> set[str]:
|
346 |
-
"""Return keys that don't exist in storage"""
|
347 |
-
SQL = SQL_TEMPLATES["get_by_id_" + self.namespace].format(
|
348 |
-
ids = ",".join([f"'{id}'" for id in ids])
|
349 |
-
)
|
350 |
-
params = {"workspace": self.db.workspace}
|
351 |
-
res = await self.db.query(SQL, params, True)
|
352 |
-
# The result is like [{'id': 'id1'}, {'id': 'id2'}, ...].
|
353 |
-
if res:
|
354 |
-
existed = set([element["id"] for element in res])
|
355 |
-
return set(ids) - existed
|
356 |
-
else:
|
357 |
-
return set(ids)
|
358 |
-
|
359 |
-
async def get_status_counts(self) -> Dict[str, int]:
|
360 |
-
"""Get counts of documents in each status"""
|
361 |
-
SQL = SQL_TEMPLATES["get_status_counts"]
|
362 |
-
params = {"workspace": self.db.workspace}
|
363 |
-
res = await self.db.query(SQL, params, True)
|
364 |
-
# Result is like [{'status': 'PENDING', 'count': 1}, {'status': 'PROCESSING', 'count': 2}, ...]
|
365 |
-
counts = {}
|
366 |
-
for doc in res:
|
367 |
-
counts[doc["status"]] = doc["count"]
|
368 |
-
return counts
|
369 |
-
|
370 |
-
async def get_docs_by_status(self, status: DocStatus) -> Dict[str, DocProcessingStatus]:
|
371 |
-
"""Get all documents by status"""
|
372 |
-
SQL = SQL_TEMPLATES["get_docs_by_status"]
|
373 |
-
params = {"workspace": self.db.workspace, "status": status}
|
374 |
-
res = await self.db.query(SQL, params, True)
|
375 |
-
# Result is like [{'id': 'id1', 'status': 'PENDING', 'updated_at': '2023-07-01 00:00:00'}, {'id': 'id2', 'status': 'PENDING', 'updated_at': '2023-07-01 00:00:00'}, ...]
|
376 |
-
# Converting to be a dict
|
377 |
-
return {
|
378 |
-
element["id"]: DocProcessingStatus(
|
379 |
-
#content_summary=element["content_summary"],
|
380 |
-
content_summary = "",
|
381 |
-
content_length=element["CONTENT_LENGTH"],
|
382 |
-
status=element["STATUS"],
|
383 |
-
created_at=element["CREATETIME"],
|
384 |
-
updated_at=element["UPDATETIME"],
|
385 |
-
chunks_count=-1,
|
386 |
-
#chunks_count=element["chunks_count"],
|
387 |
-
)
|
388 |
-
for element in res
|
389 |
-
}
|
390 |
-
|
391 |
-
async def get_failed_docs(self) -> Dict[str, DocProcessingStatus]:
|
392 |
-
"""Get all failed documents"""
|
393 |
-
return await self.get_docs_by_status(DocStatus.FAILED)
|
394 |
-
|
395 |
-
async def get_pending_docs(self) -> Dict[str, DocProcessingStatus]:
|
396 |
-
"""Get all pending documents"""
|
397 |
-
return await self.get_docs_by_status(DocStatus.PENDING)
|
398 |
-
|
399 |
-
async def index_done_callback(self):
|
400 |
-
"""Save data after indexing, but for ORACLE, we already saved them during the upsert stage, so no action to take here"""
|
401 |
-
logger.info("Doc status had been saved into ORACLE db!")
|
402 |
-
|
403 |
-
async def upsert(self, data: dict[str, dict]):
|
404 |
-
"""Update or insert document status
|
405 |
-
|
406 |
-
Args:
|
407 |
-
data: Dictionary of document IDs and their status data
|
408 |
-
"""
|
409 |
-
SQL = SQL_TEMPLATES["merge_doc_status"]
|
410 |
-
for k, v in data.items():
|
411 |
-
# chunks_count is optional
|
412 |
-
params = {
|
413 |
-
"workspace": self.db.workspace,
|
414 |
-
"id": k,
|
415 |
-
"content_summary": v["content_summary"],
|
416 |
-
"content_length": v["content_length"],
|
417 |
-
"chunks_count": v["chunks_count"] if "chunks_count" in v else -1,
|
418 |
-
"status": v["status"],
|
419 |
-
}
|
420 |
-
await self.db.execute(SQL, params)
|
421 |
-
return data
|
422 |
-
|
423 |
-
|
424 |
@dataclass
|
425 |
class OracleVectorDBStorage(BaseVectorStorage):
|
426 |
# should pass db object to self.db
|
@@ -466,7 +378,7 @@ class OracleGraphStorage(BaseGraphStorage):
|
|
466 |
|
467 |
def __post_init__(self):
|
468 |
"""从graphml文件加载图"""
|
469 |
-
self._max_batch_size = self.global_config
|
470 |
|
471 |
#################### insert method ################
|
472 |
|
@@ -500,7 +412,6 @@ class OracleGraphStorage(BaseGraphStorage):
|
|
500 |
"content": content,
|
501 |
"content_vector": content_vector,
|
502 |
}
|
503 |
-
# print(merge_sql)
|
504 |
await self.db.execute(merge_sql, data)
|
505 |
# self._graph.add_node(node_id, **node_data)
|
506 |
|
@@ -718,9 +629,10 @@ TABLES = {
|
|
718 |
},
|
719 |
"LIGHTRAG_DOC_CHUNKS": {
|
720 |
"ddl": """CREATE TABLE LIGHTRAG_DOC_CHUNKS (
|
721 |
-
id varchar(256)
|
722 |
workspace varchar(1024),
|
723 |
full_doc_id varchar(256),
|
|
|
724 |
chunk_order_index NUMBER,
|
725 |
tokens NUMBER,
|
726 |
content CLOB,
|
@@ -795,9 +707,9 @@ TABLES = {
|
|
795 |
|
796 |
SQL_TEMPLATES = {
|
797 |
# SQL for KVStorage
|
798 |
-
"get_by_id_full_docs": "select ID,
|
799 |
|
800 |
-
"get_by_id_text_chunks": "select ID,TOKENS,
|
801 |
|
802 |
"get_by_id_llm_response_cache": """SELECT id, original_prompt, NVL(return_value, '') as "return", cache_mode as "mode"
|
803 |
FROM LIGHTRAG_LLM_CACHE WHERE workspace=:workspace AND id=:id""",
|
@@ -808,24 +720,34 @@ SQL_TEMPLATES = {
|
|
808 |
"get_by_ids_llm_response_cache": """SELECT id, original_prompt, NVL(return_value, '') as "return", cache_mode as "mode"
|
809 |
FROM LIGHTRAG_LLM_CACHE WHERE workspace=:workspace AND id IN ({ids})""",
|
810 |
|
811 |
-
"get_by_ids_full_docs": "select
|
812 |
|
813 |
-
"get_by_ids_text_chunks": "select ID,TOKENS,
|
|
|
|
|
814 |
|
|
|
|
|
|
|
|
|
|
|
|
|
815 |
"filter_keys": "select id from {table_name} where workspace=:workspace and id in ({ids})",
|
816 |
|
|
|
|
|
817 |
"merge_doc_full": """MERGE INTO LIGHTRAG_DOC_FULL a
|
818 |
USING DUAL
|
819 |
ON (a.id = :id and a.workspace = :workspace)
|
820 |
WHEN NOT MATCHED THEN
|
821 |
INSERT(id,content,workspace) values(:id,:content,:workspace)""",
|
822 |
|
823 |
-
"merge_chunk": """MERGE INTO LIGHTRAG_DOC_CHUNKS
|
824 |
USING DUAL
|
825 |
-
ON (
|
826 |
-
WHEN NOT MATCHED THEN
|
827 |
-
|
828 |
-
|
829 |
|
830 |
"upsert_llm_response_cache": """MERGE INTO LIGHTRAG_LLM_CACHE a
|
831 |
USING DUAL
|
