antas commited on
Commit
1ddf088
·
1 Parent(s): 9366906

集中处理环境变量

Browse files
examples/lightrag_api_openai_compatible_demo.py CHANGED
@@ -18,6 +18,13 @@ app = FastAPI(title="LightRAG API", description="API for RAG operations")
18
  # Configure working directory
19
  WORKING_DIR = os.environ.get("RAG_DIR", f"{DEFAULT_RAG_DIR}")
20
  print(f"WORKING_DIR: {WORKING_DIR}")
 
 
 
 
 
 
 
21
  if not os.path.exists(WORKING_DIR):
22
  os.mkdir(WORKING_DIR)
23
 
@@ -29,7 +36,7 @@ async def llm_model_func(
29
  prompt, system_prompt=None, history_messages=[], **kwargs
30
  ) -> str:
31
  return await openai_complete_if_cache(
32
- os.environ.get("LLM_MODEL", "gpt-4o-mini"),
33
  prompt,
34
  system_prompt=system_prompt,
35
  history_messages=history_messages,
@@ -43,7 +50,7 @@ async def llm_model_func(
43
  async def embedding_func(texts: list[str]) -> np.ndarray:
44
  return await openai_embedding(
45
  texts,
46
- model=os.environ.get("EMBEDDING_MODEL", "text-embedding-3-large"),
47
  )
48
 
49
 
@@ -60,7 +67,7 @@ rag = LightRAG(
60
  working_dir=WORKING_DIR,
61
  llm_model_func=llm_model_func,
62
  embedding_func=EmbeddingFunc(embedding_dim=asyncio.run(get_embedding_dim()),
63
- max_token_size=os.environ.get("EMBEDDING_MAX_TOKEN_SIZE", 8192),
64
  func=embedding_func),
65
  )
66
 
 
18
  # Configure working directory
19
  WORKING_DIR = os.environ.get("RAG_DIR", f"{DEFAULT_RAG_DIR}")
20
  print(f"WORKING_DIR: {WORKING_DIR}")
21
+ LLM_MODEL = os.environ.get("LLM_MODEL", "gpt-4o-mini")
22
+ print(f"LLM_MODEL: {LLM_MODEL}")
23
+ EMBEDDING_MODEL = os.environ.get("EMBEDDING_MODEL", "text-embedding-3-large")
24
+ print(f"EMBEDDING_MODEL: {EMBEDDING_MODEL}")
25
+ EMBEDDING_MAX_TOKEN_SIZE = int(os.environ.get("EMBEDDING_MAX_TOKEN_SIZE", 8192))
26
+ print(f"EMBEDDING_MAX_TOKEN_SIZE: {EMBEDDING_MAX_TOKEN_SIZE}")
27
+
28
  if not os.path.exists(WORKING_DIR):
29
  os.mkdir(WORKING_DIR)
30
 
 
36
  prompt, system_prompt=None, history_messages=[], **kwargs
37
  ) -> str:
38
  return await openai_complete_if_cache(
39
+ LLM_MODEL,
40
  prompt,
41
  system_prompt=system_prompt,
42
  history_messages=history_messages,
 
50
  async def embedding_func(texts: list[str]) -> np.ndarray:
51
  return await openai_embedding(
52
  texts,
53
+ model=EMBEDDING_MODEL,
54
  )
55
 
56
 
 
67
  working_dir=WORKING_DIR,
68
  llm_model_func=llm_model_func,
69
  embedding_func=EmbeddingFunc(embedding_dim=asyncio.run(get_embedding_dim()),
70
+ max_token_size=EMBEDDING_MAX_TOKEN_SIZE,
71
  func=embedding_func),
72
  )
73