fix linting
Browse files- examples/lightrag_api_ollama_demo.py +6 -1
- examples/lightrag_api_openai_compatible_demo.py +3 -2
- examples/lightrag_bedrock_demo.py +6 -2
- examples/lightrag_gemini_demo.py +4 -1
- examples/lightrag_hf_demo.py +15 -4
- examples/lightrag_llamaindex_direct_demo.py +15 -6
- examples/lightrag_llamaindex_litellm_demo.py +15 -6
- examples/lightrag_lmdeploy_demo.py +17 -6
- examples/lightrag_nvidia_demo.py +4 -1
- examples/lightrag_ollama_age_demo.py +21 -6
- examples/lightrag_ollama_demo.py +21 -6
- examples/lightrag_ollama_gremlin_demo.py +21 -6
- examples/lightrag_ollama_neo4j_milvus_mongo_demo.py +20 -6
- examples/lightrag_openai_compatible_demo.py +3 -0
- examples/lightrag_openai_compatible_demo_embedding_cache.py +2 -0
- examples/lightrag_openai_compatible_stream_demo.py +5 -1
- examples/lightrag_openai_demo.py +15 -5
- examples/lightrag_openai_mongodb_graph_demo.py +14 -5
- examples/lightrag_openai_neo4j_milvus_redis_demo.py +15 -4
- examples/lightrag_oracle_demo.py +2 -0
- examples/lightrag_siliconcloud_demo.py +14 -5
- examples/lightrag_tidb_demo.py +2 -0
- examples/lightrag_zhipu_demo.py +15 -4
- examples/lightrag_zhipu_postgres_demo.py +3 -1
- examples/query_keyword_separation_example.py +3 -1
- examples/test.py +16 -5
- examples/test_chromadb.py +15 -5
- examples/test_faiss.py +2 -1
- examples/test_neo4j.py +15 -4
- examples/test_split_by_character.ipynb +0 -1313
- examples/vram_management_demo.py +7 -4
- reproduce/Step_1.py +2 -0
- reproduce/Step_1_openai_compatible.py +2 -0
examples/lightrag_api_ollama_demo.py
CHANGED
|
@@ -36,7 +36,10 @@ async def init():
|
|
| 36 |
llm_model_name="gemma2:9b",
|
| 37 |
llm_model_max_async=4,
|
| 38 |
llm_model_max_token_size=8192,
|
| 39 |
-
llm_model_kwargs={
|
|
|
|
|
|
|
|
|
|
| 40 |
embedding_func=EmbeddingFunc(
|
| 41 |
embedding_dim=768,
|
| 42 |
max_token_size=8192,
|
|
@@ -64,6 +67,8 @@ async def lifespan(app: FastAPI):
|
|
| 64 |
app = FastAPI(
|
| 65 |
title="LightRAG API", description="API for RAG operations", lifespan=lifespan
|
| 66 |
)
|
|
|
|
|
|
|
| 67 |
# Data models
|
| 68 |
class QueryRequest(BaseModel):
|
| 69 |
query: str
|
|
|
|
| 36 |
llm_model_name="gemma2:9b",
|
| 37 |
llm_model_max_async=4,
|
| 38 |
llm_model_max_token_size=8192,
|
| 39 |
+
llm_model_kwargs={
|
| 40 |
+
"host": "http://localhost:11434",
|
| 41 |
+
"options": {"num_ctx": 8192},
|
| 42 |
+
},
|
| 43 |
embedding_func=EmbeddingFunc(
|
| 44 |
embedding_dim=768,
|
| 45 |
max_token_size=8192,
|
|
|
|
| 67 |
app = FastAPI(
|
| 68 |
title="LightRAG API", description="API for RAG operations", lifespan=lifespan
|
| 69 |
)
|
| 70 |
+
|
| 71 |
+
|
| 72 |
# Data models
|
| 73 |
class QueryRequest(BaseModel):
|
| 74 |
query: str
|
examples/lightrag_api_openai_compatible_demo.py
CHANGED
|
@@ -75,7 +75,7 @@ async def get_embedding_dim():
|
|
| 75 |
# Initialize RAG instance
|
| 76 |
async def init():
|
| 77 |
embedding_dimension = await get_embedding_dim()
|
| 78 |
-
|
| 79 |
rag = LightRAG(
|
| 80 |
working_dir=WORKING_DIR,
|
| 81 |
llm_model_func=llm_model_func,
|
|
@@ -88,9 +88,10 @@ async def init():
|
|
| 88 |
|
| 89 |
await rag.initialize_storages()
|
| 90 |
await initialize_pipeline_status()
|
| 91 |
-
|
| 92 |
return rag
|
| 93 |
|
|
|
|
| 94 |
@asynccontextmanager
|
| 95 |
async def lifespan(app: FastAPI):
|
| 96 |
global rag
|
|
|
|
| 75 |
# Initialize RAG instance
|
| 76 |
async def init():
|
| 77 |
embedding_dimension = await get_embedding_dim()
|
| 78 |
+
|
| 79 |
rag = LightRAG(
|
| 80 |
working_dir=WORKING_DIR,
|
| 81 |
llm_model_func=llm_model_func,
|
|
|
|
| 88 |
|
| 89 |
await rag.initialize_storages()
|
| 90 |
await initialize_pipeline_status()
|
| 91 |
+
|
| 92 |
return rag
|
| 93 |
|
| 94 |
+
|
| 95 |
@asynccontextmanager
|
| 96 |
async def lifespan(app: FastAPI):
|
| 97 |
global rag
|
examples/lightrag_bedrock_demo.py
CHANGED
|
@@ -21,6 +21,7 @@ WORKING_DIR = "./dickens"
|
|
| 21 |
if not os.path.exists(WORKING_DIR):
|
| 22 |
os.mkdir(WORKING_DIR)
|
| 23 |
|
|
|
|
| 24 |
async def initialize_rag():
|
| 25 |
rag = LightRAG(
|
| 26 |
working_dir=WORKING_DIR,
|
|
@@ -33,9 +34,10 @@ async def initialize_rag():
|
|
| 33 |
|
| 34 |
await rag.initialize_storages()
|
| 35 |
await initialize_pipeline_status()
|
| 36 |
-
|
| 37 |
return rag
|
| 38 |
|
|
|
|
| 39 |
def main():
|
| 40 |
rag = asyncio.run(initialize_rag())
|
| 41 |
|
|
@@ -47,5 +49,7 @@ def main():
|
|
| 47 |
print(f"| {mode.capitalize()} |")
|
| 48 |
print("+-" + "-" * len(mode) + "-+\n")
|
| 49 |
print(
|
| 50 |
-
rag.query(
|
|
|
|
|
|
|
| 51 |
)
|
|
|
|
| 21 |
if not os.path.exists(WORKING_DIR):
|
| 22 |
os.mkdir(WORKING_DIR)
|
| 23 |
|
| 24 |
+
|
| 25 |
async def initialize_rag():
|
| 26 |
rag = LightRAG(
|
| 27 |
working_dir=WORKING_DIR,
|
|
|
|
| 34 |
|
| 35 |
await rag.initialize_storages()
|
| 36 |
await initialize_pipeline_status()
|
| 37 |
+
|
| 38 |
return rag
|
| 39 |
|
| 40 |
+
|
| 41 |
def main():
|
| 42 |
rag = asyncio.run(initialize_rag())
|
| 43 |
|
|
|
|
| 49 |
print(f"| {mode.capitalize()} |")
|
| 50 |
print("+-" + "-" * len(mode) + "-+\n")
|
| 51 |
print(
|
| 52 |
+
rag.query(
|
| 53 |
+
"What are the top themes in this story?", param=QueryParam(mode=mode)
|
| 54 |
+
)
|
| 55 |
)
|
examples/lightrag_gemini_demo.py
CHANGED
|
@@ -12,6 +12,7 @@ from lightrag.kg.shared_storage import initialize_pipeline_status
|
|
| 12 |
|
| 13 |
import asyncio
|
| 14 |
import nest_asyncio
|
|
|
|
| 15 |
# Apply nest_asyncio to solve event loop issues
|
| 16 |
nest_asyncio.apply()
|
| 17 |
|
|
@@ -79,9 +80,10 @@ async def initialize_rag():
|
|
| 79 |
|
| 80 |
await rag.initialize_storages()
|
| 81 |
await initialize_pipeline_status()
|
| 82 |
-
|
| 83 |
return rag
|
| 84 |
|
|
|
|
| 85 |
def main():
|
| 86 |
# Initialize RAG instance
|
| 87 |
rag = asyncio.run(initialize_rag())
|
|
@@ -98,5 +100,6 @@ def main():
|
|
| 98 |
|
| 99 |
print(response)
|
| 100 |
|
|
|
|
| 101 |
if __name__ == "__main__":
|
| 102 |
main()
|
|
|
|
| 12 |
|
| 13 |
import asyncio
|
| 14 |
import nest_asyncio
|
| 15 |
+
|
| 16 |
# Apply nest_asyncio to solve event loop issues
|
| 17 |
nest_asyncio.apply()
|
| 18 |
|
|
|
|
| 80 |
|
| 81 |
await rag.initialize_storages()
|
| 82 |
await initialize_pipeline_status()
|
| 83 |
+
|
| 84 |
return rag
|
| 85 |
|
| 86 |
+
|
| 87 |
def main():
|
| 88 |
# Initialize RAG instance
|
| 89 |
rag = asyncio.run(initialize_rag())
|
|
|
|
| 100 |
|
| 101 |
print(response)
|
| 102 |
|
| 103 |
+
|
| 104 |
if __name__ == "__main__":
|
| 105 |
main()
|
examples/lightrag_hf_demo.py
CHANGED
|
@@ -16,6 +16,7 @@ WORKING_DIR = "./dickens"
|
|
| 16 |
if not os.path.exists(WORKING_DIR):
|
| 17 |
os.mkdir(WORKING_DIR)
|
| 18 |
|
|
|
|
| 19 |
async def initialize_rag():
|
| 20 |
rag = LightRAG(
|
| 21 |
working_dir=WORKING_DIR,
|
|
@@ -41,6 +42,7 @@ async def initialize_rag():
|
|
| 41 |
|
| 42 |
return rag
|
| 43 |
|
|
|
|
| 44 |
def main():
|
| 45 |
rag = asyncio.run(initialize_rag())
|
| 46 |
|
|
@@ -49,23 +51,32 @@ def main():
|
|
| 49 |
|
| 50 |
# Perform naive search
|
| 51 |
print(
|
| 52 |
-
rag.query(
|
|
|
|
|
|
|
| 53 |
)
|
| 54 |
|
| 55 |
# Perform local search
|
| 56 |
print(
|
| 57 |
-
rag.query(
|
|
|
|
|
|
|
| 58 |
)
|
| 59 |
|
| 60 |
# Perform global search
|
| 61 |
print(
|
| 62 |
-
rag.query(
|
|
|
|
|
|
|
| 63 |
)
|
| 64 |
|
| 65 |
# Perform hybrid search
|
| 66 |
print(
|
| 67 |
-
rag.query(
|
|
|
|
|
|
|
| 68 |
)
|
| 69 |
|
|
|
|
| 70 |
if __name__ == "__main__":
|
| 71 |
main()
|
|
|
|
| 16 |
if not os.path.exists(WORKING_DIR):
|
| 17 |
os.mkdir(WORKING_DIR)
|
| 18 |
|
| 19 |
+
|
| 20 |
async def initialize_rag():
|
| 21 |
rag = LightRAG(
|
| 22 |
working_dir=WORKING_DIR,
|
|
|
|
| 42 |
|
| 43 |
return rag
|
| 44 |
|
| 45 |
+
|
| 46 |
def main():
|
| 47 |
rag = asyncio.run(initialize_rag())
|
| 48 |
|
|
|
|
| 51 |
|
| 52 |
# Perform naive search
|
| 53 |
print(
|
| 54 |
+
rag.query(
|
| 55 |
+
"What are the top themes in this story?", param=QueryParam(mode="naive")
|
| 56 |
+
)
|
| 57 |
)
|
| 58 |
|
| 59 |
# Perform local search
|
| 60 |
print(
|
| 61 |
+
rag.query(
|
| 62 |
+
"What are the top themes in this story?", param=QueryParam(mode="local")
|
| 63 |
+
)
|
| 64 |
)
|
| 65 |
|
| 66 |
# Perform global search
|
| 67 |
print(
|
| 68 |
+
rag.query(
|
| 69 |
+
"What are the top themes in this story?", param=QueryParam(mode="global")
|
| 70 |
+
)
|
| 71 |
)
|
| 72 |
|
| 73 |
# Perform hybrid search
|
| 74 |
print(
|
| 75 |
+
rag.query(
|
| 76 |
+
"What are the top themes in this story?", param=QueryParam(mode="hybrid")
|
| 77 |
+
)
|
| 78 |
)
|
| 79 |
|
| 80 |
+
|
| 81 |
if __name__ == "__main__":
|
| 82 |
main()
|
examples/lightrag_llamaindex_direct_demo.py
CHANGED
|
@@ -83,7 +83,7 @@ async def get_embedding_dim():
|
|
| 83 |
|
| 84 |
async def initialize_rag():
|
| 85 |
embedding_dimension = await get_embedding_dim()
|
| 86 |
-
|
| 87 |
rag = LightRAG(
|
| 88 |
working_dir=WORKING_DIR,
|
| 89 |
llm_model_func=llm_model_func,
|
|
@@ -96,7 +96,7 @@ async def initialize_rag():
|
|
| 96 |
|
| 97 |
await rag.initialize_storages()
|
| 98 |
await initialize_pipeline_status()
|
| 99 |
-
|
| 100 |