@@ -838,27 +760,7 @@ SQL_TEMPLATES = {
|
|
838 |
return_value = :return_value,
|
839 |
cache_mode = :cache_mode,
|
840 |
updatetime = SYSDATE""",
|
841 |
-
|
842 |
-
"get_by_id_doc_status": "SELECT id FROM LIGHTRAG_DOC_FULL WHERE workspace=:workspace AND id IN ({ids})",
|
843 |
-
|
844 |
-
"get_status_counts": """SELECT status as "status", COUNT(1) as "count"
|
845 |
-
FROM LIGHTRAG_DOC_FULL WHERE workspace=:workspace GROUP BY STATUS""",
|
846 |
-
|
847 |
-
"get_docs_by_status": """select content_length,status,
|
848 |
-
TO_CHAR(created_at,'YYYY-MM-DD HH24:MI:SS') as created_at,TO_CHAR(updatetime,'YYYY-MM-DD HH24:MI:SS') as updatetime
|
849 |
-
from LIGHTRAG_DOC_STATUS where workspace=:workspace and status=:status""",
|
850 |
|
851 |
-
"merge_doc_status":"""MERGE INTO LIGHTRAG_DOC_FULL a
|
852 |
-
USING DUAL
|
853 |
-
ON (a.id = :id and a.workspace = :workspace)
|
854 |
-
WHEN NOT MATCHED THEN
|
855 |
-
INSERT (id,content_summary,content_length,chunks_count,status) values(:id,:content_summary,:content_length,:chunks_count,:status)
|
856 |
-
WHEN MATCHED THEN UPDATE
|
857 |
-
SET content_summary = :content_summary,
|
858 |
-
content_length = :content_length,
|
859 |
-
chunks_count = :chunks_count,
|
860 |
-
status = :status,
|
861 |
-
updatetime = SYSDATE""",
|
862 |
|
863 |
# SQL for VectorStorage
|
864 |
"entities": """SELECT name as entity_name FROM
|
|
|
12 |
BaseGraphStorage,
|
13 |
BaseKVStorage,
|
14 |
BaseVectorStorage,
|
|
|
|
|
|
|
15 |
)
|
16 |
|
17 |
import oracledb
|
|
|
153 |
if data is None:
|
154 |
await cursor.execute(sql)
|
155 |
else:
|
|
|
|
|
156 |
await cursor.execute(sql, data)
|
157 |
await connection.commit()
|
158 |
except Exception as e:
|
|
|
170 |
|
171 |
def __post_init__(self):
|
172 |
self._data = {}
|
173 |
+
self._max_batch_size = self.global_config.get("embedding_batch_num",10)
|
174 |
|
175 |
################ QUERY METHODS ################
|
176 |
|
|
|
199 |
array_res = await self.db.query(SQL, params, multirows=True)
|
200 |
res = {}
|
201 |
for row in array_res:
|
202 |
+
res[row["id"]] = row
|
203 |
return res
|
204 |
else:
|
205 |
return None
|
206 |
+
|
|
|
207 |
async def get_by_ids(self, ids: list[str], fields=None) -> Union[list[dict], None]:
|
208 |
"""get doc_chunks data based on id"""
|
209 |
SQL = SQL_TEMPLATES["get_by_ids_" + self.namespace].format(
|
|
|
222 |
dict_res[mode] = {}
|
223 |
for row in res:
|
224 |
dict_res[row["mode"]][row["id"]] = row
|
225 |
+
res = [{k: v} for k, v in dict_res.items()]
|
|
|
226 |
if res:
|
227 |
data = res # [{"data":i} for i in res]
|
228 |
# print(data)
|
|
|
230 |
else:
|
231 |
return None
|
232 |
|
233 |
+
async def get_by_status_and_ids(self, status: str, ids: list[str]) -> Union[list[dict], None]:
|
234 |
+
"""Specifically for llm_response_cache."""
|
235 |
+
if ids is not None:
|
236 |
+
SQL = SQL_TEMPLATES["get_by_status_ids_" + self.namespace].format(
|
237 |
+
ids=",".join([f"'{id}'" for id in ids])
|
238 |
+
)
|
239 |
+
else:
|
240 |
+
SQL = SQL_TEMPLATES["get_by_status_" + self.namespace]
|
241 |
+
params = {"workspace": self.db.workspace, "status": status}
|
242 |
+
res = await self.db.query(SQL, params, multirows=True)
|
243 |
+
if res:
|
244 |
+
return res
|
245 |
+
else:
|
246 |
+
return None
|
247 |
+
|
248 |
async def filter_keys(self, keys: list[str]) -> set[str]:
|
249 |
+
"""Return keys that don't exist in storage"""
|
250 |
SQL = SQL_TEMPLATES["filter_keys"].format(
|
251 |
table_name=N_T[self.namespace], ids=",".join([f"'{id}'" for id in keys])
|
252 |
)
|
253 |
params = {"workspace": self.db.workspace}
|
|
|
|
|
|
|
|
|
|
|
|
|
254 |
res = await self.db.query(SQL, params, multirows=True)
|
|
|
255 |
if res:
|
256 |
exist_keys = [key["id"] for key in res]
|
257 |
data = set([s for s in keys if s not in exist_keys])
|
258 |
+
return data
|
259 |
else:
|
260 |
+
return set(keys)
|
261 |
+
|
|
|
262 |
|
263 |
################ INSERT METHODS ################
|
264 |
async def upsert(self, data: dict[str, dict]):
|
|
|
|
|
|
|
|
|
265 |
if self.namespace == "text_chunks":
|
266 |
list_data = [
|
267 |
{
|
268 |
+
"id": k,
|
269 |
**{k1: v1 for k1, v1 in v.items()},
|
270 |
}
|
271 |
for k, v in data.items()
|
|
|
281 |
embeddings = np.concatenate(embeddings_list)
|
282 |
for i, d in enumerate(list_data):
|
283 |
d["__vector__"] = embeddings[i]
|
284 |
+
|
285 |
+
merge_sql = SQL_TEMPLATES["merge_chunk"]
|
286 |
for item in list_data:
|
287 |
+
_data = {
|
288 |
+
"id": item["id"],
|
|
|
|
|
289 |
"content": item["content"],
|
290 |
"workspace": self.db.workspace,
|
291 |
"tokens": item["tokens"],
|
292 |
"chunk_order_index": item["chunk_order_index"],
|
293 |
"full_doc_id": item["full_doc_id"],
|
294 |
"content_vector": item["__vector__"],
|
295 |
+
"status": item["status"],
|
296 |
}
|
297 |
+
await self.db.execute(merge_sql, _data)
|
|
|
|
|
298 |
if self.namespace == "full_docs":
|
299 |
+
for k, v in data.items():
|
300 |
# values.clear()
|
301 |
merge_sql = SQL_TEMPLATES["merge_doc_full"]
|
302 |
+
_data = {
|
303 |
"id": k,
|
304 |
"content": v["content"],
|
305 |
"workspace": self.db.workspace,
|
306 |
}
|
307 |
+
await self.db.execute(merge_sql, _data)
|
|
|
308 |
|
309 |
if self.namespace == "llm_response_cache":
|
310 |
for mode, items in data.items():
|
|
|
319 |
}
|
320 |
|
321 |
await self.db.execute(upsert_sql, _data)
|
322 |
+
return None
|
323 |
+
|
324 |
+
async def change_status(self, id: str, status: str):
|
325 |
+
SQL = SQL_TEMPLATES["change_status"].format(
|
326 |
+
table_name=N_T[self.namespace]
|
327 |
+
)
|
328 |
+
params = {"workspace": self.db.workspace, "id": id, "status": status}
|
329 |
+
await self.db.execute(SQL, params)
|
330 |
|
331 |
async def index_done_callback(self):
|
332 |
if self.namespace in ["full_docs", "text_chunks"]:
|
333 |
logger.info("full doc and chunk data had been saved into oracle db!")
