LarFii
commited on
Commit
·
2678ed8
1
Parent(s):
4c55f30
fix bug
Browse files- examples/lightrag_hf_demo.py +8 -3
- examples/lightrag_openai_demo.py +3 -3
- lightrag/lightrag.py +3 -15
examples/lightrag_hf_demo.py
CHANGED
@@ -3,6 +3,7 @@ import sys
|
|
3 |
|
4 |
from lightrag import LightRAG, QueryParam
|
5 |
from lightrag.llm import hf_model_complete, hf_embedding
|
|
|
6 |
from transformers import AutoModel,AutoTokenizer
|
7 |
|
8 |
WORKING_DIR = "./dickens"
|
@@ -14,9 +15,13 @@ rag = LightRAG(
|
|
14 |
working_dir=WORKING_DIR,
|
15 |
llm_model_func=hf_model_complete,
|
16 |
llm_model_name='meta-llama/Llama-3.1-8B-Instruct',
|
17 |
-
embedding_func=
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
20 |
)
|
21 |
|
22 |
|
|
|
3 |
|
4 |
from lightrag import LightRAG, QueryParam
|
5 |
from lightrag.llm import hf_model_complete, hf_embedding
|
6 |
+
from lightrag.utils import EmbeddingFunc
|
7 |
from transformers import AutoModel,AutoTokenizer
|
8 |
|
9 |
WORKING_DIR = "./dickens"
|
|
|
15 |
working_dir=WORKING_DIR,
|
16 |
llm_model_func=hf_model_complete,
|
17 |
llm_model_name='meta-llama/Llama-3.1-8B-Instruct',
|
18 |
+
embedding_func=EmbeddingFunc(
|
19 |
+
tokenizer=AutoTokenizer.from_pretrained("sentence-transformers/all-MiniLM-L6-v2"),
|
20 |
+
embed_model=AutoModel.from_pretrained("sentence-transformers/all-MiniLM-L6-v2"),
|
21 |
+
embedding_dim=384,
|
22 |
+
max_token_size=5000,
|
23 |
+
func=hf_embedding
|
24 |
+
),
|
25 |
)
|
26 |
|
27 |
|
examples/lightrag_openai_demo.py
CHANGED
@@ -5,15 +5,15 @@ from lightrag import LightRAG, QueryParam
|
|
5 |
from lightrag.llm import gpt_4o_mini_complete, gpt_4o_complete
|
6 |
from transformers import AutoModel,AutoTokenizer
|
7 |
|
8 |
-
WORKING_DIR = "
|
9 |
|
10 |
if not os.path.exists(WORKING_DIR):
|
11 |
os.mkdir(WORKING_DIR)
|
12 |
|
13 |
rag = LightRAG(
|
14 |
working_dir=WORKING_DIR,
|
15 |
-
llm_model_func=
|
16 |
-
# llm_model_func=
|
17 |
)
|
18 |
|
19 |
|
|
|
5 |
from lightrag.llm import gpt_4o_mini_complete, gpt_4o_complete
|
6 |
from transformers import AutoModel,AutoTokenizer
|
7 |
|
8 |
+
WORKING_DIR = "/home/zrguo/code/myrag/agriculture"
|
9 |
|
10 |
if not os.path.exists(WORKING_DIR):
|
11 |
os.mkdir(WORKING_DIR)
|
12 |
|
13 |
rag = LightRAG(
|
14 |
working_dir=WORKING_DIR,
|
15 |
+
llm_model_func=gpt_4o_mini_complete
|
16 |
+
# llm_model_func=gpt_4o_complete
|
17 |
)
|
18 |
|
19 |
|
lightrag/lightrag.py
CHANGED
@@ -76,12 +76,8 @@ class LightRAG:
|
|
76 |
}
|
77 |
)
|
78 |
|
79 |
-
# text embedding
|
80 |
-
tokenizer: Any = None
|
81 |
-
embed_model: Any = None
|
82 |
-
|
83 |
# embedding_func: EmbeddingFunc = field(default_factory=lambda:hf_embedding)
|
84 |
-
embedding_func: EmbeddingFunc = field(default_factory=lambda:openai_embedding)
|
85 |
embedding_batch_num: int = 32
|
86 |
embedding_func_max_async: int = 16
|
87 |
|
@@ -103,13 +99,6 @@ class LightRAG:
|
|
103 |
convert_response_to_json_func: callable = convert_response_to_json
|
104 |
|
105 |
def __post_init__(self):
|
106 |
-
if callable(self.embedding_func) and self.embedding_func.__name__ == 'hf_embedding':
|
107 |
-
if self.tokenizer is None:
|
108 |
-
self.tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/all-MiniLM-L6-v2")
|
109 |
-
if self.embed_model is None:
|
110 |
-
self.embed_model = AutoModel.from_pretrained("sentence-transformers/all-MiniLM-L6-v2")
|
111 |
-
|
112 |
-
|
113 |
log_file = os.path.join(self.working_dir, "lightrag.log")
|
114 |
set_logger(log_file)
|
115 |
logger.info(f"Logger initialized for working directory: {self.working_dir}")
|
@@ -139,10 +128,9 @@ class LightRAG:
|
|
139 |
self.chunk_entity_relation_graph = self.graph_storage_cls(
|
140 |
namespace="chunk_entity_relation", global_config=asdict(self)
|
141 |
)
|
|
|
142 |
self.embedding_func = limit_async_func_call(self.embedding_func_max_async)(
|
143 |
-
|
144 |
-
if callable(self.embedding_func) and self.embedding_func.__name__ == 'hf_embedding'
|
145 |
-
else self.embedding_func(texts)
|
146 |
)
|
147 |
|
148 |
self.entities_vdb = (
|
|
|
76 |
}
|
77 |
)
|
78 |
|
|
|
|
|
|
|
|
|
79 |
# embedding_func: EmbeddingFunc = field(default_factory=lambda:hf_embedding)
|
80 |
+
embedding_func: EmbeddingFunc = field(default_factory=lambda:openai_embedding)
|
81 |
embedding_batch_num: int = 32
|
82 |
embedding_func_max_async: int = 16
|
83 |
|
|
|
99 |
convert_response_to_json_func: callable = convert_response_to_json
|
100 |
|
101 |
def __post_init__(self):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
log_file = os.path.join(self.working_dir, "lightrag.log")
|
103 |
set_logger(log_file)
|
104 |
logger.info(f"Logger initialized for working directory: {self.working_dir}")
|
|
|
128 |
self.chunk_entity_relation_graph = self.graph_storage_cls(
|
129 |
namespace="chunk_entity_relation", global_config=asdict(self)
|
130 |
)
|
131 |
+
|
132 |
self.embedding_func = limit_async_func_call(self.embedding_func_max_async)(
|
133 |
+
self.embedding_func
|
|
|
|
|
134 |
)
|
135 |
|
136 |
self.entities_vdb = (
|