return rag
|
| 101 |
|
| 102 |
|
|
@@ -111,23 +111,32 @@ def main():
|
|
| 111 |
# Test different query modes
|
| 112 |
print("\nNaive Search:")
|
| 113 |
print(
|
| 114 |
-
rag.query(
|
|
|
|
|
|
|
| 115 |
)
|
| 116 |
|
| 117 |
print("\nLocal Search:")
|
| 118 |
print(
|
| 119 |
-
rag.query(
|
|
|
|
|
|
|
| 120 |
)
|
| 121 |
|
| 122 |
print("\nGlobal Search:")
|
| 123 |
print(
|
| 124 |
-
rag.query(
|
|
|
|
|
|
|
| 125 |
)
|
| 126 |
|
| 127 |
print("\nHybrid Search:")
|
| 128 |
print(
|
| 129 |
-
rag.query(
|
|
|
|
|
|
|
| 130 |
)
|
| 131 |
|
|
|
|
| 132 |
if __name__ == "__main__":
|
| 133 |
main()
|
|
|
|
| 83 |
|
| 84 |
async def initialize_rag():
|
| 85 |
embedding_dimension = await get_embedding_dim()
|
| 86 |
+
|
| 87 |
rag = LightRAG(
|
| 88 |
working_dir=WORKING_DIR,
|
| 89 |
llm_model_func=llm_model_func,
|
|
|
|
| 96 |
|
| 97 |
await rag.initialize_storages()
|
| 98 |
await initialize_pipeline_status()
|
| 99 |
+
|
| 100 |
return rag
|
| 101 |
|
| 102 |
|
|
|
|
| 111 |
# Test different query modes
|
| 112 |
print("\nNaive Search:")
|
| 113 |
print(
|
| 114 |
+
rag.query(
|
| 115 |
+
"What are the top themes in this story?", param=QueryParam(mode="naive")
|
| 116 |
+
)
|
| 117 |
)
|
| 118 |
|
| 119 |
print("\nLocal Search:")
|
| 120 |
print(
|
| 121 |
+
rag.query(
|
| 122 |
+
"What are the top themes in this story?", param=QueryParam(mode="local")
|
| 123 |
+
)
|
| 124 |
)
|
| 125 |
|
| 126 |
print("\nGlobal Search:")
|
| 127 |
print(
|
| 128 |
+
rag.query(
|
| 129 |
+
"What are the top themes in this story?", param=QueryParam(mode="global")
|
| 130 |
+
)
|
| 131 |
)
|
| 132 |
|
| 133 |
print("\nHybrid Search:")
|
| 134 |
print(
|
| 135 |
+
rag.query(
|
| 136 |
+
"What are the top themes in this story?", param=QueryParam(mode="hybrid")
|
| 137 |
+
)
|
| 138 |
)
|
| 139 |
|
| 140 |
+
|
| 141 |
if __name__ == "__main__":
|
| 142 |
main()
|
examples/lightrag_llamaindex_litellm_demo.py
CHANGED
|
@@ -86,7 +86,7 @@ async def get_embedding_dim():
|
|
| 86 |
|
| 87 |
async def initialize_rag():
|
| 88 |
embedding_dimension = await get_embedding_dim()
|
| 89 |
-
|
| 90 |
rag = LightRAG(
|
| 91 |
working_dir=WORKING_DIR,
|
| 92 |
llm_model_func=llm_model_func,
|
|
@@ -99,7 +99,7 @@ async def initialize_rag():
|
|
| 99 |
|
| 100 |
await rag.initialize_storages()
|
| 101 |
await initialize_pipeline_status()
|
| 102 |
-
|
| 103 |
return rag
|
| 104 |
|
| 105 |
|
|
@@ -114,23 +114,32 @@ def main():
|
|
| 114 |
# Test different query modes
|
| 115 |
print("\nNaive Search:")
|
| 116 |
print(
|
| 117 |
-
rag.query(
|
|
|
|
|
|
|
| 118 |
)
|
| 119 |
|
| 120 |
print("\nLocal Search:")
|
| 121 |
print(
|
| 122 |
-
rag.query(
|
|
|
|
|
|
|
| 123 |
)
|
| 124 |
|
| 125 |
print("\nGlobal Search:")
|
| 126 |
print(
|
| 127 |
-
rag.query(
|
|
|
|
|
|
|
| 128 |
)
|
| 129 |
|
| 130 |
print("\nHybrid Search:")
|
| 131 |
print(
|
| 132 |
-
rag.query(
|
|
|
|
|
|
|
| 133 |
)
|
| 134 |
|
|
|
|
| 135 |
if __name__ == "__main__":
|
| 136 |
main()
|
|
|
|
| 86 |
|
| 87 |
async def initialize_rag():
|
| 88 |
embedding_dimension = await get_embedding_dim()
|
| 89 |
+
|
| 90 |
rag = LightRAG(
|
| 91 |
working_dir=WORKING_DIR,
|
| 92 |
llm_model_func=llm_model_func,
|
|
|
|
| 99 |
|
| 100 |
await rag.initialize_storages()
|
| 101 |
await initialize_pipeline_status()
|
| 102 |
+
|
| 103 |
return rag
|
| 104 |
|
| 105 |
|
|
|
|
| 114 |
# Test different query modes
|
| 115 |
print("\nNaive Search:")
|
| 116 |
print(
|
| 117 |
+
rag.query(
|
| 118 |
+
"What are the top themes in this story?", param=QueryParam(mode="naive")
|
| 119 |
+
)
|
| 120 |
)
|
| 121 |
|
| 122 |
print("\nLocal Search:")
|
| 123 |
print(
|
| 124 |
+
rag.query(
|
| 125 |
+
"What are the top themes in this story?", param=QueryParam(mode="local")
|
| 126 |
+
)
|
| 127 |
)
|
| 128 |
|
| 129 |
print("\nGlobal Search:")
|
| 130 |
print(
|
| 131 |
+
rag.query(
|
| 132 |
+
"What are the top themes in this story?", param=QueryParam(mode="global")
|
| 133 |
+
)
|
| 134 |
)
|
| 135 |
|
| 136 |
print("\nHybrid Search:")
|
| 137 |
print(
|
| 138 |
+
rag.query(
|
| 139 |
+
"What are the top themes in this story?", param=QueryParam(mode="hybrid")
|
| 140 |
+
)
|
| 141 |
)
|
| 142 |
|
| 143 |
+
|
| 144 |
if __name__ == "__main__":
|
| 145 |
main()
|
examples/lightrag_lmdeploy_demo.py
CHANGED
|
@@ -41,6 +41,7 @@ async def lmdeploy_model_complete(
|
|
| 41 |
**kwargs,
|
| 42 |
)
|
| 43 |
|
|
|
|
| 44 |
async def initialize_rag():
|
| 45 |
rag = LightRAG(
|
| 46 |
working_dir=WORKING_DIR,
|
|
@@ -63,9 +64,10 @@ async def initialize_rag():
|
|
| 63 |
|
| 64 |
await rag.initialize_storages()
|
| 65 |
await initialize_pipeline_status()
|
| 66 |
-
|
| 67 |
return rag
|
| 68 |
|
|
|
|
| 69 |
def main():
|
| 70 |
# Initialize RAG instance
|
| 71 |
rag = asyncio.run(initialize_rag())
|
|
@@ -77,23 +79,32 @@ def main():
|
|
| 77 |
# Test different query modes
|
| 78 |
print("\nNaive Search:")
|
| 79 |
print(
|
| 80 |
-
rag.query(
|
|
|
|
|
|
|
| 81 |
)
|
| 82 |
|
| 83 |
print("\nLocal Search:")
|
| 84 |
print(
|
| 85 |
-
rag.query(
|
|
|
|
|
|
|
| 86 |
)
|
| 87 |
|
| 88 |
print("\nGlobal Search:")
|
| 89 |
print(
|
| 90 |
-
rag.query(
|
|
|
|
|
|
|
| 91 |
)
|
| 92 |
|
| 93 |
print("\nHybrid Search:")
|
| 94 |
print(
|
| 95 |
-
rag.query(
|
|
|
|
|
|
|
| 96 |
)
|
| 97 |
|
|
|
|
| 98 |
if __name__ == "__main__":
|
| 99 |
-
main()
|
|
|
|
| 41 |
**kwargs,
|
| 42 |
)
|
| 43 |
|
| 44 |
+
|
| 45 |
async def initialize_rag():
|
| 46 |
rag = LightRAG(
|
| 47 |
working_dir=WORKING_DIR,
|
|
|
|
| 64 |
|
| 65 |
await rag.initialize_storages()
|
| 66 |
await initialize_pipeline_status()
|
| 67 |
+
|
| 68 |
return rag
|
| 69 |
|
| 70 |
+
|
| 71 |
def main():
|
| 72 |
# Initialize RAG instance
|
| 73 |
rag = asyncio.run(initialize_rag())
|
|
|
|
| 79 |
# Test different query modes
|
| 80 |
print("\nNaive Search:")
|
| 81 |
print(
|
| 82 |
+
rag.query(
|
| 83 |
+
"What are the top themes in this story?", param=QueryParam(mode="naive")
|
| 84 |
+
)
|
| 85 |
)
|
| 86 |
|
| 87 |
print("\nLocal Search:")
|
| 88 |
print(
|
| 89 |
+
rag.query(
|
| 90 |
+
"What are the top themes in this story?", param=QueryParam(mode="local")
|
| 91 |
+
)
|
| 92 |
)
|
| 93 |
|
| 94 |
print("\nGlobal Search:")
|
| 95 |
print(
|
| 96 |
+
rag.query(
|
| 97 |
+
"What are the top themes in this story?", param=QueryParam(mode="global")
|
| 98 |
+
)
|
| 99 |
)
|
| 100 |
|
| 101 |
print("\nHybrid Search:")
|
| 102 |
print(
|
| 103 |
+
rag.query(
|
| 104 |
+
"What are the top themes in this story?", param=QueryParam(mode="hybrid")
|
| 105 |
+
)
|
| 106 |
)
|
| 107 |
|
| 108 |
+
|
| 109 |
if __name__ == "__main__":
|
| 110 |
+
main()
|
examples/lightrag_nvidia_demo.py
CHANGED
|
@@ -97,6 +97,7 @@ async def test_funcs():
|
|
| 97 |
|
| 98 |
# asyncio.run(test_funcs())
|
| 99 |
|
|
|
|
| 100 |
async def initialize_rag():
|
| 101 |
embedding_dimension = await get_embedding_dim()
|
| 102 |
print(f"Detected embedding dimension: {embedding_dimension}")
|
|
@@ -117,8 +118,10 @@ async def initialize_rag():
|
|
| 117 |
|
| 118 |
await rag.initialize_storages()
|
| 119 |
await initialize_pipeline_status()
|
| 120 |
-
|
| 121 |
return rag
|
|
|
|
|
|
|
| 122 |
async def main():
|
| 123 |
try:
|
| 124 |
# Initialize RAG instance
|
|
|
|
| 97 |
|
| 98 |
# asyncio.run(test_funcs())
|
| 99 |
|
| 100 |
+
|
| 101 |
async def initialize_rag():
|
| 102 |
embedding_dimension = await get_embedding_dim()
|
| 103 |
print(f"Detected embedding dimension: {embedding_dimension}")
|
|
|
|
| 118 |
|
| 119 |
await rag.initialize_storages()
|
| 120 |
await initialize_pipeline_status()
|
| 121 |
+
|
| 122 |
return rag
|
| 123 |
+
|
| 124 |
+
|
| 125 |
async def main():
|
| 126 |
try:
|
| 127 |
# Initialize RAG instance
|
examples/lightrag_ollama_age_demo.py
CHANGED
|
@@ -27,6 +27,7 @@ os.environ["AGE_POSTGRES_HOST"] = "localhost"
|
|
| 27 |
os.environ["AGE_POSTGRES_PORT"] = "5455"
|
| 28 |
os.environ["AGE_GRAPH_NAME"] = "dickens"
|
| 29 |
|
|
|
|
| 30 |
async def initialize_rag():
|
| 31 |
rag = LightRAG(
|
| 32 |
working_dir=WORKING_DIR,
|
|
@@ -34,7 +35,10 @@ async def initialize_rag():
|
|
| 34 |
llm_model_name="llama3.1:8b",
|
| 35 |
llm_model_max_async=4,
|
| 36 |
llm_model_max_token_size=32768,
|
| 37 |
-
llm_model_kwargs={
|
|
|
|
|
|
|
|
|
|
| 38 |
embedding_func=EmbeddingFunc(
|
| 39 |
embedding_dim=768,
|
| 40 |
max_token_size=8192,
|
|
@@ -47,13 +51,15 @@ async def initialize_rag():
|
|
| 47 |
|
| 48 |
await rag.initialize_storages()
|
| 49 |
await initialize_pipeline_status()
|
| 50 |
-
|
| 51 |
return rag
|
| 52 |
|
|
|
|
| 53 |
async def print_stream(stream):
|
| 54 |
async for chunk in stream:
|
| 55 |
print(chunk, end="", flush=True)
|
| 56 |
|
|
|
|
| 57 |
def main():
|
| 58 |
# Initialize RAG instance
|
| 59 |
rag = asyncio.run(initialize_rag())
|
|
@@ -65,22 +71,30 @@ def main():
|
|
| 65 |
# Test different query modes
|
| 66 |
print("\nNaive Search:")
|
| 67 |
print(
|
| 68 |
-
rag.query(
|
|
|
|
|
|
|
| 69 |
)
|
| 70 |
|
| 71 |
print("\nLocal Search:")
|
| 72 |
print(
|
| 73 |
-
rag.query(
|
|
|
|
|
|
|
| 74 |
)
|
| 75 |
|
| 76 |
print("\nGlobal Search:")
|
| 77 |
print(
|