|
334 |
|
335 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
336 |
@dataclass
|
337 |
class OracleVectorDBStorage(BaseVectorStorage):
|
338 |
# should pass db object to self.db
|
|
|
378 |
|
379 |
def __post_init__(self):
|
380 |
"""从graphml文件加载图"""
|
381 |
+
self._max_batch_size = self.global_config.get("embedding_batch_num", 10)
|
382 |
|
383 |
#################### insert method ################
|
384 |
|
|
|
412 |
"content": content,
|
413 |
"content_vector": content_vector,
|
414 |
}
|
|
|
415 |
await self.db.execute(merge_sql, data)
|
416 |
# self._graph.add_node(node_id, **node_data)
|
417 |
|
|
|
629 |
},
|
630 |
"LIGHTRAG_DOC_CHUNKS": {
|
631 |
"ddl": """CREATE TABLE LIGHTRAG_DOC_CHUNKS (
|
632 |
+
id varchar(256),
|
633 |
workspace varchar(1024),
|
634 |
full_doc_id varchar(256),
|
635 |
+
status varchar(256),
|
636 |
chunk_order_index NUMBER,
|
637 |
tokens NUMBER,
|
638 |
content CLOB,
|
|
|
707 |
|
708 |
SQL_TEMPLATES = {
|
709 |
# SQL for KVStorage
|
710 |
+
"get_by_id_full_docs": "select ID,content,status from LIGHTRAG_DOC_FULL where workspace=:workspace and ID=:id",
|
711 |
|
712 |
+
"get_by_id_text_chunks": "select ID,TOKENS,content,CHUNK_ORDER_INDEX,FULL_DOC_ID,status from LIGHTRAG_DOC_CHUNKS where workspace=:workspace and ID=:id",
|
713 |
|
714 |
"get_by_id_llm_response_cache": """SELECT id, original_prompt, NVL(return_value, '') as "return", cache_mode as "mode"
|
715 |
FROM LIGHTRAG_LLM_CACHE WHERE workspace=:workspace AND id=:id""",
|
|
|
720 |
"get_by_ids_llm_response_cache": """SELECT id, original_prompt, NVL(return_value, '') as "return", cache_mode as "mode"
|
721 |
FROM LIGHTRAG_LLM_CACHE WHERE workspace=:workspace AND id IN ({ids})""",
|
722 |
|
723 |
+
"get_by_ids_full_docs": "select t.*,createtime as created_at from LIGHTRAG_DOC_FULL t where workspace=:workspace and ID in ({ids})",
|
724 |
|
725 |
+
"get_by_ids_text_chunks": "select ID,TOKENS,content,CHUNK_ORDER_INDEX,FULL_DOC_ID from LIGHTRAG_DOC_CHUNKS where workspace=:workspace and ID in ({ids})",
|
726 |
+
|
727 |
+
"get_by_status_ids_full_docs": "select id,status from LIGHTRAG_DOC_FULL t where workspace=:workspace AND status=:status and ID in ({ids})",
|
728 |
|
729 |
+
"get_by_status_ids_text_chunks": "select id,status from LIGHTRAG_DOC_CHUNKS where workspace=:workspace and status=:status ID in ({ids})",
|
730 |
+
|
731 |
+
"get_by_status_full_docs": "select id,status from LIGHTRAG_DOC_FULL t where workspace=:workspace AND status=:status",
|
732 |
+
|
733 |
+
"get_by_status_text_chunks": "select id,status from LIGHTRAG_DOC_CHUNKS where workspace=:workspace and status=:status",
|
734 |
+
|
735 |
"filter_keys": "select id from {table_name} where workspace=:workspace and id in ({ids})",
|
736 |
|
737 |
+
"change_status": "update {table_name} set status=:status,updatetime=SYSDATE where workspace=:workspace and id=:id",
|
738 |
+
|
739 |
"merge_doc_full": """MERGE INTO LIGHTRAG_DOC_FULL a
|
740 |
USING DUAL
|
741 |
ON (a.id = :id and a.workspace = :workspace)
|
742 |
WHEN NOT MATCHED THEN
|
743 |
INSERT(id,content,workspace) values(:id,:content,:workspace)""",
|
744 |
|
745 |
+
"merge_chunk": """MERGE INTO LIGHTRAG_DOC_CHUNKS
|
746 |
USING DUAL
|
747 |
+
ON (id = :id and workspace = :workspace)
|
748 |
+
WHEN NOT MATCHED THEN INSERT
|
749 |
+
(id,content,workspace,tokens,chunk_order_index,full_doc_id,content_vector,status)
|
750 |
+
values (:id,:content,:workspace,:tokens,:chunk_order_index,:full_doc_id,:content_vector,:status) """,
|
751 |
|
752 |
"upsert_llm_response_cache": """MERGE INTO LIGHTRAG_LLM_CACHE a
|
753 |
USING DUAL
|
|
|
760 |
return_value = :return_value,
|
761 |
cache_mode = :cache_mode,
|
762 |
updatetime = SYSDATE""",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
763 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
764 |
|
765 |
# SQL for VectorStorage
|
766 |
"entities": """SELECT name as entity_name FROM
|
lightrag/lightrag.py
CHANGED
@@ -26,6 +26,7 @@ from .utils import (
|
|
26 |
convert_response_to_json,
|
27 |
logger,
|
28 |
set_logger,
|
|
|
29 |
)
|
30 |
from .base import (
|
31 |
BaseGraphStorage,
|
@@ -36,22 +37,31 @@ from .base import (
|
|
36 |
DocStatus,
|
37 |
)
|
38 |
|
39 |
-
from .storage import (
|
40 |
-
JsonKVStorage,
|
41 |
-
NanoVectorDBStorage,
|
42 |
-
NetworkXStorage,
|
43 |
-
JsonDocStatusStorage,
|
44 |
-
)
|
45 |
-
|
46 |
from .prompt import GRAPH_FIELD_SEP
|
47 |
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
def lazy_external_import(module_name: str, class_name: str):
|
57 |
"""Lazily import a class from an external module based on the package of the caller."""
