LarFii
commited on
Commit
·
1971f8d
1
Parent(s):
d09c742
update reproduce
Browse files- README.md +113 -1
- reproduce/Step_0.py +63 -0
- reproduce/Step_1.py +32 -0
- reproduce/Step_2.py +76 -0
- reproduce/Step_3.py +62 -0
README.md
CHANGED
@@ -149,7 +149,6 @@ Output your evaluation in the following JSON format:
|
|
149 |
}}
|
150 |
```
|
151 |
### Overall Performance Table
|
152 |
-
### Overall Performance Table
|
153 |
| | **Agriculture** | | **CS** | | **Legal** | | **Mix** | |
|
154 |
|----------------------|-------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
|
155 |
| | NaiveRAG | **LightRAG** | NaiveRAG | **LightRAG** | NaiveRAG | **LightRAG** | NaiveRAG | **LightRAG** |
|
@@ -173,6 +172,114 @@ Output your evaluation in the following JSON format:
|
|
173 |
| **Empowerment** | 36.69% | **63.31%** | 45.09% | **54.91%** | 42.81% | **57.19%** | **52.94%** | 47.06% |
|
174 |
| **Overall** | 43.62% | **56.38%** | 45.98% | **54.02%** | 45.70% | **54.30%** | **51.86%** | 48.14% |
|
175 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
176 |
## Code Structure
|
177 |
|
178 |
```python
|
@@ -191,6 +298,11 @@ Output your evaluation in the following JSON format:
|
|
191 |
│ ├── prompt.py
|
192 |
│ ├── storage.py
|
193 |
│ └── utils.jpeg
|
|
|
|
|
|
|
|
|
|
|
194 |
├── LICENSE
|
195 |
├── README.md
|
196 |
├── requirements.txt
|
|
|
149 |
}}
|
150 |
```
|
151 |
### Overall Performance Table
|
|
|
152 |
| | **Agriculture** | | **CS** | | **Legal** | | **Mix** | |
|
153 |
|----------------------|-------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
|
154 |
| | NaiveRAG | **LightRAG** | NaiveRAG | **LightRAG** | NaiveRAG | **LightRAG** | NaiveRAG | **LightRAG** |
|
|
|
172 |
| **Empowerment** | 36.69% | **63.31%** | 45.09% | **54.91%** | 42.81% | **57.19%** | **52.94%** | 47.06% |
|
173 |
| **Overall** | 43.62% | **56.38%** | 45.98% | **54.02%** | 45.70% | **54.30%** | **51.86%** | 48.14% |
|
174 |
|
175 |
+
## Reproduce
|
176 |
+
All the code can be found in the `./reproduce` directory.
|
177 |
+
### Step-0 Extract Unique Contexts
|
178 |
+
First, we need to extract unique contexts in the datasets.
|
179 |
+
```python
|
180 |
+
def extract_unique_contexts(input_directory, output_directory):
|
181 |
+
|
182 |
+
os.makedirs(output_directory, exist_ok=True)
|
183 |
+
|
184 |
+
jsonl_files = glob.glob(os.path.join(input_directory, '*.jsonl'))
|
185 |
+
print(f"Found {len(jsonl_files)} JSONL files.")