| 78 |
-
rag.query(
|
|
|
|
|
|
|
| 79 |
)
|
| 80 |
|
| 81 |
print("\nHybrid Search:")
|
| 82 |
print(
|
| 83 |
-
rag.query(
|
|
|
|
|
|
|
| 84 |
)
|
| 85 |
|
| 86 |
# stream response
|
|
@@ -94,5 +108,6 @@ def main():
|
|
| 94 |
else:
|
| 95 |
print(resp)
|
| 96 |
|
|
|
|
| 97 |
if __name__ == "__main__":
|
| 98 |
main()
|
|
|
|
| 27 |
os.environ["AGE_POSTGRES_PORT"] = "5455"
|
| 28 |
os.environ["AGE_GRAPH_NAME"] = "dickens"
|
| 29 |
|
| 30 |
+
|
| 31 |
async def initialize_rag():
|
| 32 |
rag = LightRAG(
|
| 33 |
working_dir=WORKING_DIR,
|
|
|
|
| 35 |
llm_model_name="llama3.1:8b",
|
| 36 |
llm_model_max_async=4,
|
| 37 |
llm_model_max_token_size=32768,
|
| 38 |
+
llm_model_kwargs={
|
| 39 |
+
"host": "http://localhost:11434",
|
| 40 |
+
"options": {"num_ctx": 32768},
|
| 41 |
+
},
|
| 42 |
embedding_func=EmbeddingFunc(
|
| 43 |
embedding_dim=768,
|
| 44 |
max_token_size=8192,
|
|
|
|
| 51 |
|
| 52 |
await rag.initialize_storages()
|
| 53 |
await initialize_pipeline_status()
|
| 54 |
+
|
| 55 |
return rag
|
| 56 |
|
| 57 |
+
|
| 58 |
async def print_stream(stream):
|
| 59 |
async for chunk in stream:
|
| 60 |
print(chunk, end="", flush=True)
|
| 61 |
|
| 62 |
+
|
| 63 |
def main():
|
| 64 |
# Initialize RAG instance
|
| 65 |
rag = asyncio.run(initialize_rag())
|
|
|
|
| 71 |
# Test different query modes
|
| 72 |
print("\nNaive Search:")
|
| 73 |
print(
|
| 74 |
+
rag.query(
|
| 75 |
+
"What are the top themes in this story?", param=QueryParam(mode="naive")
|
| 76 |
+
)
|
| 77 |
)
|
| 78 |
|
| 79 |
print("\nLocal Search:")
|
| 80 |
print(
|
| 81 |
+
rag.query(
|
| 82 |
+
"What are the top themes in this story?", param=QueryParam(mode="local")
|
| 83 |
+
)
|
| 84 |
)
|
| 85 |
|
| 86 |
print("\nGlobal Search:")
|
| 87 |
print(
|
| 88 |
+
rag.query(
|
| 89 |
+
"What are the top themes in this story?", param=QueryParam(mode="global")
|
| 90 |
+
)
|
| 91 |
)
|
| 92 |
|
| 93 |
print("\nHybrid Search:")
|
| 94 |
print(
|
| 95 |
+
rag.query(
|
| 96 |
+
"What are the top themes in this story?", param=QueryParam(mode="hybrid")
|
| 97 |
+
)
|
| 98 |
)
|
| 99 |
|
| 100 |
# stream response
|
|
|
|
| 108 |
else:
|
| 109 |
print(resp)
|
| 110 |
|
| 111 |
+
|
| 112 |
if __name__ == "__main__":
|
| 113 |
main()
|
examples/lightrag_ollama_demo.py
CHANGED
|
@@ -17,6 +17,7 @@ logging.basicConfig(format="%(levelname)s:%(message)s", level=logging.INFO)
|
|
| 17 |
if not os.path.exists(WORKING_DIR):
|
| 18 |
os.mkdir(WORKING_DIR)
|
| 19 |
|
|
|
|
| 20 |
async def initialize_rag():
|
| 21 |
rag = LightRAG(
|
| 22 |
working_dir=WORKING_DIR,
|
|
@@ -24,7 +25,10 @@ async def initialize_rag():
|
|
| 24 |
llm_model_name="gemma2:2b",
|
| 25 |
llm_model_max_async=4,
|
| 26 |
llm_model_max_token_size=32768,
|
| 27 |
-
llm_model_kwargs={
|
|
|
|
|
|
|
|
|
|
| 28 |
embedding_func=EmbeddingFunc(
|
| 29 |
embedding_dim=768,
|
| 30 |
max_token_size=8192,
|
|
@@ -36,13 +40,15 @@ async def initialize_rag():
|
|
| 36 |
|
| 37 |
await rag.initialize_storages()
|
| 38 |
await initialize_pipeline_status()
|
| 39 |
-
|
| 40 |
return rag
|
| 41 |
|
|
|
|
| 42 |
async def print_stream(stream):
|
| 43 |
async for chunk in stream:
|
| 44 |
print(chunk, end="", flush=True)
|
| 45 |
|
|
|
|
| 46 |
def main():
|
| 47 |
# Initialize RAG instance
|
| 48 |
rag = asyncio.run(initialize_rag())
|
|
@@ -54,22 +60,30 @@ def main():
|
|
| 54 |
# Test different query modes
|
| 55 |
print("\nNaive Search:")
|
| 56 |
print(
|
| 57 |
-
rag.query(
|
|
|
|
|
|
|
| 58 |
)
|
| 59 |
|
| 60 |
print("\nLocal Search:")
|
| 61 |
print(
|
| 62 |
-
rag.query(
|
|
|
|
|
|
|
| 63 |
)
|
| 64 |
|
| 65 |
print("\nGlobal Search:")
|
| 66 |
print(
|
| 67 |
-
rag.query(
|
|
|
|
|
|
|
| 68 |
)
|
| 69 |
|
| 70 |
print("\nHybrid Search:")
|
| 71 |
print(
|
| 72 |
-
rag.query(
|
|
|
|
|
|
|
| 73 |
)
|
| 74 |
|
| 75 |
# stream response
|
|
@@ -83,5 +97,6 @@ def main():
|
|
| 83 |
else:
|
| 84 |
print(resp)
|
| 85 |
|
|
|
|
| 86 |
if __name__ == "__main__":
|
| 87 |
main()
|
|
|
|
| 17 |
if not os.path.exists(WORKING_DIR):
|
| 18 |
os.mkdir(WORKING_DIR)
|
| 19 |
|
| 20 |
+
|
| 21 |
async def initialize_rag():
|
| 22 |
rag = LightRAG(
|
| 23 |
working_dir=WORKING_DIR,
|
|
|
|
| 25 |
llm_model_name="gemma2:2b",
|
| 26 |
llm_model_max_async=4,
|
| 27 |
llm_model_max_token_size=32768,
|
| 28 |
+
llm_model_kwargs={
|
| 29 |
+
"host": "http://localhost:11434",
|
| 30 |
+
"options": {"num_ctx": 32768},
|
| 31 |
+
},
|
| 32 |
embedding_func=EmbeddingFunc(
|
| 33 |
embedding_dim=768,
|
| 34 |
max_token_size=8192,
|
|
|
|
| 40 |
|
| 41 |
await rag.initialize_storages()
|
| 42 |
await initialize_pipeline_status()
|
| 43 |
+
|
| 44 |
return rag
|
| 45 |
|
| 46 |
+
|
| 47 |
async def print_stream(stream):
|
| 48 |
async for chunk in stream:
|
| 49 |
print(chunk, end="", flush=True)
|
| 50 |
|
| 51 |
+
|
| 52 |
def main():
|
| 53 |
# Initialize RAG instance
|
| 54 |
rag = asyncio.run(initialize_rag())
|
|
|
|
| 60 |
# Test different query modes
|
| 61 |
print("\nNaive Search:")
|
| 62 |
print(
|
| 63 |
+
rag.query(
|
| 64 |
+
"What are the top themes in this story?", param=QueryParam(mode="naive")
|
| 65 |
+
)
|
| 66 |
)
|
| 67 |
|
| 68 |
print("\nLocal Search:")
|
| 69 |
print(
|
| 70 |
+
rag.query(
|
| 71 |
+
"What are the top themes in this story?", param=QueryParam(mode="local")
|
| 72 |
+
)
|
| 73 |
)
|
| 74 |
|
| 75 |
print("\nGlobal Search:")
|
| 76 |
print(
|
| 77 |
+
rag.query(
|
| 78 |
+
"What are the top themes in this story?", param=QueryParam(mode="global")
|
| 79 |
+
)
|
| 80 |
)
|
| 81 |
|
| 82 |
print("\nHybrid Search:")
|
| 83 |
print(
|
| 84 |
+
rag.query(
|
| 85 |
+
"What are the top themes in this story?", param=QueryParam(mode="hybrid")
|
| 86 |
+
)
|
| 87 |
)
|
| 88 |
|
| 89 |
# stream response
|
|
|
|
| 97 |
else:
|
| 98 |
print(resp)
|
| 99 |
|
| 100 |
+
|
| 101 |
if __name__ == "__main__":
|
| 102 |
main()
|
examples/lightrag_ollama_gremlin_demo.py
CHANGED
|
@@ -32,6 +32,7 @@ os.environ["GREMLIN_TRAVERSE_SOURCE"] = "g"
|
|
| 32 |
os.environ["GREMLIN_USER"] = ""
|
| 33 |
os.environ["GREMLIN_PASSWORD"] = ""
|
| 34 |
|
|
|
|
| 35 |
async def initialize_rag():
|
| 36 |
rag = LightRAG(
|
| 37 |
working_dir=WORKING_DIR,
|
|
@@ -39,7 +40,10 @@ async def initialize_rag():
|
|
| 39 |
llm_model_name="llama3.1:8b",
|
| 40 |
llm_model_max_async=4,
|
| 41 |
llm_model_max_token_size=32768,
|
| 42 |
-
llm_model_kwargs={
|
|
|
|
|
|
|
|
|
|
| 43 |
embedding_func=EmbeddingFunc(
|
| 44 |
embedding_dim=768,
|
| 45 |
max_token_size=8192,
|
|
@@ -52,13 +56,15 @@ async def initialize_rag():
|
|
| 52 |
|
| 53 |
await rag.initialize_storages()
|
| 54 |
await initialize_pipeline_status()
|
| 55 |
-
|
| 56 |
return rag
|
| 57 |
|
|
|
|
| 58 |
async def print_stream(stream):
|
| 59 |
async for chunk in stream:
|
| 60 |
print(chunk, end="", flush=True)
|
| 61 |
|
|
|
|
| 62 |
def main():
|
| 63 |
# Initialize RAG instance
|
| 64 |
rag = asyncio.run(initialize_rag())
|
|
@@ -70,22 +76,30 @@ def main():
|
|
| 70 |
# Test different query modes
|
| 71 |
print("\nNaive Search:")
|
| 72 |
print(
|
| 73 |
-
rag.query(
|
|
|
|
|
|
|
| 74 |
)
|
| 75 |
|
| 76 |
print("\nLocal Search:")
|
| 77 |
print(
|
| 78 |
-
rag.query(
|
|
|
|
|
|
|
| 79 |
)
|
| 80 |
|
| 81 |
print("\nGlobal Search:")
|
| 82 |
print(
|
| 83 |
-
rag.query(
|
|
|
|
|
|
|
| 84 |
)
|
| 85 |
|
| 86 |
print("\nHybrid Search:")
|
| 87 |
print(
|
| 88 |
-
rag.query(
|
|
|
|
|
|
|
| 89 |
)
|
| 90 |
|
| 91 |
# stream response
|
|
@@ -99,5 +113,6 @@ def main():
|
|
| 99 |
else:
|
| 100 |
print(resp)
|
| 101 |
|
|
|
|
| 102 |
if __name__ == "__main__":
|
| 103 |
main()
|
|
|
|
| 32 |
os.environ["GREMLIN_USER"] = ""
|
| 33 |
os.environ["GREMLIN_PASSWORD"] = ""
|
| 34 |
|
| 35 |
+
|
| 36 |
async def initialize_rag():
|
| 37 |
rag = LightRAG(
|
| 38 |
working_dir=WORKING_DIR,
|
|
|
|
| 40 |
llm_model_name="llama3.1:8b",
|
| 41 |
llm_model_max_async=4,
|
| 42 |
llm_model_max_token_size=32768,
|
| 43 |
+
llm_model_kwargs={
|
| 44 |
+
"host": "http://localhost:11434",
|
| 45 |
+
"options": {"num_ctx": 32768},
|
| 46 |
+
},
|
| 47 |
embedding_func=EmbeddingFunc(
|
| 48 |
embedding_dim=768,
|
| 49 |
max_token_size=8192,
|
|
|
|
| 56 |
|
| 57 |
await rag.initialize_storages()
|
| 58 |
await initialize_pipeline_status()
|
| 59 |
+
|
| 60 |
return rag
|
| 61 |
|
| 62 |
+
|
| 63 |
async def print_stream(stream):
|
| 64 |
async for chunk in stream:
|
| 65 |
print(chunk, end="", flush=True)
|
| 66 |
|
| 67 |
+
|
| 68 |
def main():
|
| 69 |
# Initialize RAG instance
|
| 70 |
rag = asyncio.run(initialize_rag())
|
|
|
|
| 76 |
# Test different query modes
|
| 77 |
print("\nNaive Search:")
|
| 78 |
print(
|
| 79 |
+
rag.query(
|
| 80 |
+
"What are the top themes in this story?", param=QueryParam(mode="naive")
|
| 81 |
+
)
|
| 82 |
)
|
| 83 |
|
| 84 |
print("\nLocal Search:")
|
| 85 |
print(
|
| 86 |
+
rag.query(
|
| 87 |
+
"What are the top themes in this story?", param=QueryParam(mode="local")
|
| 88 |
+
)
|
| 89 |
)
|
| 90 |
|
| 91 |
print("\nGlobal Search:")
|
| 92 |
print(
|
| 93 |
+
rag.query(
|
| 94 |
+
"What are the top themes in this story?", param=QueryParam(mode="global")
|
| 95 |
+
)
|