|
@@ -65,36 +75,13 @@ def lazy_external_import(module_name: str, class_name: str):
|
|
65 |
|
66 |
def import_class(*args, **kwargs):
|
67 |
import importlib
|
68 |
-
|
69 |
-
# Import the module using importlib
|
70 |
module = importlib.import_module(module_name, package=package)
|
71 |
-
|
72 |
-
# Get the class from the module and instantiate it
|
73 |
cls = getattr(module, class_name)
|
74 |
return cls(*args, **kwargs)
|
75 |
|
76 |
return import_class
|
77 |
|
78 |
|
79 |
-
Neo4JStorage = lazy_external_import(".kg.neo4j_impl", "Neo4JStorage")
|
80 |
-
OracleKVStorage = lazy_external_import(".kg.oracle_impl", "OracleKVStorage")
|
81 |
-
OracleGraphStorage = lazy_external_import(".kg.oracle_impl", "OracleGraphStorage")
|
82 |
-
OracleVectorDBStorage = lazy_external_import(".kg.oracle_impl", "OracleVectorDBStorage")
|
83 |
-
OracleDocStatusStorage = lazy_external_import(".kg.oracle_impl", "OracleDocStatusStorage")
|
84 |
-
MilvusVectorDBStorge = lazy_external_import(".kg.milvus_impl", "MilvusVectorDBStorge")
|
85 |
-
MongoKVStorage = lazy_external_import(".kg.mongo_impl", "MongoKVStorage")
|
86 |
-
ChromaVectorDBStorage = lazy_external_import(".kg.chroma_impl", "ChromaVectorDBStorage")
|
87 |
-
TiDBKVStorage = lazy_external_import(".kg.tidb_impl", "TiDBKVStorage")
|
88 |
-
TiDBVectorDBStorage = lazy_external_import(".kg.tidb_impl", "TiDBVectorDBStorage")
|
89 |
-
TiDBGraphStorage = lazy_external_import(".kg.tidb_impl", "TiDBGraphStorage")
|
90 |
-
PGKVStorage = lazy_external_import(".kg.postgres_impl", "PGKVStorage")
|
91 |
-
PGVectorStorage = lazy_external_import(".kg.postgres_impl", "PGVectorStorage")
|
92 |
-
AGEStorage = lazy_external_import(".kg.age_impl", "AGEStorage")
|
93 |
-
PGGraphStorage = lazy_external_import(".kg.postgres_impl", "PGGraphStorage")
|
94 |
-
GremlinStorage = lazy_external_import(".kg.gremlin_impl", "GremlinStorage")
|
95 |
-
PGDocStatusStorage = lazy_external_import(".kg.postgres_impl", "PGDocStatusStorage")
|
96 |
-
|
97 |
-
|
98 |
def always_get_an_event_loop() -> asyncio.AbstractEventLoop:
|
99 |
"""
|
100 |
Ensure that there is always an event loop available.
|
@@ -198,52 +185,64 @@ class LightRAG:
|
|
198 |
logger.setLevel(self.log_level)
|
199 |
|
200 |
logger.info(f"Logger initialized for working directory: {self.working_dir}")
|
|
|
|
|
|
|
201 |
|
202 |
-
|
|
|
|
|
203 |
logger.debug(f"LightRAG init with param:\n {_print_config}\n")
|
204 |
|
205 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
206 |
|
207 |
-
self.
|
208 |
-
self.
|
|
|
209 |
)
|
210 |
-
self.vector_db_storage_cls: Type[BaseVectorStorage] = self._get_storage_class()[
|
211 |
-
self.vector_storage
|
212 |
-
]
|
213 |
-
self.graph_storage_cls: Type[BaseGraphStorage] = self._get_storage_class()[
|
214 |
-
self.graph_storage
|
215 |
-
]
|
216 |
|
217 |
-
|
218 |
-
|
219 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
220 |
|
221 |
self.llm_response_cache = self.key_string_value_json_storage_cls(
|
222 |
namespace="llm_response_cache",
|
223 |
-
global_config=asdict(self),
|
224 |
embedding_func=None,
|
225 |
)
|
226 |
|
227 |
-
self.embedding_func = limit_async_func_call(self.embedding_func_max_async)(
|
228 |
-
self.embedding_func
|
229 |
-
)
|
230 |
-
|
231 |
####
|
232 |
# add embedding func by walter
|
233 |
####
|
234 |
self.full_docs = self.key_string_value_json_storage_cls(
|
235 |
namespace="full_docs",
|
236 |
-
global_config=asdict(self),
|
237 |
embedding_func=self.embedding_func,
|
238 |
)
|
239 |
self.text_chunks = self.key_string_value_json_storage_cls(
|
240 |
namespace="text_chunks",
|
241 |
-
global_config=asdict(self),
|
242 |
embedding_func=self.embedding_func,
|
243 |
)
|
244 |
self.chunk_entity_relation_graph = self.graph_storage_cls(
|
245 |
namespace="chunk_entity_relation",
|
246 |
-
global_config=asdict(self),
|
247 |
embedding_func=self.embedding_func,
|
248 |
)
|
249 |
####
|
@@ -252,73 +251,64 @@ class LightRAG:
|
|
252 |
|
253 |
self.entities_vdb = self.vector_db_storage_cls(
|
254 |
namespace="entities",
|
255 |
-
global_config=asdict(self),
|
256 |
embedding_func=self.embedding_func,
|
257 |
meta_fields={"entity_name"},
|
258 |
)
|
259 |
self.relationships_vdb = self.vector_db_storage_cls(
|
260 |
namespace="relationships",
|
261 |
-
global_config=asdict(self),
|
262 |
embedding_func=self.embedding_func,
|
263 |
meta_fields={"src_id", "tgt_id"},
|
264 |
)
|
265 |
self.chunks_vdb = self.vector_db_storage_cls(
|
266 |
namespace="chunks",
|
267 |
-
global_config=asdict(self),
|
268 |
embedding_func=self.embedding_func,
|
269 |
)
|
270 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
271 |
self.llm_model_func = limit_async_func_call(self.llm_model_max_async)(
|
272 |
partial(
|
273 |
self.llm_model_func,
|
274 |
-
hashing_kv=
|
275 |
-
if self.llm_response_cache
|
276 |
-
and hasattr(self.llm_response_cache, "global_config")
|
277 |
-
else self.key_string_value_json_storage_cls(
|
278 |
-
namespace="llm_response_cache",
|
279 |
-
global_config=asdict(self),
|
280 |
-
embedding_func=None,
|
281 |
-
),
|
282 |
**self.llm_model_kwargs,
|
283 |
)
|
284 |
)
|
285 |
|
286 |
# Initialize document status storage
|
287 |
-
self.doc_status_storage_cls = self._get_storage_class(
|
288 |
self.doc_status = self.doc_status_storage_cls(
|
289 |
namespace="doc_status",
|
290 |
-
global_config=
|
291 |
embedding_func=None,
|
292 |
)
|
293 |
|
294 |
-
def _get_storage_class(self) -> dict:
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
"PGDocStatusStorage": PGDocStatusStorage,
|
316 |
-
"PGVectorStorage": PGVectorStorage,
|
317 |
-
"TiDBGraphStorage": TiDBGraphStorage,
|
318 |
-
"GremlinStorage": GremlinStorage,
|
319 |
-
# "ArangoDBStorage": ArangoDBStorage
|
320 |
-
"JsonDocStatusStorage": JsonDocStatusStorage,
|
321 |
-
}
|
322 |
|
323 |
def insert(
|
324 |
self, string_or_strings, split_by_character=None, split_by_character_only=False
|
@@ -358,6 +348,11 @@ class LightRAG:
|
|
358 |
}
|
359 |
for content in unique_contents
|
360 |
}
|
|
|
|
|
|
|
|
|
|
|
361 |
|
362 |
# 3. Filter out already processed documents
|
363 |
_add_doc_keys = await self.doc_status.filter_keys(list(new_docs.keys()))
|
@@ -406,12 +401,7 @@ class LightRAG:
|
|
406 |
}
|
407 |
|
408 |
# Update status with chunks information
|
409 |
-
doc_status.update(
|
410 |