|
186 |
+
|
187 |
+
for file_path in jsonl_files:
|
188 |
+
filename = os.path.basename(file_path)
|
189 |
+
name, ext = os.path.splitext(filename)
|
190 |
+
output_filename = f"{name}_unique_contexts.json"
|
191 |
+
output_path = os.path.join(output_directory, output_filename)
|
192 |
+
|
193 |
+
unique_contexts_dict = {}
|
194 |
+
|
195 |
+
print(f"Processing file: {filename}")
|
196 |
+
|
197 |
+
try:
|
198 |
+
with open(file_path, 'r', encoding='utf-8') as infile:
|
199 |
+
for line_number, line in enumerate(infile, start=1):
|
200 |
+
line = line.strip()
|
201 |
+
if not line:
|
202 |
+
continue
|
203 |
+
try:
|
204 |
+
json_obj = json.loads(line)
|
205 |
+
context = json_obj.get('context')
|
206 |
+
if context and context not in unique_contexts_dict:
|
207 |
+
unique_contexts_dict[context] = None
|
208 |
+
except json.JSONDecodeError as e:
|
209 |
+
print(f"JSON decoding error in file {filename} at line {line_number}: {e}")
|
210 |
+
except FileNotFoundError:
|
211 |
+
print(f"File not found: {filename}")
|
212 |
+
continue
|
213 |
+
except Exception as e:
|
214 |
+
print(f"An error occurred while processing file {filename}: {e}")
|
215 |
+
continue
|
216 |
+
|
217 |
+
unique_contexts_list = list(unique_contexts_dict.keys())
|
218 |
+
print(f"There are {len(unique_contexts_list)} unique `context` entries in the file {filename}.")
|
219 |
+
|
220 |
+
try:
|
221 |
+
with open(output_path, 'w', encoding='utf-8') as outfile:
|
222 |
+
json.dump(unique_contexts_list, outfile, ensure_ascii=False, indent=4)
|
223 |
+
print(f"Unique `context` entries have been saved to: {output_filename}")
|
224 |
+
except Exception as e:
|
225 |
+
print(f"An error occurred while saving to the file {output_filename}: {e}")
|
226 |
+
|
227 |
+
print("All files have been processed.")
|
228 |
+
|
229 |
+
```
|
230 |
+
### Step-1 Insert Contexts
|
231 |
+
For the extracted contexts, we insert them into the LightRAG system.
|
232 |
+
|
233 |
+
```python
|
234 |
+
def insert_text(rag, file_path):
|
235 |
+
with open(file_path, mode='r') as f:
|
236 |
+
unique_contexts = json.load(f)
|
237 |
+
|
238 |
+
retries = 0
|
239 |
+
max_retries = 3
|
240 |
+
while retries < max_retries:
|
241 |
+
try:
|
242 |
+
rag.insert(unique_contexts)
|
243 |
+
break
|
244 |
+
except Exception as e:
|
245 |
+
retries += 1
|
246 |
+
print(f"Insertion failed, retrying ({retries}/{max_retries}), error: {e}")
|
247 |
+
time.sleep(10)
|
248 |
+
if retries == max_retries:
|
249 |
+
print("Insertion failed after exceeding the maximum number of retries")
|
250 |
+
```
|
251 |
+
### Step-2 Generate Queries
|
252 |
+
|
253 |
+
We extract tokens from both the first half and the second half of each context in the dataset, then combine them to generate queries for dataset descriptions.
|
254 |
+
```python
|
255 |
+
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
|
256 |
+
|
257 |
+
def get_summary(context, tot_tokens=2000):
|
258 |
+
tokens = tokenizer.tokenize(context)
|
259 |
+
half_tokens = tot_tokens // 2
|
260 |
+
|
261 |
+
start_tokens = tokens[1000:1000 + half_tokens]
|
262 |
+
end_tokens = tokens[-(1000 + half_tokens):1000]
|
263 |
+
|
264 |
+
summary_tokens = start_tokens + end_tokens
|
265 |
+
summary = tokenizer.convert_tokens_to_string(summary_tokens)
|
266 |
+
|
267 |
+
return summary
|
268 |
+
```
|
269 |
+
|
270 |
+
### Step-3 Query
|
271 |
+
For the queries generated in Step-2, we will extract them and query LightRAG.