| 96 |
)
|
| 97 |
|
| 98 |
print("\nHybrid Search:")
|
| 99 |
print(
|
| 100 |
+
rag.query(
|
| 101 |
+
"What are the top themes in this story?", param=QueryParam(mode="hybrid")
|
| 102 |
+
)
|
| 103 |
)
|
| 104 |
|
| 105 |
# stream response
|
|
|
|
| 113 |
else:
|
| 114 |
print(resp)
|
| 115 |
|
| 116 |
+
|
| 117 |
if __name__ == "__main__":
|
| 118 |
main()
|
examples/lightrag_ollama_neo4j_milvus_mongo_demo.py
CHANGED
|
@@ -32,6 +32,7 @@ os.environ["MILVUS_USER"] = "root"
|
|
| 32 |
os.environ["MILVUS_PASSWORD"] = "root"
|
| 33 |
os.environ["MILVUS_DB_NAME"] = "lightrag"
|
| 34 |
|
|
|
|
| 35 |
async def initialize_rag():
|
| 36 |
rag = LightRAG(
|
| 37 |
working_dir=WORKING_DIR,
|
|
@@ -39,7 +40,10 @@ async def initialize_rag():
|
|
| 39 |
llm_model_name="qwen2.5:14b",
|
| 40 |
llm_model_max_async=4,
|
| 41 |
llm_model_max_token_size=32768,
|
| 42 |
-
llm_model_kwargs={
|
|
|
|
|
|
|
|
|
|
| 43 |
embedding_func=EmbeddingFunc(
|
| 44 |
embedding_dim=1024,
|
| 45 |
max_token_size=8192,
|
|
@@ -54,9 +58,10 @@ async def initialize_rag():
|
|
| 54 |
|
| 55 |
await rag.initialize_storages()
|
| 56 |
await initialize_pipeline_status()
|
| 57 |
-
|
| 58 |
return rag
|
| 59 |
|
|
|
|
| 60 |
def main():
|
| 61 |
# Initialize RAG instance
|
| 62 |
rag = asyncio.run(initialize_rag())
|
|
@@ -68,23 +73,32 @@ def main():
|
|
| 68 |
# Test different query modes
|
| 69 |
print("\nNaive Search:")
|
| 70 |
print(
|
| 71 |
-
rag.query(
|
|
|
|
|
|
|
| 72 |
)
|
| 73 |
|
| 74 |
print("\nLocal Search:")
|
| 75 |
print(
|
| 76 |
-
rag.query(
|
|
|
|
|
|
|
| 77 |
)
|
| 78 |
|
| 79 |
print("\nGlobal Search:")
|
| 80 |
print(
|
| 81 |
-
rag.query(
|
|
|
|
|
|
|
| 82 |
)
|
| 83 |
|
| 84 |
print("\nHybrid Search:")
|
| 85 |
print(
|
| 86 |
-
rag.query(
|
|
|
|
|
|
|
| 87 |
)
|
| 88 |
|
|
|
|
| 89 |
if __name__ == "__main__":
|
| 90 |
main()
|
|
|
|
| 32 |
os.environ["MILVUS_PASSWORD"] = "root"
|
| 33 |
os.environ["MILVUS_DB_NAME"] = "lightrag"
|
| 34 |
|
| 35 |
+
|
| 36 |
async def initialize_rag():
|
| 37 |
rag = LightRAG(
|
| 38 |
working_dir=WORKING_DIR,
|
|
|
|
| 40 |
llm_model_name="qwen2.5:14b",
|
| 41 |
llm_model_max_async=4,
|
| 42 |
llm_model_max_token_size=32768,
|
| 43 |
+
llm_model_kwargs={
|
| 44 |
+
"host": "http://127.0.0.1:11434",
|
| 45 |
+
"options": {"num_ctx": 32768},
|
| 46 |
+
},
|
| 47 |
embedding_func=EmbeddingFunc(
|
| 48 |
embedding_dim=1024,
|
| 49 |
max_token_size=8192,
|
|
|
|
| 58 |
|
| 59 |
await rag.initialize_storages()
|
| 60 |
await initialize_pipeline_status()
|
| 61 |
+
|
| 62 |
return rag
|
| 63 |
|
| 64 |
+
|
| 65 |
def main():
|
| 66 |
# Initialize RAG instance
|
| 67 |
rag = asyncio.run(initialize_rag())
|
|
|
|
| 73 |
# Test different query modes
|
| 74 |
print("\nNaive Search:")
|
| 75 |
print(
|
| 76 |
+
rag.query(
|
| 77 |
+
"What are the top themes in this story?", param=QueryParam(mode="naive")
|
| 78 |
+
)
|
| 79 |
)
|
| 80 |
|
| 81 |
print("\nLocal Search:")
|
| 82 |
print(
|
| 83 |
+
rag.query(
|
| 84 |
+
"What are the top themes in this story?", param=QueryParam(mode="local")
|
| 85 |
+
)
|
| 86 |
)
|
| 87 |
|
| 88 |
print("\nGlobal Search:")
|
| 89 |
print(
|
| 90 |
+
rag.query(
|
| 91 |
+
"What are the top themes in this story?", param=QueryParam(mode="global")
|
| 92 |
+
)
|
| 93 |
)
|
| 94 |
|
| 95 |
print("\nHybrid Search:")
|
| 96 |
print(
|
| 97 |
+
rag.query(
|
| 98 |
+
"What are the top themes in this story?", param=QueryParam(mode="hybrid")
|
| 99 |
+
)
|
| 100 |
)
|
| 101 |
|
| 102 |
+
|
| 103 |
if __name__ == "__main__":
|
| 104 |
main()
|
examples/lightrag_openai_compatible_demo.py
CHANGED
|
@@ -53,6 +53,7 @@ async def test_funcs():
|
|
| 53 |
|
| 54 |
# asyncio.run(test_funcs())
|
| 55 |
|
|
|
|
| 56 |
async def initialize_rag():
|
| 57 |
embedding_dimension = await get_embedding_dim()
|
| 58 |
print(f"Detected embedding dimension: {embedding_dimension}")
|
|
@@ -71,6 +72,8 @@ async def initialize_rag():
|
|
| 71 |
await initialize_pipeline_status()
|
| 72 |
|
| 73 |
return rag
|
|
|
|
|
|
|
| 74 |
async def main():
|
| 75 |
try:
|
| 76 |
# Initialize RAG instance
|
|
|
|
| 53 |
|
| 54 |
# asyncio.run(test_funcs())
|
| 55 |
|
| 56 |
+
|
| 57 |
async def initialize_rag():
|
| 58 |
embedding_dimension = await get_embedding_dim()
|
| 59 |
print(f"Detected embedding dimension: {embedding_dimension}")
|
|
|
|
| 72 |
await initialize_pipeline_status()
|
| 73 |
|
| 74 |
return rag
|
| 75 |
+
|
| 76 |
+
|
| 77 |
async def main():
|
| 78 |
try:
|
| 79 |
# Initialize RAG instance
|
examples/lightrag_openai_compatible_demo_embedding_cache.py
CHANGED
|
@@ -53,6 +53,7 @@ async def test_funcs():
|
|
| 53 |
|
| 54 |
# asyncio.run(test_funcs())
|
| 55 |
|
|
|
|
| 56 |
async def initialize_rag():
|
| 57 |
embedding_dimension = await get_embedding_dim()
|
| 58 |
print(f"Detected embedding dimension: {embedding_dimension}")
|
|
@@ -76,6 +77,7 @@ async def initialize_rag():
|
|
| 76 |
|
| 77 |
return rag
|
| 78 |
|
|
|
|
| 79 |
async def main():
|
| 80 |
try:
|
| 81 |
# Initialize RAG instance
|
|
|
|
| 53 |
|
| 54 |
# asyncio.run(test_funcs())
|
| 55 |
|
| 56 |
+
|
| 57 |
async def initialize_rag():
|
| 58 |
embedding_dimension = await get_embedding_dim()
|
| 59 |
print(f"Detected embedding dimension: {embedding_dimension}")
|
|
|
|
| 77 |
|
| 78 |
return rag
|
| 79 |
|
| 80 |
+
|
| 81 |
async def main():
|
| 82 |
try:
|
| 83 |
# Initialize RAG instance
|
examples/lightrag_openai_compatible_stream_demo.py
CHANGED
|
@@ -15,6 +15,8 @@ if not os.path.exists(WORKING_DIR):
|
|
| 15 |
print(f"WorkingDir: {WORKING_DIR}")
|
| 16 |
|
| 17 |
api_key = "empty"
|
|
|
|
|
|
|
| 18 |
async def initialize_rag():
|
| 19 |
rag = LightRAG(
|
| 20 |
working_dir=WORKING_DIR,
|
|
@@ -40,11 +42,13 @@ async def initialize_rag():
|
|
| 40 |
|
| 41 |
return rag
|
| 42 |
|
|
|
|
| 43 |
async def print_stream(stream):
|
| 44 |
async for chunk in stream:
|
| 45 |
if chunk:
|
| 46 |
print(chunk, end="", flush=True)
|
| 47 |
|
|
|
|
| 48 |
def main():
|
| 49 |
# Initialize RAG instance
|
| 50 |
rag = asyncio.run(initialize_rag())
|
|
@@ -63,6 +67,6 @@ def main():
|
|
| 63 |
else:
|
| 64 |
print(resp)
|
| 65 |
|
|
|
|
| 66 |
if __name__ == "__main__":
|
| 67 |
main()
|
| 68 |
-
|
|
|
|
| 15 |
print(f"WorkingDir: {WORKING_DIR}")
|
| 16 |
|
| 17 |
api_key = "empty"
|
| 18 |
+
|
| 19 |
+
|
| 20 |
async def initialize_rag():
|
| 21 |
rag = LightRAG(
|
| 22 |
working_dir=WORKING_DIR,
|
|
|
|
| 42 |
|
| 43 |
return rag
|
| 44 |
|
| 45 |
+
|
| 46 |
async def print_stream(stream):
|
| 47 |
async for chunk in stream:
|
| 48 |
if chunk:
|
| 49 |
print(chunk, end="", flush=True)
|
| 50 |
|
| 51 |
+
|
| 52 |
def main():
|
| 53 |
# Initialize RAG instance
|
| 54 |
rag = asyncio.run(initialize_rag())
|
|
|
|
| 67 |
else:
|
| 68 |
print(resp)
|
| 69 |
|
| 70 |
+
|
| 71 |
if __name__ == "__main__":
|
| 72 |
main()
|
|
|
examples/lightrag_openai_demo.py
CHANGED
|
@@ -9,6 +9,7 @@ WORKING_DIR = "./dickens"
|
|
| 9 |
if not os.path.exists(WORKING_DIR):
|
| 10 |
os.mkdir(WORKING_DIR)
|
| 11 |
|
|
|
|
| 12 |
async def initialize_rag():
|
| 13 |
rag = LightRAG(
|
| 14 |
working_dir=WORKING_DIR,
|
|
@@ -22,6 +23,7 @@ async def initialize_rag():
|
|
| 22 |
|
| 23 |
return rag
|
| 24 |
|
|
|
|
| 25 |
def main():
|
| 26 |
# Initialize RAG instance
|
| 27 |
rag = asyncio.run(initialize_rag())
|
|
@@ -31,24 +33,32 @@ def main():
|
|
| 31 |
|
| 32 |
# Perform naive search
|
| 33 |
print(
|
| 34 |
-
rag.query(
|
|
|
|
|
|
|
| 35 |
)
|
| 36 |
|
| 37 |
# Perform local search
|
| 38 |
print(
|
| 39 |
-
rag.query(
|
|
|
|
|
|
|
| 40 |
)
|
| 41 |
|
| 42 |
# Perform global search
|
| 43 |
print(
|
| 44 |
-
rag.query(
|
|
|
|
|
|
|
| 45 |
)
|
| 46 |
|
| 47 |
# Perform hybrid search
|
| 48 |
print(
|
| 49 |
-
rag.query(
|
|
|
|
|
|
|
| 50 |
)
|
| 51 |
|
|
|
|
| 52 |
if __name__ == "__main__":
|
| 53 |
main()
|
| 54 |
-
|
|
|
|
| 9 |
if not os.path.exists(WORKING_DIR):
|
| 10 |
os.mkdir(WORKING_DIR)
|
| 11 |
|
| 12 |
+
|
| 13 |
async def initialize_rag():
|
| 14 |
rag = LightRAG(
|
| 15 |
working_dir=WORKING_DIR,
|
|
|
|
| 23 |
|
| 24 |
return rag
|
| 25 |
|
| 26 |
+
|
| 27 |
def main():
|
| 28 |
# Initialize RAG instance
|
| 29 |
rag = asyncio.run(initialize_rag())
|
|
|
|
| 33 |
|
| 34 |
# Perform naive search
|
| 35 |
print(
|
| 36 |
+
rag.query(
|
| 37 |
+
"What are the top themes in this story?", param=QueryParam(mode="naive")
|
| 38 |
+
)
|
| 39 |
)
|
| 40 |
|
| 41 |
# Perform local search
|
| 42 |
print(
|
| 43 |
+
rag.query(
|
| 44 |
+
"What are the top themes in this story?", param=QueryParam(mode="local")
|
| 45 |
+
)
|
| 46 |
)
|
| 47 |
|
| 48 |
# Perform global search
|
| 49 |
print(
|
| 50 |
+
rag.query(
|
| 51 |
+
"What are the top themes in this story?", param=QueryParam(mode="global")
|
| 52 |
+
)
|
| 53 |
)
|
| 54 |
|
| 55 |
# Perform hybrid search
|
| 56 |
print(
|
| 57 |
+
rag.query(
|
| 58 |
+
"What are the top themes in this story?", param=QueryParam(mode="hybrid")
|
| 59 |
+
)
|
| 60 |
)
|
| 61 |
|
| 62 |
+
|
| 63 |
if __name__ == "__main__":
|
| 64 |
main()
|
|
|
examples/lightrag_openai_mongodb_graph_demo.py
CHANGED
|
@@ -76,23 +76,32 @@ def main():
|