-
{
|
411 |
-
"chunks_count": len(chunks),
|
412 |
-
"updated_at": datetime.now().isoformat(),
|
413 |
-
}
|
414 |
-
)
|
415 |
await self.doc_status.upsert({doc_id: doc_status})
|
416 |
|
417 |
try:
|
@@ -435,30 +425,16 @@ class LightRAG:
|
|
435 |
|
436 |
self.chunk_entity_relation_graph = maybe_new_kg
|
437 |
|
438 |
-
|
439 |
-
await self.full_docs.upsert(
|
440 |
-
{doc_id: {"content": doc["content"]}}
|
441 |
-
)
|
442 |
await self.text_chunks.upsert(chunks)
|
443 |
|
444 |
# Update status to processed
|
445 |
-
doc_status.update(
|
446 |
-
{
|
447 |
-
"status": DocStatus.PROCESSED,
|
448 |
-
"updated_at": datetime.now().isoformat(),
|
449 |
-
}
|
450 |
-
)
|
451 |
await self.doc_status.upsert({doc_id: doc_status})
|
452 |
|
453 |
except Exception as e:
|
454 |
# Mark as failed if any step fails
|
455 |
-
doc_status.update(
|
456 |
-
{
|
457 |
-
"status": DocStatus.FAILED,
|
458 |
-
"error": str(e),
|
459 |
-
"updated_at": datetime.now().isoformat(),
|
460 |
-
}
|
461 |
-
)
|
462 |
await self.doc_status.upsert({doc_id: doc_status})
|
463 |
raise e
|
464 |
|
@@ -540,6 +516,174 @@ class LightRAG:
|
|
540 |
if update_storage:
|
541 |
await self._insert_done()
|
542 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
543 |
async def _insert_done(self):
|
544 |
tasks = []
|
545 |
for storage_inst in [
|
|
|
26 |
convert_response_to_json,
|
27 |
logger,
|
28 |
set_logger,
|
29 |
+
statistic_data
|
30 |
)
|
31 |
from .base import (
|
32 |
BaseGraphStorage,
|
|
|
37 |
DocStatus,
|
38 |
)
|
39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
from .prompt import GRAPH_FIELD_SEP
|
41 |
|
42 |
+
STORAGES = {
|
43 |
+
"JsonKVStorage": '.storage',
|
44 |
+
"NanoVectorDBStorage": '.storage',
|
45 |
+
"NetworkXStorage": '.storage',
|
46 |
+
"JsonDocStatusStorage": '.storage',
|
47 |
+
|
48 |
+
"Neo4JStorage":".kg.neo4j_impl",
|
49 |
+
"OracleKVStorage":".kg.oracle_impl",
|
50 |
+
"OracleGraphStorage":".kg.oracle_impl",
|
51 |
+
"OracleVectorDBStorage":".kg.oracle_impl",
|
52 |
+
"MilvusVectorDBStorge":".kg.milvus_impl",
|
53 |
+
"MongoKVStorage":".kg.mongo_impl",
|
54 |
+
"ChromaVectorDBStorage":".kg.chroma_impl",
|
55 |
+
"TiDBKVStorage":".kg.tidb_impl",
|
56 |
+
"TiDBVectorDBStorage":".kg.tidb_impl",
|
57 |
+
"TiDBGraphStorage":".kg.tidb_impl",
|
58 |
+
"PGKVStorage":".kg.postgres_impl",
|
59 |
+
"PGVectorStorage":".kg.postgres_impl",
|
60 |
+
"AGEStorage":".kg.age_impl",
|
61 |
+
"PGGraphStorage":".kg.postgres_impl",
|
62 |
+
"GremlinStorage":".kg.gremlin_impl",
|
63 |
+
"PGDocStatusStorage":".kg.postgres_impl",
|
64 |
+
}
|
65 |
|
66 |
def lazy_external_import(module_name: str, class_name: str):
|
67 |
"""Lazily import a class from an external module based on the package of the caller."""
|
|
|
75 |
|
76 |
def import_class(*args, **kwargs):
|
77 |
import importlib
|
|
|
|
|
78 |
module = importlib.import_module(module_name, package=package)
|
|
|
|
|
79 |
cls = getattr(module, class_name)
|
80 |
return cls(*args, **kwargs)
|
81 |
|
82 |
return import_class
|
83 |
|
84 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
def always_get_an_event_loop() -> asyncio.AbstractEventLoop:
|
86 |
"""
|
87 |
Ensure that there is always an event loop available.
|
|
|
185 |
logger.setLevel(self.log_level)
|
186 |
|
187 |
logger.info(f"Logger initialized for working directory: {self.working_dir}")
|
188 |
+
if not os.path.exists(self.working_dir):
|
189 |
+
logger.info(f"Creating working directory {self.working_dir}")
|
190 |
+
os.makedirs(self.working_dir)
|
191 |
|
192 |
+
# show config
|
193 |
+
global_config=asdict(self)
|
194 |
+
_print_config = ",\n ".join([f"{k} = {v}" for k, v in global_config.items()])
|
195 |
logger.debug(f"LightRAG init with param:\n {_print_config}\n")
|
196 |
|
197 |
+
# Init LLM
|
198 |
+
self.embedding_func = limit_async_func_call(self.embedding_func_max_async)(
|
199 |
+
self.embedding_func
|
200 |
+
)
|
201 |
+
|
202 |
+
|
203 |
+
# Initialize all storages
|
204 |
+
self.key_string_value_json_storage_cls: Type[BaseKVStorage] = self._get_storage_class(self.kv_storage)
|
205 |
+
self.vector_db_storage_cls: Type[BaseVectorStorage] = self._get_storage_class(self.vector_storage)
|
206 |
+
self.graph_storage_cls: Type[BaseGraphStorage] = self._get_storage_class(self.graph_storage)
|
207 |
+
|
208 |
+
self.key_string_value_json_storage_cls = partial(
|
209 |
+
self.key_string_value_json_storage_cls,
|
210 |
+
global_config=global_config
|
211 |
+
)
|
212 |
|
213 |
+
self.vector_db_storage_cls = partial(
|
214 |
+
self.vector_db_storage_cls,
|
215 |
+
global_config=global_config
|
216 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
217 |
|
218 |
+
self.graph_storage_cls = partial(
|
219 |
+
self.graph_storage_cls,
|
220 |
+
global_config=global_config
|
221 |
+
)
|
222 |
+
|
223 |
+
self.json_doc_status_storage = self.key_string_value_json_storage_cls(
|
224 |
+
namespace="json_doc_status_storage",
|
225 |
+
embedding_func=None,
|
226 |
+
)
|
227 |
|
228 |
self.llm_response_cache = self.key_string_value_json_storage_cls(
|
229 |
namespace="llm_response_cache",
|
|
|
230 |
embedding_func=None,
|
231 |
)
|
232 |
|
|
|
|
|
|
|
|
|
233 |
####
|
234 |
# add embedding func by walter
|
235 |
####
|
236 |
self.full_docs = self.key_string_value_json_storage_cls(
|
237 |
namespace="full_docs",
|
|
|
238 |
embedding_func=self.embedding_func,
|
239 |
)
|
240 |
self.text_chunks = self.key_string_value_json_storage_cls(
|
241 |
namespace="text_chunks",
|
|
|
242 |
embedding_func=self.embedding_func,
|
243 |
)
|
244 |
self.chunk_entity_relation_graph = self.graph_storage_cls(
|
245 |
namespace="chunk_entity_relation",
|
|
|
246 |
embedding_func=self.embedding_func,
|
247 |
)
|
248 |
####
|
|
|
251 |
|
252 |
self.entities_vdb = self.vector_db_storage_cls(
|
253 |
namespace="entities",
|
|
|
254 |
embedding_func=self.embedding_func,
|
255 |
meta_fields={"entity_name"},
|
256 |
)
|
257 |
self.relationships_vdb = self.vector_db_storage_cls(
|
258 |
namespace="relationships",
|
|
|
259 |
embedding_func=self.embedding_func,
|
260 |
meta_fields={"src_id", "tgt_id"},
|
261 |
)
|
262 |
self.chunks_vdb = self.vector_db_storage_cls(
|
263 |
namespace="chunks",
|
|
|
264 |
embedding_func=self.embedding_func,
|
265 |
)
|
266 |
|
267 |
+
if self.llm_response_cache and hasattr(self.llm_response_cache, "global_config"):
