Merge branch 'main' into feat-node-expand
Browse files- README.md +1 -1
- env.example +2 -1
- lightrag/api/README.md +1 -1
- lightrag/api/docs/LightRagWithPostGRESQL.md +1 -1
- lightrag/api/utils_api.py +1 -1
- lightrag/kg/postgres_impl.py +3 -3
- lightrag/lightrag.py +4 -2
README.md
CHANGED
@@ -1061,7 +1061,7 @@ Valid modes are:
|
|
1061 |
| **llm\_model\_func** | `callable` | Function for LLM generation | `gpt_4o_mini_complete` |
|
1062 |
| **llm\_model\_name** | `str` | LLM model name for generation | `meta-llama/Llama-3.2-1B-Instruct` |
|
1063 |
| **llm\_model\_max\_token\_size** | `int` | Maximum token size for LLM generation (affects entity relation summaries) | `32768`(default value changed by env var MAX_TOKENS) |
|
1064 |
-
| **llm\_model\_max\_async** | `int` | Maximum number of concurrent asynchronous LLM processes | `
|
1065 |
| **llm\_model\_kwargs** | `dict` | Additional parameters for LLM generation | |
|
1066 |
| **vector\_db\_storage\_cls\_kwargs** | `dict` | Additional parameters for vector database, like setting the threshold for nodes and relations retrieval. | cosine_better_than_threshold: 0.2(default value changed by env var COSINE_THRESHOLD) |
|
1067 |
| **enable\_llm\_cache** | `bool` | If `TRUE`, stores LLM results in cache; repeated prompts return cached responses | `TRUE` |
|
|
|
1061 |
| **llm\_model\_func** | `callable` | Function for LLM generation | `gpt_4o_mini_complete` |
|
1062 |
| **llm\_model\_name** | `str` | LLM model name for generation | `meta-llama/Llama-3.2-1B-Instruct` |
|
1063 |
| **llm\_model\_max\_token\_size** | `int` | Maximum token size for LLM generation (affects entity relation summaries) | `32768`(default value changed by env var MAX_TOKENS) |
|
1064 |
+
| **llm\_model\_max\_async** | `int` | Maximum number of concurrent asynchronous LLM processes | `4`(default value changed by env var MAX_ASYNC) |
|
1065 |
| **llm\_model\_kwargs** | `dict` | Additional parameters for LLM generation | |
|
1066 |
| **vector\_db\_storage\_cls\_kwargs** | `dict` | Additional parameters for vector database, like setting the threshold for nodes and relations retrieval. | cosine_better_than_threshold: 0.2(default value changed by env var COSINE_THRESHOLD) |
|
1067 |
| **enable\_llm\_cache** | `bool` | If `TRUE`, stores LLM results in cache; repeated prompts return cached responses | `TRUE` |
|
env.example
CHANGED
@@ -50,7 +50,8 @@
|
|
50 |
# MAX_TOKEN_SUMMARY=500 # Max tokens for entity or relations summary
|
51 |
# SUMMARY_LANGUAGE=English
|
52 |
# MAX_EMBED_TOKENS=8192
|
53 |
-
# ENABLE_LLM_CACHE_FOR_EXTRACT=
|
|
|
54 |
|
55 |
### LLM Configuration (Use valid host. For local services installed with docker, you can use host.docker.internal)
|
56 |
LLM_BINDING=ollama
|
|
|
50 |
# MAX_TOKEN_SUMMARY=500 # Max tokens for entity or relations summary
|
51 |
# SUMMARY_LANGUAGE=English
|
52 |
# MAX_EMBED_TOKENS=8192
|
53 |
+
# ENABLE_LLM_CACHE_FOR_EXTRACT=true # Enable LLM cache for entity extraction
|
54 |
+
# MAX_PARALLEL_INSERT=2 # Maximum number of parallel processing documents in pipeline
|
55 |
|
56 |
### LLM Configuration (Use valid host. For local services installed with docker, you can use host.docker.internal)
|
57 |
LLM_BINDING=ollama
|
lightrag/api/README.md
CHANGED
@@ -224,7 +224,7 @@ LightRAG supports binding to various LLM/Embedding backends:
|
|
224 |
Use environment variables `LLM_BINDING` or CLI argument `--llm-binding` to select LLM backend type. Use environment variables `EMBEDDING_BINDING` or CLI argument `--embedding-binding` to select LLM backend type.