|
| 76 |
|
| 77 |
# Perform naive search
|
| 78 |
print(
|
| 79 |
-
rag.query(
|
|
|
|
|
|
|
| 80 |
)
|
| 81 |
|
| 82 |
# Perform local search
|
| 83 |
print(
|
| 84 |
-
rag.query(
|
|
|
|
|
|
|
| 85 |
)
|
| 86 |
|
| 87 |
# Perform global search
|
| 88 |
print(
|
| 89 |
-
rag.query(
|
|
|
|
|
|
|
| 90 |
)
|
| 91 |
|
| 92 |
# Perform hybrid search
|
| 93 |
print(
|
| 94 |
-
rag.query(
|
|
|
|
|
|
|
| 95 |
)
|
| 96 |
|
|
|
|
| 97 |
if __name__ == "__main__":
|
| 98 |
-
main()
|
|
|
|
| 76 |
|
| 77 |
# Perform naive search
|
| 78 |
print(
|
| 79 |
+
rag.query(
|
| 80 |
+
"What are the top themes in this story?", param=QueryParam(mode="naive")
|
| 81 |
+
)
|
| 82 |
)
|
| 83 |
|
| 84 |
# Perform local search
|
| 85 |
print(
|
| 86 |
+
rag.query(
|
| 87 |
+
"What are the top themes in this story?", param=QueryParam(mode="local")
|
| 88 |
+
)
|
| 89 |
)
|
| 90 |
|
| 91 |
# Perform global search
|
| 92 |
print(
|
| 93 |
+
rag.query(
|
| 94 |
+
"What are the top themes in this story?", param=QueryParam(mode="global")
|
| 95 |
+
)
|
| 96 |
)
|
| 97 |
|
| 98 |
# Perform hybrid search
|
| 99 |
print(
|
| 100 |
+
rag.query(
|
| 101 |
+
"What are the top themes in this story?", param=QueryParam(mode="hybrid")
|
| 102 |
+
)
|
| 103 |
)
|
| 104 |
|
| 105 |
+
|
| 106 |
if __name__ == "__main__":
|
| 107 |
+
main()
|
examples/lightrag_openai_neo4j_milvus_redis_demo.py
CHANGED
|
@@ -50,6 +50,8 @@ embedding_func = EmbeddingFunc(
|
|
| 50 |
texts, embed_model="shaw/dmeta-embedding-zh", host="http://117.50.173.35:11434"
|
| 51 |
),
|
| 52 |
)
|
|
|
|
|
|
|
| 53 |
async def initialize_rag():
|
| 54 |
rag = LightRAG(
|
| 55 |
working_dir=WORKING_DIR,
|
|
@@ -79,23 +81,32 @@ def main():
|
|
| 79 |
|
| 80 |
# Perform naive search
|
| 81 |
print(
|
| 82 |
-
rag.query(
|
|
|
|
|
|
|
| 83 |
)
|
| 84 |
|
| 85 |
# Perform local search
|
| 86 |
print(
|
| 87 |
-
rag.query(
|
|
|
|
|
|
|
| 88 |
)
|
| 89 |
|
| 90 |
# Perform global search
|
| 91 |
print(
|
| 92 |
-
rag.query(
|
|
|
|
|
|
|
| 93 |
)
|
| 94 |
|
| 95 |
# Perform hybrid search
|
| 96 |
print(
|
| 97 |
-
rag.query(
|
|
|
|
|
|
|
| 98 |
)
|
| 99 |
|
|
|
|
| 100 |
if __name__ == "__main__":
|
| 101 |
main()
|
|
|
|
| 50 |
texts, embed_model="shaw/dmeta-embedding-zh", host="http://117.50.173.35:11434"
|
| 51 |
),
|
| 52 |
)
|
| 53 |
+
|
| 54 |
+
|
| 55 |
async def initialize_rag():
|
| 56 |
rag = LightRAG(
|
| 57 |
working_dir=WORKING_DIR,
|
|
|
|
| 81 |
|
| 82 |
# Perform naive search
|
| 83 |
print(
|
| 84 |
+
rag.query(
|
| 85 |
+
"What are the top themes in this story?", param=QueryParam(mode="naive")
|
| 86 |
+
)
|
| 87 |
)
|
| 88 |
|
| 89 |
# Perform local search
|
| 90 |
print(
|
| 91 |
+
rag.query(
|
| 92 |
+
"What are the top themes in this story?", param=QueryParam(mode="local")
|
| 93 |
+
)
|
| 94 |
)
|
| 95 |
|
| 96 |
# Perform global search
|
| 97 |
print(
|
| 98 |
+
rag.query(
|
| 99 |
+
"What are the top themes in this story?", param=QueryParam(mode="global")
|
| 100 |
+
)
|
| 101 |
)
|
| 102 |
|
| 103 |
# Perform hybrid search
|
| 104 |
print(
|
| 105 |
+
rag.query(
|
| 106 |
+
"What are the top themes in this story?", param=QueryParam(mode="hybrid")
|
| 107 |
+
)
|
| 108 |
)
|
| 109 |
|
| 110 |
+
|
| 111 |
if __name__ == "__main__":
|
| 112 |
main()
|
examples/lightrag_oracle_demo.py
CHANGED
|
@@ -64,6 +64,7 @@ async def get_embedding_dim():
|
|
| 64 |
embedding_dim = embedding.shape[1]
|
| 65 |
return embedding_dim
|
| 66 |
|
|
|
|
| 67 |
async def initialize_rag():
|
| 68 |
# Detect embedding dimension
|
| 69 |
embedding_dimension = await get_embedding_dim()
|
|
@@ -102,6 +103,7 @@ async def initialize_rag():
|
|
| 102 |
|
| 103 |
return rag
|
| 104 |
|
|
|
|
| 105 |
async def main():
|
| 106 |
try:
|
| 107 |
# Initialize RAG instance
|
|
|
|
| 64 |
embedding_dim = embedding.shape[1]
|
| 65 |
return embedding_dim
|
| 66 |
|
| 67 |
+
|
| 68 |
async def initialize_rag():
|
| 69 |
# Detect embedding dimension
|
| 70 |
embedding_dimension = await get_embedding_dim()
|
|
|
|
| 103 |
|
| 104 |
return rag
|
| 105 |
|
| 106 |
+
|
| 107 |
async def main():
|
| 108 |
try:
|
| 109 |
# Initialize RAG instance
|
examples/lightrag_siliconcloud_demo.py
CHANGED
|
@@ -47,6 +47,7 @@ async def test_funcs():
|
|
| 47 |
|
| 48 |
asyncio.run(test_funcs())
|
| 49 |
|
|
|
|
| 50 |
async def initialize_rag():
|
| 51 |
rag = LightRAG(
|
| 52 |
working_dir=WORKING_DIR,
|
|
@@ -71,24 +72,32 @@ def main():
|
|
| 71 |
|
| 72 |
# Perform naive search
|
| 73 |
print(
|
| 74 |
-
rag.query(
|
|
|
|
|
|
|
| 75 |
)
|
| 76 |
|
| 77 |
# Perform local search
|
| 78 |
print(
|
| 79 |
-
rag.query(
|
|
|
|
|
|
|
| 80 |
)
|
| 81 |
|
| 82 |
# Perform global search
|
| 83 |
print(
|
| 84 |
-
rag.query(
|
|
|
|
|
|
|
| 85 |
)
|
| 86 |
|
| 87 |
# Perform hybrid search
|
| 88 |
print(
|
| 89 |
-
rag.query(
|
|
|
|
|
|
|
| 90 |
)
|
| 91 |
|
|
|
|
| 92 |
if __name__ == "__main__":
|
| 93 |
main()
|
| 94 |
-
|
|
|
|
| 47 |
|
| 48 |
asyncio.run(test_funcs())
|
| 49 |
|
| 50 |
+
|
| 51 |
async def initialize_rag():
|
| 52 |
rag = LightRAG(
|
| 53 |
working_dir=WORKING_DIR,
|
|
|
|
| 72 |
|
| 73 |
# Perform naive search
|
| 74 |
print(
|
| 75 |
+
rag.query(
|
| 76 |
+
"What are the top themes in this story?", param=QueryParam(mode="naive")
|
| 77 |
+
)
|
| 78 |
)
|
| 79 |
|
| 80 |
# Perform local search
|
| 81 |
print(
|
| 82 |
+
rag.query(
|
| 83 |
+
"What are the top themes in this story?", param=QueryParam(mode="local")
|
| 84 |
+
)
|
| 85 |
)
|
| 86 |
|
| 87 |
# Perform global search
|
| 88 |
print(
|
| 89 |
+
rag.query(
|
| 90 |
+
"What are the top themes in this story?", param=QueryParam(mode="global")
|
| 91 |
+
)
|
| 92 |
)
|
| 93 |
|
| 94 |
# Perform hybrid search
|
| 95 |
print(
|
| 96 |
+
rag.query(
|
| 97 |
+
"What are the top themes in this story?", param=QueryParam(mode="hybrid")
|
| 98 |
+
)
|
| 99 |
)
|
| 100 |
|
| 101 |
+
|
| 102 |
if __name__ == "__main__":
|
| 103 |
main()
|
|
|
examples/lightrag_tidb_demo.py
CHANGED
|
@@ -55,6 +55,7 @@ async def get_embedding_dim():
|
|
| 55 |
embedding_dim = embedding.shape[1]
|
| 56 |
return embedding_dim
|
| 57 |
|
|
|
|
| 58 |
async def initialize_rag():
|
| 59 |
# Detect embedding dimension
|
| 60 |
embedding_dimension = await get_embedding_dim()
|
|
@@ -82,6 +83,7 @@ async def initialize_rag():
|
|
| 82 |
|
| 83 |
return rag
|
| 84 |
|
|
|
|
| 85 |
async def main():
|
| 86 |
try:
|
| 87 |
# Initialize RAG instance
|
|
|
|
| 55 |
embedding_dim = embedding.shape[1]
|
| 56 |
return embedding_dim
|
| 57 |
|
| 58 |
+
|
| 59 |
async def initialize_rag():
|
| 60 |
# Detect embedding dimension
|
| 61 |
embedding_dimension = await get_embedding_dim()
|
|
|
|
| 83 |
|
| 84 |
return rag
|
| 85 |
|
| 86 |
+
|
| 87 |
async def main():
|
| 88 |
try:
|
| 89 |
# Initialize RAG instance
|
examples/lightrag_zhipu_demo.py
CHANGED
|
@@ -19,6 +19,7 @@ api_key = os.environ.get("ZHIPUAI_API_KEY")
|
|
| 19 |
if api_key is None:
|
| 20 |
raise Exception("Please set ZHIPU_API_KEY in your environment")
|
| 21 |
|
|
|
|
| 22 |
async def initialize_rag():
|
| 23 |
rag = LightRAG(
|
| 24 |
working_dir=WORKING_DIR,
|
|
@@ -38,6 +39,7 @@ async def initialize_rag():
|
|
| 38 |
|
| 39 |
return rag
|
| 40 |
|
|
|
|
| 41 |
def main():
|
| 42 |
# Initialize RAG instance
|
| 43 |
rag = asyncio.run(initialize_rag())
|
|
@@ -47,23 +49,32 @@ def main():
|
|
| 47 |
|
| 48 |
# Perform naive search
|
| 49 |
print(
|
| 50 |
-
rag.query(
|
|
|
|
|
|
|
| 51 |
)
|
| 52 |
|
| 53 |
# Perform local search
|
| 54 |
print(
|
| 55 |
-
rag.query(
|
|
|
|
|
|
|
| 56 |
)
|
| 57 |
|
| 58 |
# Perform global search
|
| 59 |
print(
|
| 60 |
-
rag.query(
|
|
|
|
|
|
|
| 61 |
)
|
| 62 |
|
| 63 |
# Perform hybrid search
|
| 64 |
print(
|
| 65 |
-
rag.query(
|
|
|
|
|
|
|
| 66 |
)
|
| 67 |
|
|
|
|
| 68 |
if __name__ == "__main__":
|
| 69 |
main()
|
|
|
|
| 19 |
if api_key is None:
|
| 20 |
raise Exception("Please set ZHIPU_API_KEY in your environment")
|
| 21 |
|
| 22 |
+
|
| 23 |
async def initialize_rag():
|
| 24 |
rag = LightRAG(
|
| 25 |
working_dir=WORKING_DIR,
|
|
|
|
| 39 |
|
| 40 |
return rag
|
| 41 |
|
| 42 |
+
|
| 43 |
def main():
|
| 44 |
# Initialize RAG instance
|
| 45 |
rag = asyncio.run(initialize_rag())
|
|
|
|
| 49 |
|
| 50 |
# Perform naive search
|
| 51 |
print(
|
| 52 |
+
rag.query(
|
| 53 |
+
"What are the top themes in this story?", param=QueryParam(mode="naive")
|
| 54 |
+
)
|
| 55 |
)
|
| 56 |
|
| 57 |
# Perform local search
|
| 58 |
print(
|
| 59 |
+
rag.query(
|
| 60 |
+
"What are the top themes in this story?", param=QueryParam(mode="local")
|
| 61 |
+
)
|
| 62 |
)
|
| 63 |
|
| 64 |
# Perform global search
|
| 65 |
print(
|
| 66 |
+
rag.query(
|
| 67 |
+
"What are the top themes in this story?", param=QueryParam(mode="global")
|
| 68 |
+
)
|
| 69 |
)
|
| 70 |
|
| 71 |
# Perform hybrid search
|
| 72 |
print(
|
| 73 |
+
rag.query(
|
| 74 |
+
"What are the top themes in this story?", param=QueryParam(mode="hybrid")
|
| 75 |
+
)
|
| 76 |
)
|
| 77 |
|
| 78 |
+
|
| 79 |
if __name__ == "__main__":
|
| 80 |
main()
|
examples/lightrag_zhipu_postgres_demo.py
CHANGED
|
@@ -28,6 +28,7 @@ os.environ["POSTGRES_USER"] = "rag"
|