|
268 |
+
hashing_kv = self.llm_response_cache
|
269 |
+
else:
|
270 |
+
hashing_kv = self.key_string_value_json_storage_cls(
|
271 |
+
namespace="llm_response_cache",
|
272 |
+
embedding_func=None,
|
273 |
+
)
|
274 |
+
|
275 |
self.llm_model_func = limit_async_func_call(self.llm_model_max_async)(
|
276 |
partial(
|
277 |
self.llm_model_func,
|
278 |
+
hashing_kv=hashing_kv,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
279 |
**self.llm_model_kwargs,
|
280 |
)
|
281 |
)
|
282 |
|
283 |
# Initialize document status storage
|
284 |
+
self.doc_status_storage_cls = self._get_storage_class(self.doc_status_storage)
|
285 |
self.doc_status = self.doc_status_storage_cls(
|
286 |
namespace="doc_status",
|
287 |
+
global_config=global_config,
|
288 |
embedding_func=None,
|
289 |
)
|
290 |
|
291 |
+
def _get_storage_class(self, storage_name: str) -> dict:
|
292 |
+
import_path = STORAGES[storage_name]
|
293 |
+
storage_class = lazy_external_import(import_path, storage_name)
|
294 |
+
return storage_class
|
295 |
+
|
296 |
+
def set_storage_client(self,db_client):
|
297 |
+
# Now only tested on Oracle Database
|
298 |
+
for storage in [self.vector_db_storage_cls,
|
299 |
+
self.graph_storage_cls,
|
300 |
+
self.doc_status, self.full_docs,
|
301 |
+
self.text_chunks,
|
302 |
+
self.llm_response_cache,
|
303 |
+
self.key_string_value_json_storage_cls,
|
304 |
+
self.chunks_vdb,
|
305 |
+
self.relationships_vdb,
|
306 |
+
self.entities_vdb,
|
307 |
+
self.graph_storage_cls,
|
308 |
+
self.chunk_entity_relation_graph,
|
309 |
+
self.llm_response_cache]:
|
310 |
+
# set client
|
311 |
+
storage.db = db_client
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
312 |
|
313 |
def insert(
|
314 |
self, string_or_strings, split_by_character=None, split_by_character_only=False
|
|
|
348 |
}
|
349 |
for content in unique_contents
|
350 |
}
|
351 |
+
|
352 |
+
# 3. Store original document and chunks
|
353 |
+
await self.full_docs.upsert(
|
354 |
+
{doc_id: {"content": doc["content"]}}
|
355 |
+
)
|
356 |
|
357 |
# 3. Filter out already processed documents
|
358 |
_add_doc_keys = await self.doc_status.filter_keys(list(new_docs.keys()))
|
|
|
401 |
}
|
402 |
|
403 |
# Update status with chunks information
|
404 |
+
doc_status.update({"chunks_count": len(chunks),"updated_at": datetime.now().isoformat()})
|
|
|
|
|
|
|
|
|
|
|
405 |
await self.doc_status.upsert({doc_id: doc_status})
|
406 |
|
407 |
try:
|
|
|
425 |
|
426 |
self.chunk_entity_relation_graph = maybe_new_kg
|
427 |
|
428 |
+
|
|
|
|
|
|
|
429 |
await self.text_chunks.upsert(chunks)
|
430 |
|
431 |
# Update status to processed
|
432 |
+
doc_status.update({"status": DocStatus.PROCESSED,"updated_at": datetime.now().isoformat()})
|
|
|
|
|
|
|
|
|
|
|
433 |
await self.doc_status.upsert({doc_id: doc_status})
|
434 |
|
435 |
except Exception as e:
|
436 |
# Mark as failed if any step fails
|
437 |
+
doc_status.update({"status": DocStatus.FAILED,"error": str(e),"updated_at": datetime.now().isoformat()})
|
|
|
|
|
|
|
|
|
|
|
|
|
438 |
await self.doc_status.upsert({doc_id: doc_status})
|
439 |
raise e
|
440 |
|
|
|
516 |
if update_storage:
|
517 |
await self._insert_done()
|
518 |
|
519 |
+
async def apipeline_process_documents(self, string_or_strings):
|
520 |
+
"""Input list remove duplicates, generate document IDs and initial pendding status, filter out already stored documents, store docs
|
521 |
+
Args:
|
522 |
+
string_or_strings: Single document string or list of document strings
|
523 |
+
"""
|
524 |
+
if isinstance(string_or_strings, str):
|
525 |
+
string_or_strings = [string_or_strings]
|
526 |
+
|
527 |
+
# 1. Remove duplicate contents from the list
|
528 |
+
unique_contents = list(set(doc.strip() for doc in string_or_strings))
|
529 |
+
|
530 |
+
logger.info(f"Received {len(string_or_strings)} docs, contains {len(unique_contents)} new unique documents")
|
531 |
+
|
532 |
+
# 2. Generate document IDs and initial status
|
533 |
+
new_docs = {
|
534 |
+
compute_mdhash_id(content, prefix="doc-"): {
|
535 |
+
"content": content,
|
536 |
+
"content_summary": self._get_content_summary(content),
|
537 |
+
"content_length": len(content),
|
538 |
+
"status": DocStatus.PENDING,
|
539 |
+
"created_at": datetime.now().isoformat(),
|
540 |
+
"updated_at": None,
|
541 |
+
}
|
542 |
+
for content in unique_contents
|
543 |
+
}
|
544 |
+
|
545 |
+
# 3. Filter out already processed documents
|
546 |
+
_not_stored_doc_keys = await self.full_docs.filter_keys(list(new_docs.keys()))
|
547 |
+
if len(_not_stored_doc_keys) < len(new_docs):
|
548 |
+
logger.info(f"Skipping {len(new_docs)-len(_not_stored_doc_keys)} already existing documents")
|
549 |
+
new_docs = {k: v for k, v in new_docs.items() if k in _not_stored_doc_keys}
|
550 |
+
|
551 |
+
if not new_docs:
|
552 |
+
logger.info(f"All documents have been processed or are duplicates")
|
553 |
+
return None
|
554 |
+
|
555 |
+
# 4. Store original document
|
556 |
+
for doc_id, doc in new_docs.items():
|
557 |
+
await self.full_docs.upsert({doc_id: {"content": doc["content"]}})
|
558 |
+
await self.full_docs.change_status(doc_id, DocStatus.PENDING)
|
559 |
+
logger.info(f"Stored {len(new_docs)} new unique documents")
|
560 |
+
|
561 |
+
async def apipeline_process_chunks(self):
|
562 |
+
"""Get pendding documents, split into chunks,insert chunks"""
|
563 |
+
# 1. get all pending and failed documents
|
564 |
+
_todo_doc_keys = []
|
565 |
+
_failed_doc = await self.full_docs.get_by_status_and_ids(status = DocStatus.FAILED,ids = None)
|
566 |
+
_pendding_doc = await self.full_docs.get_by_status_and_ids(status = DocStatus.PENDING,ids = None)
|
567 |
+
if _failed_doc:
|
568 |
+
_todo_doc_keys.extend([doc["id"] for doc in _failed_doc])
|
569 |
+
if _pendding_doc:
|
570 |
+
_todo_doc_keys.extend([doc["id"] for doc in _pendding_doc])
|
571 |
+
if not _todo_doc_keys:
|
572 |
+
logger.info("All documents have been processed or are duplicates")
|
573 |
+
return None
|
574 |
+
else:
|
575 |
+
logger.info(f"Filtered out {len(_todo_doc_keys)} not processed documents")
|
576 |
+
|
577 |
+
new_docs = {
|
578 |
+
doc["id"]: doc
|
579 |
+
for doc in await self.full_docs.get_by_ids(_todo_doc_keys)
|
580 |
+
}
|
581 |
+
|
582 |
+
# 2. split docs into chunks, insert chunks, update doc status
|