|
272 |
+
```python
|
273 |
+
def extract_queries(file_path):
|
274 |
+
with open(file_path, 'r') as f:
|
275 |
+
data = f.read()
|
276 |
+
|
277 |
+
data = data.replace('**', '')
|
278 |
+
|
279 |
+
queries = re.findall(r'- Question \d+: (.+)', data)
|
280 |
+
|
281 |
+
return queries
|
282 |
+
```
|
283 |
## Code Structure
|
284 |
|
285 |
```python
|
|
|
298 |
│ ├── prompt.py
|
299 |
│ ├── storage.py
|
300 |
│ └── utils.jpeg
|
301 |
+
├── reproduce
|
302 |
+
│ ├── Step_0.py
|
303 |
+
│ ├── Step_1.py
|
304 |
+
│ ├── Step_2.py
|
305 |
+
│ └── Step_3.py
|
306 |
├── LICENSE
|
307 |
├── README.md
|
308 |
├── requirements.txt
|
reproduce/Step_0.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import glob
|
4 |
+
import argparse
|
5 |
+
|
6 |
+
def extract_unique_contexts(input_directory, output_directory):
|
7 |
+
|
8 |
+
os.makedirs(output_directory, exist_ok=True)
|
9 |
+
|
10 |
+
jsonl_files = glob.glob(os.path.join(input_directory, '*.jsonl'))
|
11 |
+
print(f"Found {len(jsonl_files)} JSONL files.")
|
12 |
+
|
13 |
+
for file_path in jsonl_files:
|
14 |
+
filename = os.path.basename(file_path)
|
15 |
+
name, ext = os.path.splitext(filename)
|
16 |
+
output_filename = f"{name}_unique_contexts.json"
|
17 |
+
output_path = os.path.join(output_directory, output_filename)
|
18 |
+
|
19 |
+
unique_contexts_dict = {}
|
20 |
+
|
21 |
+
print(f"Processing file: {filename}")
|
22 |
+
|
23 |
+
try:
|
24 |
+
with open(file_path, 'r', encoding='utf-8') as infile:
|
25 |
+
for line_number, line in enumerate(infile, start=1):
|
26 |
+
line = line.strip()
|
27 |
+
if not line:
|
28 |
+
continue
|
29 |
+
try:
|
30 |
+
json_obj = json.loads(line)
|
31 |
+
context = json_obj.get('context')
|
32 |
+
if context and context not in unique_contexts_dict:
|
33 |
+
unique_contexts_dict[context] = None
|
34 |
+
except json.JSONDecodeError as e:
|
35 |
+
print(f"JSON decoding error in file {filename} at line {line_number}: {e}")
|
36 |
+
except FileNotFoundError:
|
37 |
+
print(f"File not found: {filename}")
|
38 |
+
continue
|
39 |
+
except Exception as e:
|
40 |
+
print(f"An error occurred while processing file {filename}: {e}")
|
41 |
+
continue
|
42 |
+
|
43 |
+
unique_contexts_list = list(unique_contexts_dict.keys())
|
44 |
+
print(f"There are {len(unique_contexts_list)} unique `context` entries in the file {filename}.")
|
45 |
+
|
46 |
+
try:
|
47 |
+
with open(output_path, 'w', encoding='utf-8') as outfile:
|
48 |
+
json.dump(unique_contexts_list, outfile, ensure_ascii=False, indent=4)
|
49 |
+
print(f"Unique `context` entries have been saved to: {output_filename}")
|
50 |
+
except Exception as e:
|
51 |
+
print(f"An error occurred while saving to the file {output_filename}: {e}")
|
52 |
+
|
53 |
+
print("All files have been processed.")