|
225 |
|
226 |
### Entity Extraction Configuration
|
227 |
-
* ENABLE_LLM_CACHE_FOR_EXTRACT: Enable LLM cache for entity extraction (default:
|
228 |
|
229 |
It's very common to set `ENABLE_LLM_CACHE_FOR_EXTRACT` to true for test environment to reduce the cost of LLM calls.
|
230 |
|
|
|
224 |
Use environment variables `LLM_BINDING` or CLI argument `--llm-binding` to select LLM backend type. Use environment variables `EMBEDDING_BINDING` or CLI argument `--embedding-binding` to select LLM backend type.
|
225 |
|
226 |
### Entity Extraction Configuration
|
227 |
+
* ENABLE_LLM_CACHE_FOR_EXTRACT: Enable LLM cache for entity extraction (default: true)
|
228 |
|
229 |
It's very common to set `ENABLE_LLM_CACHE_FOR_EXTRACT` to true for test environment to reduce the cost of LLM calls.
|
230 |
|
lightrag/api/docs/LightRagWithPostGRESQL.md
CHANGED
@@ -141,7 +141,7 @@ Start the LightRAG server using specified options:
|
|
141 |
lightrag-server --port 9621 --key sk-somepassword --kv-storage PGKVStorage --graph-storage PGGraphStorage --vector-storage PGVectorStorage --doc-status-storage PGDocStatusStorage
|
142 |
```
|
143 |
|
144 |
-
Replace `
|
145 |
|
146 |
## Conclusion
|
147 |
|
|
|
141 |
lightrag-server --port 9621 --key sk-somepassword --kv-storage PGKVStorage --graph-storage PGGraphStorage --vector-storage PGVectorStorage --doc-status-storage PGDocStatusStorage
|
142 |
```
|
143 |
|
144 |
+
Replace the `port` number with your desired port number (default is 9621) and `your-secret-key` with a secure key.
|
145 |
|
146 |
## Conclusion
|
147 |
|
lightrag/api/utils_api.py
CHANGED
@@ -364,7 +364,7 @@ def parse_args(is_uvicorn_mode: bool = False) -> argparse.Namespace:
|
|
364 |
|
365 |
# Inject LLM cache configuration
|
366 |
args.enable_llm_cache_for_extract = get_env_value(
|
367 |
-
"ENABLE_LLM_CACHE_FOR_EXTRACT",
|
368 |
)
|
369 |
|
370 |
# Select Document loading tool (DOCLING, DEFAULT)
|
|
|
364 |
|
365 |
# Inject LLM cache configuration
|
366 |
args.enable_llm_cache_for_extract = get_env_value(
|
367 |
+
"ENABLE_LLM_CACHE_FOR_EXTRACT", True, bool
|
368 |
)
|
369 |
|
370 |
# Select Document loading tool (DOCLING, DEFAULT)
|
lightrag/kg/postgres_impl.py
CHANGED
@@ -755,7 +755,7 @@ class PGDocStatusStorage(DocStatusStorage):
|
|
755 |
result = await self.db.query(sql, params, True)
|
756 |
docs_by_status = {
|
757 |
element["id"]: DocProcessingStatus(
|
758 |
-
content=
|
759 |
content_summary=element["content_summary"],
|
760 |
content_length=element["content_length"],
|
761 |
status=element["status"],
|
@@ -1556,7 +1556,7 @@ TABLES = {
|
|
1556 |
content_vector VECTOR,
|
1557 |
create_time TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
|
1558 |
update_time TIMESTAMP,
|
1559 |
-
chunk_id
|
1560 |
CONSTRAINT LIGHTRAG_VDB_ENTITY_PK PRIMARY KEY (workspace, id)
|
1561 |
)"""
|
1562 |
},
|
@@ -1570,7 +1570,7 @@ TABLES = {
|
|
1570 |
content_vector VECTOR,
|
1571 |
create_time TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
|
1572 |
update_time TIMESTAMP,
|
1573 |
-
chunk_id
|
1574 |
CONSTRAINT LIGHTRAG_VDB_RELATION_PK PRIMARY KEY (workspace, id)
|
1575 |
)"""
|
1576 |
},
|
|
|
755 |
result = await self.db.query(sql, params, True)
|
756 |
docs_by_status = {
|
757 |
element["id"]: DocProcessingStatus(
|
758 |
+
content=element["content"],
|
759 |
content_summary=element["content_summary"],
|
760 |
content_length=element["content_length"],
|
761 |
status=element["status"],
|
|
|
1556 |
content_vector VECTOR,
|
1557 |
create_time TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
|
1558 |
update_time TIMESTAMP,
|
1559 |
+
chunk_id TEXT NULL,
|
1560 |
CONSTRAINT LIGHTRAG_VDB_ENTITY_PK PRIMARY KEY (workspace, id)
|
1561 |
)"""
|
1562 |
},
|
|
|
1570 |
content_vector VECTOR,
|
1571 |
create_time TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
|
1572 |
update_time TIMESTAMP,
|
1573 |
+
chunk_id TEXT NULL,
|
1574 |
CONSTRAINT LIGHTRAG_VDB_RELATION_PK PRIMARY KEY (workspace, id)
|
1575 |
)"""
|
1576 |
},
|
lightrag/lightrag.py
CHANGED
@@ -214,7 +214,7 @@ class LightRAG:
|
|
214 |
llm_model_max_token_size: int = field(default=int(os.getenv("MAX_TOKENS", 32768)))
|
215 |
"""Maximum number of tokens allowed per LLM response."""