583 |
+
chunk_cnt = 0
|
584 |
+
batch_size = self.addon_params.get("insert_batch_size", 10)
|
585 |
+
for i in range(0, len(new_docs), batch_size):
|
586 |
+
batch_docs = dict(list(new_docs.items())[i : i + batch_size])
|
587 |
+
for doc_id, doc in tqdm_async(
|
588 |
+
batch_docs.items(), desc=f"Level 1 - Spliting doc in batch {i//batch_size + 1}"
|
589 |
+
):
|
590 |
+
try:
|
591 |
+
# Generate chunks from document
|
592 |
+
chunks = {
|
593 |
+
compute_mdhash_id(dp["content"], prefix="chunk-"): {
|
594 |
+
**dp,
|
595 |
+
"full_doc_id": doc_id,
|
596 |
+
"status": DocStatus.PENDING,
|
597 |
+
}
|
598 |
+
for dp in chunking_by_token_size(
|
599 |
+
doc["content"],
|
600 |
+
overlap_token_size=self.chunk_overlap_token_size,
|
601 |
+
max_token_size=self.chunk_token_size,
|
602 |
+
tiktoken_model=self.tiktoken_model_name,
|
603 |
+
)
|
604 |
+
}
|
605 |
+
chunk_cnt += len(chunks)
|
606 |
+
await self.text_chunks.upsert(chunks)
|
607 |
+
await self.text_chunks.change_status(doc_id, DocStatus.PROCESSED)
|
608 |
+
|
609 |
+
try:
|
610 |
+
# Store chunks in vector database
|
611 |
+
await self.chunks_vdb.upsert(chunks)
|
612 |
+
# Update doc status
|
613 |
+
await self.full_docs.change_status(doc_id, DocStatus.PROCESSED)
|
614 |
+
except Exception as e:
|
615 |
+
# Mark as failed if any step fails
|
616 |
+
await self.full_docs.change_status(doc_id, DocStatus.FAILED)
|
617 |
+
raise e
|
618 |
+
except Exception as e:
|
619 |
+
import traceback
|
620 |
+
error_msg = f"Failed to process document {doc_id}: {str(e)}\n{traceback.format_exc()}"
|
621 |
+
logger.error(error_msg)
|
622 |
+
continue
|
623 |
+
logger.info(f"Stored {chunk_cnt} chunks from {len(new_docs)} documents")
|
624 |
+
|
625 |
+
async def apipeline_process_extract_graph(self):
|
626 |
+
"""Get pendding or failed chunks, extract entities and relationships from each chunk"""
|
627 |
+
# 1. get all pending and failed chunks
|
628 |
+
_todo_chunk_keys = []
|
629 |
+
_failed_chunks = await self.text_chunks.get_by_status_and_ids(status = DocStatus.FAILED,ids = None)
|
630 |
+
_pendding_chunks = await self.text_chunks.get_by_status_and_ids(status = DocStatus.PENDING,ids = None)
|
631 |
+
if _failed_chunks:
|
632 |
+
_todo_chunk_keys.extend([doc["id"] for doc in _failed_chunks])
|
633 |
+
if _pendding_chunks:
|
634 |
+
_todo_chunk_keys.extend([doc["id"] for doc in _pendding_chunks])
|
635 |
+
if not _todo_chunk_keys:
|
636 |
+
logger.info("All chunks have been processed or are duplicates")
|
637 |
+
return None
|
638 |
+
|
639 |
+
# Process documents in batches
|
640 |
+
batch_size = self.addon_params.get("insert_batch_size", 10)
|
641 |
+
|
642 |
+
semaphore = asyncio.Semaphore(batch_size) # Control the number of tasks that are processed simultaneously
|
643 |
+
|
644 |
+
async def process_chunk(chunk_id):
|
645 |
+
async with semaphore:
|
646 |
+
chunks = {i["id"]: i for i in await self.text_chunks.get_by_ids([chunk_id])}
|
647 |
+
# Extract and store entities and relationships
|
648 |
+
try:
|
649 |
+
maybe_new_kg = await extract_entities(
|
650 |
+
chunks,
|
651 |
+
knowledge_graph_inst=self.chunk_entity_relation_graph,
|
652 |
+
entity_vdb=self.entities_vdb,
|
653 |
+
relationships_vdb=self.relationships_vdb,
|
654 |
+
llm_response_cache=self.llm_response_cache,
|
655 |
+
global_config=asdict(self),
|
656 |
+
)
|
657 |
+
if maybe_new_kg is None:
|
658 |
+
logger.info("No entities or relationships extracted!")
|
659 |
+
# Update status to processed
|
660 |
+
await self.text_chunks.change_status(chunk_id, DocStatus.PROCESSED)
|
661 |
+
except Exception as e:
|
662 |
+
logger.error("Failed to extract entities and relationships")
|
663 |
+
# Mark as failed if any step fails
|
664 |
+
await self.text_chunks.change_status(chunk_id, DocStatus.FAILED)
|
665 |
+
raise e
|
666 |
+
|
667 |
+
with tqdm_async(total=len(_todo_chunk_keys),
|
668 |
+
desc="\nLevel 1 - Processing chunks",
|
669 |
+
unit="chunk",
|
670 |
+
position=0) as progress:
|
671 |
+
tasks = []
|
672 |
+
for chunk_id in _todo_chunk_keys:
|
673 |
+
task = asyncio.create_task(process_chunk(chunk_id))
|
674 |
+
tasks.append(task)
|
675 |
+
|
676 |
+
for future in asyncio.as_completed(tasks):
|
677 |
+
await future
|
678 |
+
progress.update(1)
|
679 |
+
progress.set_postfix({
|
680 |
+
'LLM call': statistic_data["llm_call"],
|
681 |
+
'LLM cache': statistic_data["llm_cache"],
|
682 |
+
})
|
683 |
+
|
684 |
+
# Ensure all indexes are updated after each document
|
685 |
+
await self._insert_done()
|
686 |
+
|
687 |
async def _insert_done(self):
|
688 |
tasks = []
|
689 |
for storage_inst in [
|
lightrag/operate.py
CHANGED
@@ -20,6 +20,7 @@ from .utils import (
|
|
20 |
handle_cache,
|
21 |
save_to_cache,
|
22 |
CacheData,
|
|
|
23 |
)
|
24 |
from .base import (
|
25 |
BaseGraphStorage,
|
@@ -371,14 +372,16 @@ async def extract_entities(
|
|
371 |
if need_to_restore:
|
372 |
llm_response_cache.global_config = global_config
|
373 |
if cached_return:
|
|
|
|
|
374 |
return cached_return
|
375 |
-
|
376 |
if history_messages:
|
377 |
res: str = await use_llm_func(
|
378 |
input_text, history_messages=history_messages
|
379 |
)
|
380 |
else:
|
381 |
-
res: str = await use_llm_func(input_text)
|
382 |
await save_to_cache(
|
383 |
llm_response_cache,
|
384 |
CacheData(args_hash=arg_hash, content=res, prompt=_prompt),
|
@@ -459,10 +462,8 @@ async def extract_entities(
|
|
459 |
now_ticks = PROMPTS["process_tickers"][
|
460 |
already_processed % len(PROMPTS["process_tickers"])
|
461 |
]
|
462 |
-
|
463 |
f"{now_ticks} Processed {already_processed} chunks, {already_entities} entities(duplicated), {already_relations} relations(duplicated)\r",
|
464 |
-
end="",
|
465 |
-
flush=True,
|
466 |
)
|
467 |
return dict(maybe_nodes), dict(maybe_edges)
|
468 |
|
@@ -470,8 +471,8 @@ async def extract_entities(
|
|
470 |
for result in tqdm_async(
|
471 |
asyncio.as_completed([_process_single_content(c) for c in ordered_chunks]),
|
472 |
total=len(ordered_chunks),
|
473 |
-
desc="Extracting entities
|
474 |
-
unit="chunk",
|
475 |
):
|
476 |
results.append(await result)
|
477 |
|
@@ -482,7 +483,7 @@ async def extract_entities(
|
|
482 |
maybe_nodes[k].extend(v)
|
483 |
for k, v in m_edges.items():
|
484 |
maybe_edges[tuple(sorted(k))].extend(v)
|
485 |
-
logger.