|
54 |
+
|
55 |
+
|
56 |
+
if __name__ == "__main__":
|
57 |
+
parser = argparse.ArgumentParser()
|
58 |
+
parser.add_argument('-i', '--input_dir', type=str, default='../datasets')
|
59 |
+
parser.add_argument('-o', '--output_dir', type=str, default='../datasets/unique_contexts')
|
60 |
+
|
61 |
+
args = parser.parse_args()
|
62 |
+
|
63 |
+
extract_unique_contexts(args.input_dir, args.output_dir)
|
reproduce/Step_1.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import time
|
4 |
+
|
5 |
+
from lightrag import LightRAG
|
6 |
+
|
7 |
+
def insert_text(rag, file_path):
|
8 |
+
with open(file_path, mode='r') as f:
|
9 |
+
unique_contexts = json.load(f)
|
10 |
+
|
11 |
+
retries = 0
|
12 |
+
max_retries = 3
|
13 |
+
while retries < max_retries:
|
14 |
+
try:
|
15 |
+
rag.insert(unique_contexts)
|
16 |
+
break
|
17 |
+
except Exception as e:
|
18 |
+
retries += 1
|
19 |
+
print(f"Insertion failed, retrying ({retries}/{max_retries}), error: {e}")
|
20 |
+
time.sleep(10)
|
21 |
+
if retries == max_retries:
|
22 |
+
print("Insertion failed after exceeding the maximum number of retries")
|
23 |
+
|
24 |
+
cls = "agriculture"
|
25 |
+
WORKING_DIR = "../{cls}"
|
26 |
+
|
27 |
+
if not os.path.exists(WORKING_DIR):
|
28 |
+
os.mkdir(WORKING_DIR)
|
29 |
+
|
30 |
+
rag = LightRAG(working_dir=WORKING_DIR)
|
31 |
+
|
32 |
+
insert_text(rag, f"../datasets/unique_contexts/{cls}_unique_contexts.json")
|
reproduce/Step_2.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
from openai import OpenAI
|
4 |
+
from transformers import GPT2Tokenizer
|
5 |
+
|
6 |
+
def openai_complete_if_cache(
|
7 |
+
model="gpt-4o", prompt=None, system_prompt=None, history_messages=[], **kwargs
|
8 |
+
) -> str:
|
9 |
+
openai_client = OpenAI()
|
10 |
+
|
11 |
+
messages = []
|
12 |
+
if system_prompt:
|
13 |
+
messages.append({"role": "system", "content": system_prompt})
|
14 |
+
messages.extend(history_messages)
|
15 |
+
messages.append({"role": "user", "content": prompt})
|
16 |
+
|
17 |
+
response = openai_client.chat.completions.create(
|
18 |
+
model=model, messages=messages, **kwargs
|
19 |
+
)
|
20 |
+
return response.choices[0].message.content
|
21 |
+
|
22 |
+
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
|
23 |
+
|
24 |
+
def get_summary(context, tot_tokens=2000):
|
25 |
+
tokens = tokenizer.tokenize(context)
|
26 |
+
half_tokens = tot_tokens // 2
|
27 |
+
|
28 |
+
start_tokens = tokens[1000:1000 + half_tokens]
|
29 |
+
end_tokens = tokens[-(1000 + half_tokens):1000]
|
30 |
+
|
31 |
+
summary_tokens = start_tokens + end_tokens
|
32 |
+
summary = tokenizer.convert_tokens_to_string(summary_tokens)
|
33 |
+
|
34 |
+
return summary
|
35 |
+
|
36 |
+
|
37 |
+
clses = ['agriculture']
|
38 |
+
for cls in clses:
|
39 |
+
with open(f'../datasets/unique_contexts/{cls}_unique_contexts.json', mode='r') as f:
|
40 |
+
unique_contexts = json.load(f)
|
41 |
+
|
42 |
+
summaries = [get_summary(context) for context in unique_contexts]
|
43 |
+
|
44 |
+
total_description = "\n\n".join(summaries)
|
45 |
+
|
46 |
+
prompt = f"""
|
47 |
+
Given the following description of a dataset:
|
48 |
+
|
49 |
+
{total_description}
|
50 |
+
|
51 |
+
Please identify 5 potential users who would engage with this dataset. For each user, list 5 tasks they would perform with this dataset. Then, for each (user, task) combination, generate 5 questions that require a high-level understanding of the entire dataset.
|
52 |
+
|
53 |
+
Output the results in the following structure:
|
54 |
+
- User 1: [user description]
|
55 |
+
- Task 1: [task description]
|
56 |
+
- Question 1:
|
57 |
+
- Question 2:
|
58 |
+
- Question 3:
|
59 |
+
- Question 4:
|
60 |
+
- Question 5:
|
61 |
+
- Task 2: [task description]
|
62 |
+
...
