LarFii
commited on
Commit
·
2678ed8
1
Parent(s):
4c55f30
fix bug
Browse files- examples/lightrag_hf_demo.py +8 -3
- examples/lightrag_openai_demo.py +3 -3
- lightrag/lightrag.py +3 -15
examples/lightrag_hf_demo.py
CHANGED
|
@@ -3,6 +3,7 @@ import sys
|
|
| 3 |
|
| 4 |
from lightrag import LightRAG, QueryParam
|
| 5 |
from lightrag.llm import hf_model_complete, hf_embedding
|
|
|
|
| 6 |
from transformers import AutoModel,AutoTokenizer
|
| 7 |
|
| 8 |
WORKING_DIR = "./dickens"
|
|
@@ -14,9 +15,13 @@ rag = LightRAG(
|
|
| 14 |
working_dir=WORKING_DIR,
|
| 15 |
llm_model_func=hf_model_complete,
|
| 16 |
llm_model_name='meta-llama/Llama-3.1-8B-Instruct',
|
| 17 |
-
embedding_func=
|
| 18 |
-
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
)
|
| 21 |
|
| 22 |
|
|
|
|
| 3 |
|
| 4 |
from lightrag import LightRAG, QueryParam
|
| 5 |
from lightrag.llm import hf_model_complete, hf_embedding
|
| 6 |
+
from lightrag.utils import EmbeddingFunc
|
| 7 |
from transformers import AutoModel,AutoTokenizer
|
| 8 |
|
| 9 |
WORKING_DIR = "./dickens"
|
|
|
|
| 15 |
working_dir=WORKING_DIR,
|
| 16 |
llm_model_func=hf_model_complete,
|
| 17 |
llm_model_name='meta-llama/Llama-3.1-8B-Instruct',
|
| 18 |
+
embedding_func=EmbeddingFunc(
|
| 19 |
+
tokenizer=AutoTokenizer.from_pretrained("sentence-transformers/all-MiniLM-L6-v2"),
|
| 20 |
+
embed_model=AutoModel.from_pretrained("sentence-transformers/all-MiniLM-L6-v2"),
|
| 21 |
+
embedding_dim=384,
|
| 22 |
+
max_token_size=5000,
|
| 23 |
+
func=hf_embedding
|
| 24 |
+
),
|
| 25 |
)
|
| 26 |
|
| 27 |
|
examples/lightrag_openai_demo.py
CHANGED
|
@@ -5,15 +5,15 @@ from lightrag import LightRAG, QueryParam
|
|
| 5 |
from lightrag.llm import gpt_4o_mini_complete, gpt_4o_complete
|
| 6 |
from transformers import AutoModel,AutoTokenizer
|
| 7 |
|
| 8 |
-
WORKING_DIR = "
|
| 9 |
|
| 10 |
if not os.path.exists(WORKING_DIR):
|
| 11 |
os.mkdir(WORKING_DIR)
|
| 12 |
|
| 13 |
rag = LightRAG(
|
| 14 |
working_dir=WORKING_DIR,
|
| 15 |
-
llm_model_func=
|
| 16 |
-
# llm_model_func=
|
| 17 |
)
|
| 18 |
|
| 19 |
|
|
|
|
| 5 |
from lightrag.llm import gpt_4o_mini_complete, gpt_4o_complete
|
| 6 |
from transformers import AutoModel,AutoTokenizer
|
| 7 |
|
| 8 |
+
WORKING_DIR = "/home/zrguo/code/myrag/agriculture"
|
| 9 |
|
| 10 |
if not os.path.exists(WORKING_DIR):
|
| 11 |
os.mkdir(WORKING_DIR)
|
| 12 |
|
| 13 |
rag = LightRAG(
|
| 14 |
working_dir=WORKING_DIR,
|
| 15 |
+
llm_model_func=gpt_4o_mini_complete
|
| 16 |
+
# llm_model_func=gpt_4o_complete
|
| 17 |
)
|
| 18 |
|
| 19 |
|
lightrag/lightrag.py
CHANGED
|
@@ -76,12 +76,8 @@ class LightRAG:
|
|
| 76 |
}
|
| 77 |
)
|
| 78 |
|
| 79 |
-
# text embedding
|
| 80 |
-
tokenizer: Any = None
|
| 81 |
-
embed_model: Any = None
|
| 82 |
-
|
| 83 |
# embedding_func: EmbeddingFunc = field(default_factory=lambda:hf_embedding)
|
| 84 |
-
embedding_func: EmbeddingFunc = field(default_factory=lambda:openai_embedding)
|
| 85 |
embedding_batch_num: int = 32
|
| 86 |
embedding_func_max_async: int = 16
|
| 87 |
|
|
@@ -103,13 +99,6 @@ class LightRAG:
|
|
| 103 |
convert_response_to_json_func: callable = convert_response_to_json
|
| 104 |
|
| 105 |
def __post_init__(self):
|
| 106 |
-
if callable(self.embedding_func) and self.embedding_func.__name__ == 'hf_embedding':
|
| 107 |
-
if self.tokenizer is None:
|
| 108 |
-
self.tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/all-MiniLM-L6-v2")
|
| 109 |
-
if self.embed_model is None:
|
| 110 |
-
self.embed_model = AutoModel.from_pretrained("sentence-transformers/all-MiniLM-L6-v2")
|
| 111 |
-
|
| 112 |
-
|
| 113 |
log_file = os.path.join(self.working_dir, "lightrag.log")
|
| 114 |
set_logger(log_file)
|
| 115 |
logger.info(f"Logger initialized for working directory: {self.working_dir}")
|
|
@@ -139,10 +128,9 @@ class LightRAG:
|
|
| 139 |
self.chunk_entity_relation_graph = self.graph_storage_cls(
|
| 140 |
namespace="chunk_entity_relation", global_config=asdict(self)
|
| 141 |
)
|
|
|
|
| 142 |
self.embedding_func = limit_async_func_call(self.embedding_func_max_async)(
|
| 143 |
-
|
| 144 |
-
if callable(self.embedding_func) and self.embedding_func.__name__ == 'hf_embedding'
|
| 145 |
-
else self.embedding_func(texts)
|
| 146 |
)
|
| 147 |
|
| 148 |
self.entities_vdb = (
|
|
|
|
| 76 |
}
|
| 77 |
)
|
| 78 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
# embedding_func: EmbeddingFunc = field(default_factory=lambda:hf_embedding)
|
| 80 |
+
embedding_func: EmbeddingFunc = field(default_factory=lambda:openai_embedding)
|
| 81 |
embedding_batch_num: int = 32
|
| 82 |
embedding_func_max_async: int = 16
|
| 83 |
|
|
|
|
| 99 |
convert_response_to_json_func: callable = convert_response_to_json
|
| 100 |
|
| 101 |
def __post_init__(self):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
log_file = os.path.join(self.working_dir, "lightrag.log")
|
| 103 |
set_logger(log_file)
|
| 104 |
logger.info(f"Logger initialized for working directory: {self.working_dir}")
|
|
|
|
| 128 |
self.chunk_entity_relation_graph = self.graph_storage_cls(
|
| 129 |
namespace="chunk_entity_relation", global_config=asdict(self)
|
| 130 |
)
|
| 131 |
+
|
| 132 |
self.embedding_func = limit_async_func_call(self.embedding_func_max_async)(
|
| 133 |
+
self.embedding_func
|
|
|
|
|
|
|
| 134 |
)
|
| 135 |
|
| 136 |
self.entities_vdb = (
|