|
486 |
all_entities_data = []
|
487 |
for result in tqdm_async(
|
488 |
asyncio.as_completed(
|
@@ -492,12 +493,12 @@ async def extract_entities(
|
|
492 |
]
|
493 |
),
|
494 |
total=len(maybe_nodes),
|
495 |
-
desc="Inserting entities",
|
496 |
-
unit="entity",
|
497 |
):
|
498 |
all_entities_data.append(await result)
|
499 |
|
500 |
-
logger.
|
501 |
all_relationships_data = []
|
502 |
for result in tqdm_async(
|
503 |
asyncio.as_completed(
|
@@ -509,8 +510,8 @@ async def extract_entities(
|
|
509 |
]
|
510 |
),
|
511 |
total=len(maybe_edges),
|
512 |
-
desc="Inserting relationships",
|
513 |
-
unit="relationship",
|
514 |
):
|
515 |
all_relationships_data.append(await result)
|
516 |
|
|
|
20 |
handle_cache,
|
21 |
save_to_cache,
|
22 |
CacheData,
|
23 |
+
statistic_data
|
24 |
)
|
25 |
from .base import (
|
26 |
BaseGraphStorage,
|
|
|
372 |
if need_to_restore:
|
373 |
llm_response_cache.global_config = global_config
|
374 |
if cached_return:
|
375 |
+
logger.debug(f"Found cache for {arg_hash}")
|
376 |
+
statistic_data["llm_cache"] += 1
|
377 |
return cached_return
|
378 |
+
statistic_data["llm_call"] += 1
|
379 |
if history_messages:
|
380 |
res: str = await use_llm_func(
|
381 |
input_text, history_messages=history_messages
|
382 |
)
|
383 |
else:
|
384 |
+
res: str = await use_llm_func(input_text)
|
385 |
await save_to_cache(
|
386 |
llm_response_cache,
|
387 |
CacheData(args_hash=arg_hash, content=res, prompt=_prompt),
|
|
|
462 |
now_ticks = PROMPTS["process_tickers"][
|
463 |
already_processed % len(PROMPTS["process_tickers"])
|
464 |
]
|
465 |
+
logger.debug(
|
466 |
f"{now_ticks} Processed {already_processed} chunks, {already_entities} entities(duplicated), {already_relations} relations(duplicated)\r",
|
|
|
|
|
467 |
)
|
468 |
return dict(maybe_nodes), dict(maybe_edges)
|
469 |
|
|
|
471 |
for result in tqdm_async(
|
472 |
asyncio.as_completed([_process_single_content(c) for c in ordered_chunks]),
|
473 |
total=len(ordered_chunks),
|
474 |
+
desc="Level 2 - Extracting entities and relationships",
|
475 |
+
unit="chunk", position=1,leave=False
|
476 |
):
|
477 |
results.append(await result)
|
478 |
|
|
|
483 |
maybe_nodes[k].extend(v)
|
484 |
for k, v in m_edges.items():
|
485 |
maybe_edges[tuple(sorted(k))].extend(v)
|
486 |
+
logger.debug("Inserting entities into storage...")
|
487 |
all_entities_data = []
|
488 |
for result in tqdm_async(
|
489 |
asyncio.as_completed(
|
|
|
493 |
]
|
494 |
),
|
495 |
total=len(maybe_nodes),
|
496 |
+
desc="Level 3 - Inserting entities",
|
497 |
+
unit="entity", position=2,leave=False
|
498 |
):
|
499 |
all_entities_data.append(await result)
|
500 |
|
501 |
+
logger.debug("Inserting relationships into storage...")
|
502 |
all_relationships_data = []
|
503 |
for result in tqdm_async(
|
504 |
asyncio.as_completed(
|
|
|
510 |
]
|
511 |
),
|
512 |
total=len(maybe_edges),
|
513 |
+
desc="Level 3 - Inserting relationships",
|
514 |
+
unit="relationship", position=3,leave=False
|
515 |
):
|
516 |
all_relationships_data.append(await result)
|
517 |
|
lightrag/utils.py
CHANGED
@@ -30,8 +30,13 @@ class UnlimitedSemaphore:
|
|
30 |
|
31 |
ENCODER = None
|
32 |
|
|
|
|
|
33 |
logger = logging.getLogger("lightrag")
|
34 |
|
|
|
|
|
|
|
35 |
|
36 |
def set_logger(log_file: str):
|
37 |
logger.setLevel(logging.DEBUG)
|
@@ -453,7 +458,8 @@ async def handle_cache(hashing_kv, args_hash, prompt, mode="default"):
|
|
453 |
return None, None, None, None
|
454 |
|
455 |
# For naive mode, only use simple cache matching
|
456 |
-
if mode == "naive":
|
|
|
457 |
if exists_func(hashing_kv, "get_by_mode_and_id"):
|
458 |
mode_cache = await hashing_kv.get_by_mode_and_id(mode, args_hash) or {}
|
459 |
else:
|
|
|
30 |
|
31 |
ENCODER = None
|
32 |
|
33 |
+
statistic_data = {"llm_call": 0, "llm_cache": 0, "embed_call": 0}
|
34 |
+
|
35 |
logger = logging.getLogger("lightrag")
|
36 |
|
37 |
+
# Set httpx logging level to WARNING
|
38 |
+
logging.getLogger("httpx").setLevel(logging.WARNING)
|
39 |
+
|
40 |
|
41 |
def set_logger(log_file: str):
|
42 |
logger.setLevel(logging.DEBUG)
|
|
|
458 |
return None, None, None, None
|
459 |
|
460 |
# For naive mode, only use simple cache matching
|
461 |
+
#if mode == "naive":
|
462 |
+
if mode == "default":
|
463 |
if exists_func(hashing_kv, "get_by_mode_and_id"):
|
464 |
mode_cache = await hashing_kv.get_by_mode_and_id(mode, args_hash) or {}
|
465 |
else:
|