|
| 28 |
os.environ["POSTGRES_PASSWORD"] = "rag"
|
| 29 |
os.environ["POSTGRES_DATABASE"] = "rag"
|
| 30 |
|
|
|
|
| 31 |
async def initialize_rag():
|
| 32 |
rag = LightRAG(
|
| 33 |
working_dir=WORKING_DIR,
|
|
@@ -55,8 +56,9 @@ async def initialize_rag():
|
|
| 55 |
|
| 56 |
return rag
|
| 57 |
|
|
|
|
| 58 |
async def main():
|
| 59 |
-
|
| 60 |
rag = asyncio.run(initialize_rag())
|
| 61 |
|
| 62 |
# add embedding_func for graph database, it's deleted in commit 5661d76860436f7bf5aef2e50d9ee4a59660146c
|
|
|
|
| 28 |
os.environ["POSTGRES_PASSWORD"] = "rag"
|
| 29 |
os.environ["POSTGRES_DATABASE"] = "rag"
|
| 30 |
|
| 31 |
+
|
| 32 |
async def initialize_rag():
|
| 33 |
rag = LightRAG(
|
| 34 |
working_dir=WORKING_DIR,
|
|
|
|
| 56 |
|
| 57 |
return rag
|
| 58 |
|
| 59 |
+
|
| 60 |
async def main():
|
| 61 |
+
# Initialize RAG instance
|
| 62 |
rag = asyncio.run(initialize_rag())
|
| 63 |
|
| 64 |
# add embedding_func for graph database, it's deleted in commit 5661d76860436f7bf5aef2e50d9ee4a59660146c
|
examples/query_keyword_separation_example.py
CHANGED
|
@@ -80,6 +80,8 @@ async def test_funcs():
|
|
| 80 |
asyncio.run(test_funcs())
|
| 81 |
|
| 82 |
embedding_dimension = 3072
|
|
|
|
|
|
|
| 83 |
async def initialize_rag():
|
| 84 |
rag = LightRAG(
|
| 85 |
working_dir=WORKING_DIR,
|
|
@@ -101,7 +103,7 @@ async def initialize_rag():
|
|
| 101 |
async def run_example():
|
| 102 |
# Initialize RAG instance
|
| 103 |
rag = asyncio.run(initialize_rag())
|
| 104 |
-
|
| 105 |
book1 = open("./book_1.txt", encoding="utf-8")
|
| 106 |
book2 = open("./book_2.txt", encoding="utf-8")
|
| 107 |
|
|
|
|
| 80 |
asyncio.run(test_funcs())
|
| 81 |
|
| 82 |
embedding_dimension = 3072
|
| 83 |
+
|
| 84 |
+
|
| 85 |
async def initialize_rag():
|
| 86 |
rag = LightRAG(
|
| 87 |
working_dir=WORKING_DIR,
|
|
|
|
| 103 |
async def run_example():
|
| 104 |
# Initialize RAG instance
|
| 105 |
rag = asyncio.run(initialize_rag())
|
| 106 |
+
|
| 107 |
book1 = open("./book_1.txt", encoding="utf-8")
|
| 108 |
book2 = open("./book_2.txt", encoding="utf-8")
|
| 109 |
|
examples/test.py
CHANGED
|
@@ -1,4 +1,5 @@
|
|
| 1 |
import os
|
|
|
|
| 2 |
from lightrag import LightRAG, QueryParam
|
| 3 |
from lightrag.llm.openai import gpt_4o_mini_complete
|
| 4 |
from lightrag.kg.shared_storage import initialize_pipeline_status
|
|
@@ -13,6 +14,7 @@ WORKING_DIR = "./dickens"
|
|
| 13 |
if not os.path.exists(WORKING_DIR):
|
| 14 |
os.mkdir(WORKING_DIR)
|
| 15 |
|
|
|
|
| 16 |
async def initialize_rag():
|
| 17 |
rag = LightRAG(
|
| 18 |
working_dir=WORKING_DIR,
|
|
@@ -35,23 +37,32 @@ def main():
|
|
| 35 |
|
| 36 |
# Perform naive search
|
| 37 |
print(
|
| 38 |
-
rag.query(
|
|
|
|
|
|
|
| 39 |
)
|
| 40 |
|
| 41 |
# Perform local search
|
| 42 |
print(
|
| 43 |
-
rag.query(
|
|
|
|
|
|
|
| 44 |
)
|
| 45 |
|
| 46 |
# Perform global search
|
| 47 |
print(
|
| 48 |
-
rag.query(
|
|
|
|
|
|
|
| 49 |
)
|
| 50 |
|
| 51 |
# Perform hybrid search
|
| 52 |
print(
|
| 53 |
-
rag.query(
|
|
|
|
|
|
|
| 54 |
)
|
| 55 |
|
|
|
|
| 56 |
if __name__ == "__main__":
|
| 57 |
-
main()
|
|
|
|
| 1 |
import os
|
| 2 |
+
import asyncio
|
| 3 |
from lightrag import LightRAG, QueryParam
|
| 4 |
from lightrag.llm.openai import gpt_4o_mini_complete
|
| 5 |
from lightrag.kg.shared_storage import initialize_pipeline_status
|
|
|
|
| 14 |
if not os.path.exists(WORKING_DIR):
|
| 15 |
os.mkdir(WORKING_DIR)
|
| 16 |
|
| 17 |
+
|
| 18 |
async def initialize_rag():
|
| 19 |
rag = LightRAG(
|
| 20 |
working_dir=WORKING_DIR,
|
|
|
|
| 37 |
|
| 38 |
# Perform naive search
|
| 39 |
print(
|
| 40 |
+
rag.query(
|
| 41 |
+
"What are the top themes in this story?", param=QueryParam(mode="naive")
|
| 42 |
+
)
|
| 43 |
)
|
| 44 |
|
| 45 |
# Perform local search
|
| 46 |
print(
|
| 47 |
+
rag.query(
|
| 48 |
+
"What are the top themes in this story?", param=QueryParam(mode="local")
|
| 49 |
+
)
|
| 50 |
)
|
| 51 |
|
| 52 |
# Perform global search
|
| 53 |
print(
|
| 54 |
+
rag.query(
|
| 55 |
+
"What are the top themes in this story?", param=QueryParam(mode="global")
|
| 56 |
+
)
|
| 57 |
)
|
| 58 |
|
| 59 |
# Perform hybrid search
|
| 60 |
print(
|
| 61 |
+
rag.query(
|
| 62 |
+
"What are the top themes in this story?", param=QueryParam(mode="hybrid")
|
| 63 |
+
)
|
| 64 |
)
|
| 65 |
|
| 66 |
+
|
| 67 |
if __name__ == "__main__":
|
| 68 |
+
main()
|
examples/test_chromadb.py
CHANGED
|
@@ -112,12 +112,13 @@ async def initialize_rag():
|
|
| 112 |
},
|
| 113 |
)
|
| 114 |
|
| 115 |
-
|
| 116 |
await rag.initialize_storages()
|
| 117 |
await initialize_pipeline_status()
|
| 118 |
|
| 119 |
return rag
|
| 120 |
|
|
|
|
|
|
|
| 121 |
# Initialize RAG instance
|
| 122 |
rag = asyncio.run(initialize_rag())
|
| 123 |
|
|
@@ -126,23 +127,32 @@ async def initialize_rag():
|
|
| 126 |
|
| 127 |
# Perform naive search
|
| 128 |
print(
|
| 129 |
-
rag.query(
|
|
|
|
|
|
|
| 130 |
)
|
| 131 |
|
| 132 |
# Perform local search
|
| 133 |
print(
|
| 134 |
-
rag.query(
|
|
|
|
|
|
|
| 135 |
)
|
| 136 |
|
| 137 |
# Perform global search
|
| 138 |
print(
|
| 139 |
-
rag.query(
|
|
|
|
|
|
|
| 140 |
)
|
| 141 |
|
| 142 |
# Perform hybrid search
|
| 143 |
print(
|
| 144 |
-
rag.query(
|
|
|
|
|
|
|
| 145 |
)
|
| 146 |
|
|
|
|
| 147 |
if __name__ == "__main__":
|
| 148 |
main()
|
|
|
|
| 112 |
},
|
| 113 |
)
|
| 114 |
|
|
|
|
| 115 |
await rag.initialize_storages()
|
| 116 |
await initialize_pipeline_status()
|
| 117 |
|
| 118 |
return rag
|
| 119 |
|
| 120 |
+
|
| 121 |
+
def main():
|
| 122 |
# Initialize RAG instance
|
| 123 |
rag = asyncio.run(initialize_rag())
|
| 124 |
|
|
|
|
| 127 |
|
| 128 |
# Perform naive search
|
| 129 |
print(
|
| 130 |
+
rag.query(
|
| 131 |
+
"What are the top themes in this story?", param=QueryParam(mode="naive")
|
| 132 |
+
)
|
| 133 |
)
|
| 134 |
|
| 135 |
# Perform local search
|
| 136 |
print(
|
| 137 |
+
rag.query(
|
| 138 |
+
"What are the top themes in this story?", param=QueryParam(mode="local")
|
| 139 |
+
)
|
| 140 |
)
|
| 141 |
|
| 142 |
# Perform global search
|
| 143 |
print(
|
| 144 |
+
rag.query(
|
| 145 |
+
"What are the top themes in this story?", param=QueryParam(mode="global")
|
| 146 |
+
)
|
| 147 |
)
|
| 148 |
|
| 149 |
# Perform hybrid search
|
| 150 |
print(
|
| 151 |
+
rag.query(
|
| 152 |
+
"What are the top themes in this story?", param=QueryParam(mode="hybrid")
|
| 153 |
+
)
|
| 154 |
)
|
| 155 |
|
| 156 |
+
|
| 157 |
if __name__ == "__main__":
|
| 158 |
main()
|
examples/test_faiss.py
CHANGED
|
@@ -58,6 +58,7 @@ async def embedding_func(texts: list[str]) -> np.ndarray:
|
|
| 58 |
embeddings = model.encode(texts, convert_to_numpy=True)
|
| 59 |
return embeddings
|
| 60 |
|
|
|
|
| 61 |
async def initialize_rag():
|
| 62 |
rag = LightRAG(
|
| 63 |
working_dir=WORKING_DIR,
|
|
@@ -78,8 +79,8 @@ async def initialize_rag():
|
|
| 78 |
|
| 79 |
return rag
|
| 80 |
|
|
|
|
| 81 |
def main():
|
| 82 |
-
|
| 83 |
# Initialize RAG instance
|
| 84 |
rag = asyncio.run(initialize_rag())
|
| 85 |
# Insert the custom chunks into LightRAG
|
|
|
|
| 58 |
embeddings = model.encode(texts, convert_to_numpy=True)
|
| 59 |
return embeddings
|
| 60 |
|
| 61 |
+
|
| 62 |
async def initialize_rag():
|
| 63 |
rag = LightRAG(
|
| 64 |
working_dir=WORKING_DIR,
|
|
|
|
| 79 |
|
| 80 |
return rag
|
| 81 |
|
| 82 |
+
|
| 83 |
def main():
|
|
|
|
| 84 |
# Initialize RAG instance
|
| 85 |
rag = asyncio.run(initialize_rag())
|
| 86 |
# Insert the custom chunks into LightRAG
|
examples/test_neo4j.py
CHANGED
|
@@ -15,6 +15,7 @@ WORKING_DIR = "./local_neo4jWorkDir"
|
|
| 15 |
if not os.path.exists(WORKING_DIR):
|
| 16 |
os.mkdir(WORKING_DIR)
|
| 17 |
|
|
|
|
| 18 |
async def initialize_rag():
|
| 19 |
rag = LightRAG(
|
| 20 |
working_dir=WORKING_DIR,
|
|
@@ -29,6 +30,7 @@ async def initialize_rag():
|
|
| 29 |
|
| 30 |
return rag
|
| 31 |
|
|
|
|
| 32 |
def main():
|
| 33 |
# Initialize RAG instance
|
| 34 |
rag = asyncio.run(initialize_rag())
|
|
@@ -38,23 +40,32 @@ def main():
|
|
| 38 |
|
| 39 |
# Perform naive search
|
| 40 |
print(
|
| 41 |
-
rag.query(
|
|
|
|
|
|
|
| 42 |
)
|
| 43 |
|
| 44 |
# Perform local search
|
| 45 |
print(
|
| 46 |
-
rag.query(
|
|
|
|
|
|
|
| 47 |
)
|
| 48 |
|
| 49 |
# Perform global search
|
| 50 |
print(
|
| 51 |
-
rag.query(
|
|
|
|
|
|
|
| 52 |
)
|
| 53 |
|
| 54 |
# Perform hybrid search
|
| 55 |
print(
|
| 56 |
-
rag.query(
|
|
|
|
|
|
|
| 57 |
)
|
| 58 |
|
|
|
|
| 59 |
if __name__ == "__main__":
|
| 60 |
main()
|
|
|
|
| 15 |
if not os.path.exists(WORKING_DIR):
|
| 16 |
os.mkdir(WORKING_DIR)
|
| 17 |
|
| 18 |
+
|
| 19 |
async def initialize_rag():
|
| 20 |
rag = LightRAG(
|
| 21 |
working_dir=WORKING_DIR,
|
|
|
|
| 30 |
|
| 31 |
return rag
|
| 32 |
|
| 33 |
+
|
| 34 |
def main():
|
| 35 |
# Initialize RAG instance
|
| 36 |
rag = asyncio.run(initialize_rag())
|
|
|
|
| 40 |
|
| 41 |
# Perform naive search
|
| 42 |
print(
|
| 43 |
+
rag.query(
|
| 44 |
+
"What are the top themes in this story?", param=QueryParam(mode="naive")
|
| 45 |
+
)
|
| 46 |
)
|
| 47 |
|
| 48 |
# Perform local search
|
| 49 |
print(
|
| 50 |
+
rag.query(
|
| 51 |
+