|
63 |
+
- Task 5: [task description]
|
64 |
+
- User 2: [user description]
|
65 |
+
...
|
66 |
+
- User 5: [user description]
|
67 |
+
...
|
68 |
+
"""
|
69 |
+
|
70 |
+
result = openai_complete_if_cache(model='gpt-4o', prompt=prompt)
|
71 |
+
|
72 |
+
file_path = f"../datasets/questions/{cls}_questions.txt"
|
73 |
+
with open(file_path, "w") as file:
|
74 |
+
file.write(result)
|
75 |
+
|
76 |
+
print(f"{cls}_questions written to {file_path}")
|
reproduce/Step_3.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import json
|
3 |
+
import asyncio
|
4 |
+
from lightrag import LightRAG, QueryParam
|
5 |
+
from tqdm import tqdm
|
6 |
+
|
7 |
+
def extract_queries(file_path):
|
8 |
+
with open(file_path, 'r') as f:
|
9 |
+
data = f.read()
|
10 |
+
|
11 |
+
data = data.replace('**', '')
|
12 |
+
|
13 |
+
queries = re.findall(r'- Question \d+: (.+)', data)
|
14 |
+
|
15 |
+
return queries
|
16 |
+
|
17 |
+
async def process_query(query_text, rag_instance, query_param):
|
18 |
+
try:
|
19 |
+
result, context = await rag_instance.aquery(query_text, param=query_param)
|
20 |
+
return {"query": query_text, "result": result, "context": context}, None
|
21 |
+
except Exception as e:
|
22 |
+
return None, {"query": query_text, "error": str(e)}
|
23 |
+
|
24 |
+
def always_get_an_event_loop() -> asyncio.AbstractEventLoop:
|
25 |
+
try:
|
26 |
+
loop = asyncio.get_event_loop()
|
27 |
+
except RuntimeError:
|
28 |
+
loop = asyncio.new_event_loop()
|
29 |
+
asyncio.set_event_loop(loop)
|
30 |
+
return loop
|
31 |
+
|
32 |
+
def run_queries_and_save_to_json(queries, rag_instance, query_param, output_file, error_file):
|
33 |
+
loop = always_get_an_event_loop()
|
34 |
+
|
35 |
+
with open(output_file, 'a', encoding='utf-8') as result_file, open(error_file, 'a', encoding='utf-8') as err_file:
|
36 |
+
result_file.write("[\n")
|
37 |
+
first_entry = True
|
38 |
+
|
39 |
+
for query_text in tqdm(queries, desc="Processing queries", unit="query"):
|
40 |
+
result, error = loop.run_until_complete(process_query(query_text, rag_instance, query_param))
|
41 |
+
|
42 |
+
if result:
|
43 |
+
if not first_entry:
|
44 |
+
result_file.write(",\n")
|
45 |
+
json.dump(result, result_file, ensure_ascii=False, indent=4)
|
46 |
+
first_entry = False
|
47 |
+
elif error:
|
48 |
+
json.dump(error, err_file, ensure_ascii=False, indent=4)
|
49 |
+
err_file.write("\n")
|
50 |
+
|
51 |
+
result_file.write("\n]")
|
52 |
+
|
53 |
+
if __name__ == "__main__":
|
54 |
+
cls = "agriculture"
|
55 |
+
mode = "hybird"
|
56 |
+
WORKING_DIR = "../{cls}"
|
57 |
+
|
58 |
+
rag = LightRAG(working_dir=WORKING_DIR)
|
59 |
+
query_param = QueryParam(mode=mode)
|
60 |
+
|
61 |
+
queries = extract_queries(f"../datasets/questions/{cls}_questions.txt")
|
62 |
+
run_queries_and_save_to_json(queries, rag, query_param, "result.json", "errors.json")
|