|
216 |
|
217 |
-
llm_model_max_async: int = field(default=int(os.getenv("MAX_ASYNC",
|
218 |
"""Maximum number of concurrent LLM calls."""
|
219 |
|
220 |
llm_model_kwargs: dict[str, Any] = field(default_factory=dict)
|
@@ -238,7 +238,7 @@ class LightRAG:
|
|
238 |
# Extensions
|
239 |
# ---
|
240 |
|
241 |
-
max_parallel_insert: int = field(default=int(os.getenv("MAX_PARALLEL_INSERT",
|
242 |
"""Maximum number of parallel insert operations."""
|
243 |
|
244 |
addon_params: dict[str, Any] = field(
|
@@ -553,6 +553,7 @@ class LightRAG:
|
|
553 |
Args:
|
554 |
input: Single document string or list of document strings
|
555 |
split_by_character: if split_by_character is not None, split the string by character, if chunk longer than
|
|
|
556 |
split_by_character_only: if split_by_character_only is True, split the string by character only, when
|
557 |
split_by_character is None, this parameter is ignored.
|
558 |
ids: single string of the document ID or list of unique document IDs, if not provided, MD5 hash IDs will be generated
|
@@ -574,6 +575,7 @@ class LightRAG:
|
|
574 |
Args:
|
575 |
input: Single document string or list of document strings
|
576 |
split_by_character: if split_by_character is not None, split the string by character, if chunk longer than
|
|
|
577 |
split_by_character_only: if split_by_character_only is True, split the string by character only, when
|
578 |
split_by_character is None, this parameter is ignored.
|
579 |
ids: list of unique document IDs, if not provided, MD5 hash IDs will be generated
|
|
|
214 |
llm_model_max_token_size: int = field(default=int(os.getenv("MAX_TOKENS", 32768)))
|
215 |
"""Maximum number of tokens allowed per LLM response."""
|
216 |
|
217 |
+
llm_model_max_async: int = field(default=int(os.getenv("MAX_ASYNC", 4)))
|
218 |
"""Maximum number of concurrent LLM calls."""
|
219 |
|
220 |
llm_model_kwargs: dict[str, Any] = field(default_factory=dict)
|
|
|
238 |
# Extensions
|
239 |
# ---
|
240 |
|
241 |
+
max_parallel_insert: int = field(default=int(os.getenv("MAX_PARALLEL_INSERT", 2)))
|
242 |
"""Maximum number of parallel insert operations."""
|
243 |
|
244 |
addon_params: dict[str, Any] = field(
|
|
|
553 |
Args:
|
554 |
input: Single document string or list of document strings
|
555 |
split_by_character: if split_by_character is not None, split the string by character, if chunk longer than
|
556 |
+
chunk_token_size, it will be split again by token size.
|
557 |
split_by_character_only: if split_by_character_only is True, split the string by character only, when
|
558 |
split_by_character is None, this parameter is ignored.
|
559 |
ids: single string of the document ID or list of unique document IDs, if not provided, MD5 hash IDs will be generated
|
|
|
575 |
Args:
|
576 |
input: Single document string or list of document strings
|
577 |
split_by_character: if split_by_character is not None, split the string by character, if chunk longer than
|
578 |
+
chunk_token_size, it will be split again by token size.
|
579 |
split_by_character_only: if split_by_character_only is True, split the string by character only, when
|
580 |
split_by_character is None, this parameter is ignored.
|
581 |
ids: list of unique document IDs, if not provided, MD5 hash IDs will be generated
|