"What are the top themes in this story?", param=QueryParam(mode="local")
|
| 52 |
+
)
|
| 53 |
)
|
| 54 |
|
| 55 |
# Perform global search
|
| 56 |
print(
|
| 57 |
+
rag.query(
|
| 58 |
+
"What are the top themes in this story?", param=QueryParam(mode="global")
|
| 59 |
+
)
|
| 60 |
)
|
| 61 |
|
| 62 |
# Perform hybrid search
|
| 63 |
print(
|
| 64 |
+
rag.query(
|
| 65 |
+
"What are the top themes in this story?", param=QueryParam(mode="hybrid")
|
| 66 |
+
)
|
| 67 |
)
|
| 68 |
|
| 69 |
+
|
| 70 |
if __name__ == "__main__":
|
| 71 |
main()
|
examples/test_split_by_character.ipynb
DELETED
|
@@ -1,1313 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"cells": [
|
| 3 |
-
{
|
| 4 |
-
"cell_type": "code",
|
| 5 |
-
"execution_count": 1,
|
| 6 |
-
"id": "4b5690db12e34685",
|
| 7 |
-
"metadata": {
|
| 8 |
-
"ExecuteTime": {
|
| 9 |
-
"end_time": "2025-01-09T03:40:58.307102Z",
|
| 10 |
-
"start_time": "2025-01-09T03:40:51.935233Z"
|
| 11 |
-
}
|
| 12 |
-
},
|
| 13 |
-
"outputs": [],
|
| 14 |
-
"source": [
|
| 15 |
-
"import os\n",
|
| 16 |
-
"import logging\n",
|
| 17 |
-
"import numpy as np\n",
|
| 18 |
-
"from lightrag import LightRAG, QueryParam\n",
|
| 19 |
-
"from lightrag.llm.openai import openai_complete_if_cache, openai_embed\n",
|
| 20 |
-
"from lightrag.utils import EmbeddingFunc\n",
|
| 21 |
-
"from lightrag.kg.shared_storage import initialize_pipeline_status\n",
|
| 22 |
-
"import nest_asyncio"
|
| 23 |
-
]
|
| 24 |
-
},
|
| 25 |
-
{
|
| 26 |
-
"cell_type": "markdown",
|
| 27 |
-
"id": "dd17956ec322b361",
|
| 28 |
-
"metadata": {},
|
| 29 |
-
"source": [
|
| 30 |
-
"#### split by character"
|
| 31 |
-
]
|
| 32 |
-
},
|
| 33 |
-
{
|
| 34 |
-
"cell_type": "code",
|
| 35 |
-
"execution_count": 3,
|
| 36 |
-
"id": "8c8ee7c061bf9159",
|
| 37 |
-
"metadata": {
|
| 38 |
-
"ExecuteTime": {
|
| 39 |
-
"end_time": "2025-01-09T03:41:13.961167Z",
|
| 40 |
-
"start_time": "2025-01-09T03:41:13.958357Z"
|
| 41 |
-
}
|
| 42 |
-
},
|
| 43 |
-
"outputs": [],
|
| 44 |
-
"source": [
|
| 45 |
-
"nest_asyncio.apply()\n",
|
| 46 |
-
"WORKING_DIR = \"../../llm_rag/paper_db/R000088_test1\"\n",
|
| 47 |
-
"logging.basicConfig(format=\"%(levelname)s:%(message)s\", level=logging.INFO)\n",
|
| 48 |
-
"if not os.path.exists(WORKING_DIR):\n",
|
| 49 |
-
" os.mkdir(WORKING_DIR)\n",
|
| 50 |
-
"API = os.environ.get(\"DOUBAO_API_KEY\")"
|
| 51 |
-
]
|
| 52 |
-
},
|
| 53 |
-
{
|
| 54 |
-
"cell_type": "code",
|
| 55 |
-
"execution_count": 4,
|
| 56 |
-
"id": "a5009d16e0851dca",
|
| 57 |
-
"metadata": {
|
| 58 |
-
"ExecuteTime": {
|
| 59 |
-
"end_time": "2025-01-09T03:41:16.862036Z",
|
| 60 |
-
"start_time": "2025-01-09T03:41:16.859306Z"
|
| 61 |
-
}
|
| 62 |
-
},
|
| 63 |
-
"outputs": [],
|
| 64 |
-
"source": [
|
| 65 |
-
"async def llm_model_func(\n",
|
| 66 |
-
" prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs\n",
|
| 67 |
-
") -> str:\n",
|
| 68 |
-
" return await openai_complete_if_cache(\n",
|
| 69 |
-
" \"ep-20241218114828-2tlww\",\n",
|
| 70 |
-
" prompt,\n",
|
| 71 |
-
" system_prompt=system_prompt,\n",
|
| 72 |
-
" history_messages=history_messages,\n",
|
| 73 |
-
" api_key=API,\n",
|
| 74 |
-
" base_url=\"https://ark.cn-beijing.volces.com/api/v3\",\n",
|
| 75 |
-
" **kwargs,\n",
|
| 76 |
-
" )\n",
|
| 77 |
-
"\n",
|
| 78 |
-
"\n",
|
| 79 |
-
"async def embedding_func(texts: list[str]) -> np.ndarray:\n",
|
| 80 |
-
" return await openai_embed(\n",
|
| 81 |
-
" texts,\n",
|
| 82 |
-
" model=\"ep-20241231173413-pgjmk\",\n",
|
| 83 |
-
" api_key=API,\n",
|
| 84 |
-
" base_url=\"https://ark.cn-beijing.volces.com/api/v3\",\n",
|
| 85 |
-
" )"
|
| 86 |
-
]
|
| 87 |
-
},
|
| 88 |
-
{
|
| 89 |
-
"cell_type": "code",
|
| 90 |
-
"execution_count": 5,
|
| 91 |
-
"id": "397fcad24ce4d0ed",
|
| 92 |
-
"metadata": {
|
| 93 |
-
"ExecuteTime": {
|
| 94 |
-
"end_time": "2025-01-09T03:41:24.950307Z",
|
| 95 |
-
"start_time": "2025-01-09T03:41:24.940353Z"
|
| 96 |
-
}
|
| 97 |
-
},
|
| 98 |
-
"outputs": [
|
| 99 |
-
{
|
| 100 |
-
"name": "stderr",
|
| 101 |
-
"output_type": "stream",
|
| 102 |
-
"text": [
|
| 103 |
-
"INFO:lightrag:Logger initialized for working directory: ../../llm_rag/paper_db/R000088_test1\n",
|
| 104 |
-
"INFO:lightrag:Load KV llm_response_cache with 0 data\n",
|
| 105 |
-
"INFO:lightrag:Load KV full_docs with 0 data\n",
|
| 106 |
-
"INFO:lightrag:Load KV text_chunks with 0 data\n",
|
| 107 |
-
"INFO:nano-vectordb:Init {'embedding_dim': 4096, 'metric': 'cosine', 'storage_file': '../../llm_rag/paper_db/R000088_test1/vdb_entities.json'} 0 data\n",
|
| 108 |
-
"INFO:nano-vectordb:Init {'embedding_dim': 4096, 'metric': 'cosine', 'storage_file': '../../llm_rag/paper_db/R000088_test1/vdb_relationships.json'} 0 data\n",
|
| 109 |
-
"INFO:nano-vectordb:Init {'embedding_dim': 4096, 'metric': 'cosine', 'storage_file': '../../llm_rag/paper_db/R000088_test1/vdb_chunks.json'} 0 data\n",
|
| 110 |
-
"INFO:lightrag:Loaded document status storage with 0 records\n"
|
| 111 |
-
]
|
| 112 |
-
}
|
| 113 |
-
],
|
| 114 |
-
"source": [
|
| 115 |
-
"import asyncio\n",
|
| 116 |
-
"import nest_asyncio\n",
|
| 117 |
-
"\n",
|
| 118 |
-
"nest_asyncio.apply()\n",
|
| 119 |
-
"\n",
|
| 120 |
-
"async def initialize_rag():\n",
|
| 121 |
-
" rag = LightRAG(\n",
|
| 122 |
-
" working_dir=WORKING_DIR,\n",
|
| 123 |
-
" llm_model_func=llm_model_func,\n",
|
| 124 |
-
" embedding_func=EmbeddingFunc(\n",
|
| 125 |
-
" embedding_dim=4096, max_token_size=8192, func=embedding_func\n",
|
| 126 |
-
" ),\n",
|
| 127 |
-
" chunk_token_size=512,\n",
|
| 128 |
-
" )\n",
|
| 129 |
-
" await rag.initialize_storages()\n",
|
| 130 |
-
" await initialize_pipeline_status()\n",
|
| 131 |
-
"\n",
|
| 132 |
-
" return rag\n",
|
| 133 |
-
"\n",
|
| 134 |
-
"rag = asyncio.run(initialize_rag())"
|
| 135 |
-
]
|
| 136 |
-
},
|
| 137 |
-
{
|
| 138 |
-
"cell_type": "code",
|
| 139 |
-
"execution_count": 6,
|
| 140 |
-
"id": "1dc3603677f7484d",
|
| 141 |
-
"metadata": {
|
| 142 |
-
"ExecuteTime": {
|
| 143 |
-
"end_time": "2025-01-09T03:41:37.947456Z",
|
| 144 |
-
"start_time": "2025-01-09T03:41:37.941901Z"
|
| 145 |
-
}
|
| 146 |
-
},
|
| 147 |
-
"outputs": [],
|
| 148 |
-
"source": [
|
| 149 |
-
"with open(\n",
|
| 150 |
-
" \"../../llm_rag/example/R000088/auto/R000088_full_txt.md\", \"r\", encoding=\"utf-8\"\n",
|
| 151 |
-
") as f:\n",
|
| 152 |
-
" content = f.read()\n",
|
| 153 |
-
"\n",
|
| 154 |
-
"\n",
|
| 155 |
-
"async def embedding_func(texts: list[str]) -> np.ndarray:\n",
|
| 156 |
-
" return await openai_embed(\n",
|
| 157 |
-
" texts,\n",
|
| 158 |
-
" model=\"ep-20241231173413-pgjmk\",\n",
|
| 159 |
-
" api_key=API,\n",
|
| 160 |
-
" base_url=\"https://ark.cn-beijing.volces.com/api/v3\",\n",
|
| 161 |
-
" )\n",
|
| 162 |
-
"\n",
|
| 163 |
-
"\n",
|
| 164 |
-
"async def get_embedding_dim():\n",
|
| 165 |
-
" test_text = [\"This is a test sentence.\"]\n",
|
| 166 |
-
" embedding = await embedding_func(test_text)\n",
|
| 167 |
-
" embedding_dim = embedding.shape[1]\n",
|
| 168 |
-
" return embedding_dim"
|
| 169 |
-
]
|
| 170 |
-
},
|
| 171 |
-
{
|
| 172 |
-
"cell_type": "code",
|
| 173 |
-
"execution_count": 7,
|
| 174 |
-
"id": "6844202606acfbe5",
|
| 175 |
-
"metadata": {
|
| 176 |
-
"ExecuteTime": {
|
| 177 |
-
"end_time": "2025-01-09T03:41:39.608541Z",
|
| 178 |
-
"start_time": "2025-01-09T03:41:39.165057Z"
|
| 179 |
-
}
|
| 180 |
-
},
|
| 181 |
-
"outputs": [
|
| 182 |
-
{
|
| 183 |
-
"name": "stderr",
|
| 184 |
-
"output_type": "stream",
|
| 185 |
-
"text": [
|
| 186 |
-
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n"
|
| 187 |
-
]
|
| 188 |
-
}
|
| 189 |
-
],
|
| 190 |
-
"source": [
|
| 191 |
-
"embedding_dimension = await get_embedding_dim()"
|
| 192 |
-
]
|
| 193 |
-
},
|
| 194 |
-
{
|
| 195 |
-
"cell_type": "code",
|
| 196 |
-
"execution_count": 8,
|
| 197 |
-
"id": "d6273839d9681403",
|
| 198 |
-
"metadata": {
|
| 199 |
-
"ExecuteTime": {
|
| 200 |
-
"end_time": "2025-01-09T03:44:34.295345Z",
|
| 201 |
-
"start_time": "2025-01-09T03:41:48.324171Z"
|
| 202 |
-
}
|
| 203 |
-
},
|
| 204 |
-
"outputs": [
|
| 205 |
-
{
|
| 206 |
-
"name": "stderr",
|
| 207 |
-
"output_type": "stream",
|
| 208 |
-
"text": [
|
| 209 |
-
"INFO:lightrag:Processing 1 new unique documents\n",
|
| 210 |
-
"Processing batch 1: 0%| | 0/1 [00:00<?, ?it/s]INFO:lightrag:Inserting 35 vectors to chunks\n",
|
| 211 |
-
"\n",
|
| 212 |
-
"Generating embeddings: 0%| | 0/2 [00:00<?, ?batch/s]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
|
| 213 |
-
"\n",
|
| 214 |
-
"Generating embeddings: 50%|█████ | 1/2 [00:00<00:00, 1.36batch/s]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
|
| 215 |
-
"\n",
|
| 216 |
-
"Generating embeddings: 100%|██████████| 2/2 [00:04<00:00, 2.25s/batch]\u001b[A\n",
|
| 217 |
-
"\n",
|
| 218 |
-
"Extracting entities from chunks: 0%| | 0/35 [00:00<?, ?chunk/s]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
|
| 219 |
-
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
|
| 220 |
-
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
|
| 221 |
-
]
|
| 222 |
-
},
|
| 223 |
-
{
|
| 224 |
-
"name": "stdout",
|
| 225 |
-
"output_type": "stream",
|
| 226 |
-
"text": [
|
| 227 |
-
"⠙ Processed 1 chunks, 1 entities(duplicated), 0 relations(duplicated)\r"
|
| 228 |
-
]
|
| 229 |
-
},
|
| 230 |
-
{
|
| 231 |
-
"name": "stderr",
|
| 232 |
-
"output_type": "stream",
|
| 233 |
-
"text": [
|
| 234 |
-
"\n",
|
| 235 |
-
"Extracting entities from chunks: 3%|▎ | 1/35 [00:04<02:47, 4.93s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
|
| 236 |
-
]
|
| 237 |
-
},
|
| 238 |
-
{
|
| 239 |
-
"name": "stdout",
|
| 240 |
-
"output_type": "stream",
|
| 241 |
-
"text": [
|
| 242 |
-
"⠹ Processed 2 chunks, 2 entities(duplicated), 0 relations(duplicated)\r"
|
| 243 |
-
]
|
| 244 |
-
},
|
| 245 |
-
{
|
| 246 |
-
"name": "stderr",
|
| 247 |
-
"output_type": "stream",
|
| 248 |
-
"text": [
|
| 249 |
-
"\n",
|
| 250 |
-
"Extracting entities from chunks: 6%|▌ | 2/35 [00:05<01:18, 2.37s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
|
| 251 |
-
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
|
| 252 |
-
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
|
| 253 |
-
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
|
| 254 |
-
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
|
| 255 |
-
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
|
| 256 |
-
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
|
| 257 |
-
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
|
| 258 |
-
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
|
| 259 |
-
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
|
| 260 |
-
]
|
| 261 |
-
},
|
| 262 |
-
{
|
| 263 |
-
"name": "stdout",
|
| 264 |
-
"output_type": "stream",
|
| 265 |
-
"text": [
|
| 266 |
-
"⠸ Processed 3 chunks, 9 entities(duplicated), 5 relations(duplicated)\r"
|
| 267 |
-
]
|
| 268 |
-
},
|
| 269 |
-
{
|
| 270 |
-
"name": "stderr",
|
| 271 |
-
"output_type": "stream",
|
| 272 |
-
"text": [
|
| 273 |
-
"\n",
|
| 274 |
-
"Extracting entities from chunks: 9%|▊ | 3/35 [00:26<05:43, 10.73s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
|
| 275 |
-
]
|
| 276 |
-
},
|
| 277 |
-
{
|
| 278 |
-
"name": "stdout",
|
| 279 |
-
"output_type": "stream",
|
| 280 |
-
"text": [
|
| 281 |
-
"⠼ Processed 4 chunks, 16 entities(duplicated), 11 relations(duplicated)\r"
|
| 282 |
-
]
|
| 283 |
-
},
|
| 284 |
-
{
|
| 285 |
-
"name": "stderr",
|
| 286 |
-
"output_type": "stream",
|
| 287 |
-
"text": [
|
| 288 |
-
"\n",
|
| 289 |
-
"Extracting entities from chunks: 11%|█▏ | 4/35 [00:26<03:24, 6.60s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
|
| 290 |
-
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
|
| 291 |
-
]
|
| 292 |
-
},
|
| 293 |
-
{
|
| 294 |
-
"name": "stdout",
|
| 295 |
-
"output_type": "stream",
|
| 296 |
-
"text": [
|
| 297 |
-
"⠴ Processed 5 chunks, 24 entities(duplicated), 18 relations(duplicated)\r"
|
| 298 |
-
]
|
| 299 |
-
},
|
| 300 |
-
{
|
| 301 |
-
"name": "stderr",
|
| 302 |
-
"output_type": "stream",
|
| 303 |
-
"text": [
|
| 304 |
-
"\n",
|
| 305 |
-
"Extracting entities from chunks: 14%|█▍ | 5/35 [00:33<03:24, 6.82s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
|
| 306 |
-
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
|
| 307 |
-
]
|
| 308 |
-
},
|
| 309 |
-
{
|
| 310 |
-
"name": "stdout",
|
| 311 |
-
"output_type": "stream",
|
| 312 |
-
"text": [
|
| 313 |
-
"⠦ Processed 6 chunks, 35 entities(duplicated), 28 relations(duplicated)\r"
|
| 314 |
-
]
|
| 315 |
-
},
|
| 316 |
-
{
|
| 317 |
-
"name": "stderr",
|
| 318 |
-
"output_type": "stream",
|
| 319 |
-
"text": [
|
| 320 |
-
"\n",
|
| 321 |
-
"Extracting entities from chunks: 17%|█▋ | 6/35 [00:42<03:38, 7.53s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
|
| 322 |
-
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
|
| 323 |
-
]
|
| 324 |
-
},
|
| 325 |
-
{
|
| 326 |
-
"name": "stdout",
|
| 327 |
-
"output_type": "stream",
|
| 328 |
-
"text": [
|
| 329 |
-
"⠧ Processed 7 chunks, 47 entities(duplicated), 36 relations(duplicated)\r"
|
| 330 |
-
]
|
| 331 |
-
},
|
| 332 |
-
{
|
| 333 |
-
"name": "stderr",
|
| 334 |
-
"output_type": "stream",
|
| 335 |
-
"text": [
|
| 336 |
-
"\n",
|
| 337 |
-
"Extracting entities from chunks: 20%|██ | 7/35 [00:43<02:28, 5.31s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
|
| 338 |
-
]
|
| 339 |
-
},
|
| 340 |
-
{
|
| 341 |
-
"name": "stdout",
|
| 342 |
-
"output_type": "stream",
|
| 343 |
-
"text": [
|
| 344 |
-
"⠇ Processed 8 chunks, 61 entities(duplicated), 49 relations(duplicated)\r"
|
| 345 |
-
]
|
| 346 |
-
},
|
| 347 |
-
{
|
| 348 |
-
"name": "stderr",
|
| 349 |
-
"output_type": "stream",
|
| 350 |
-
"text": [
|
| 351 |
-
"\n",
|
| 352 |
-
"Extracting entities from chunks: 23%|██▎ | 8/35 [00:45<01:52, 4.16s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
|
| 353 |
-
]
|
| 354 |
-
},
|
| 355 |
-
{
|
| 356 |
-
"name": "stdout",
|
| 357 |
-
"output_type": "stream",
|
| 358 |
-
"text": [
|
| 359 |
-
"⠏ Processed 9 chunks, 81 entities(duplicated), 49 relations(duplicated)\r"
|
| 360 |
-
]
|
| 361 |
-
},
|
| 362 |
-
{
|
| 363 |
-
"name": "stderr",
|
| 364 |
-
"output_type": "stream",
|
| 365 |
-
"text": [
|
| 366 |
-
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
|
| 367 |
-
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
|
| 368 |
-
]
|
| 369 |
-
},
|
| 370 |
-
{
|
| 371 |
-
"name": "stdout",
|
| 372 |
-
"output_type": "stream",
|
| 373 |
-
"text": [
|
| 374 |
-
"⠋ Processed 10 chunks, 90 entities(duplicated), 62 relations(duplicated)\r"
|
| 375 |
-
]
|
| 376 |
-
},
|
| 377 |
-
{
|
| 378 |
-
"name": "stderr",
|
| 379 |
-
"output_type": "stream",
|
| 380 |
-
"text": [
|
| 381 |
-
"\n",
|
| 382 |
-
"Extracting entities from chunks: 29%|██▊ | 10/35 [00:46<01:06, 2.64s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
|
| 383 |
-
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
|
| 384 |
-
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
|
| 385 |
-
]
|
| 386 |
-
},
|
| 387 |
-
{
|
| 388 |
-
"name": "stdout",
|
| 389 |
-
"output_type": "stream",
|
| 390 |
-
"text": [
|
| 391 |
-
"⠙ Processed 11 chunks, 101 entities(duplicated), 80 relations(duplicated)\r"
|
| 392 |
-
]
|
| 393 |
-
},
|
| 394 |
-
{
|
| 395 |
-
"name": "stderr",
|
| 396 |
-
"output_type": "stream",
|
| 397 |
-
"text": [
|
| 398 |
-
"\n",
|
| 399 |
-
"Extracting entities from chunks: 31%|███▏ | 11/35 [00:52<01:19, 3.31s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
|
| 400 |
-
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
|
| 401 |
-
]
|
| 402 |
-
},
|
| 403 |
-
{
|
| 404 |
-
"name": "stdout",
|
| 405 |
-
"output_type": "stream",
|
| 406 |
-
"text": [
|
| 407 |
-
"⠹ Processed 12 chunks, 108 entities(duplicated), 85 relations(duplicated)\r"
|
| 408 |
-
]
|
| 409 |
-
},
|
| 410 |
-
{
|
| 411 |
-
"name": "stderr",
|
| 412 |
-
"output_type": "stream",
|
| 413 |
-
"text": [
|
| 414 |
-
"\n",
|
| 415 |
-
"Extracting entities from chunks: 34%|███▍ | 12/35 [00:54<01:11, 3.12s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
|
| 416 |
-
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
|
| 417 |
-
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
|
| 418 |
-
]
|
| 419 |
-
},
|
| 420 |
-
{
|
| 421 |
-
"name": "stdout",
|
| 422 |
-
"output_type": "stream",
|
| 423 |
-
"text": [
|
| 424 |
-
"⠸ Processed 13 chunks, 120 entities(duplicated), 100 relations(duplicated)\r"
|
| 425 |
-
]
|
| 426 |
-
},
|
| 427 |
-
{
|
| 428 |
-
"name": "stderr",
|
| 429 |
-
"output_type": "stream",
|
| 430 |
-
"text": [
|
| 431 |
-
"\n",
|
| 432 |
-
"Extracting entities from chunks: 37%|███▋ | 13/35 [00:59<01:18, 3.55s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
|
| 433 |
-
]
|
| 434 |
-
},
|
| 435 |
-
{
|
| 436 |
-
"name": "stdout",
|
| 437 |
-
"output_type": "stream",
|
| 438 |
-
"text": [
|
| 439 |
-
"⠼ Processed 14 chunks, 131 entities(duplicated), 110 relations(duplicated)\r"
|
| 440 |
-
]
|
| 441 |
-
},
|
| 442 |
-
{
|
| 443 |
-
"name": "stderr",
|
| 444 |
-
"output_type": "stream",
|
| 445 |
-
"text": [
|
| 446 |
-
"\n",
|
| 447 |
-
"Extracting entities from chunks: 40%|████ | 14/35 [01:00<00:59, 2.82s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
|
| 448 |
-
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
|
| 449 |
-
]
|
| 450 |
-
},
|
| 451 |
-
{
|
| 452 |
-
"name": "stdout",
|
| 453 |
-
"output_type": "stream",
|
| 454 |
-
"text": [
|
| 455 |
-
"⠴ Processed 15 chunks, 143 entities(duplicated), 110 relations(duplicated)\r"
|
| 456 |
-
]
|
| 457 |
-
},
|
| 458 |
-
{
|
| 459 |
-
"name": "stderr",
|
| 460 |
-
"output_type": "stream",
|
| 461 |
-
"text": [
|
| 462 |
-
"\n",
|
| 463 |
-
"Extracting entities from chunks: 43%|████▎ | 15/35 [01:02<00:52, 2.64s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
|
| 464 |
-
]
|
| 465 |
-
},
|
| 466 |
-
{
|
| 467 |
-
"name": "stdout",
|
| 468 |
-
"output_type": "stream",
|
| 469 |
-
"text": [
|
| 470 |
-
"⠦ Processed 16 chunks, 162 entities(duplicated), 124 relations(duplicated)\r"
|
| 471 |
-
]
|
| 472 |
-
},
|
| 473 |
-
{
|
| 474 |
-
"name": "stderr",
|
| 475 |
-
"output_type": "stream",
|
| 476 |
-
"text": [
|
| 477 |
-
"\n",
|
| 478 |
-
"Extracting entities from chunks: 46%|████▌ | 16/35 [01:05<00:53, 2.80s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
|
| 479 |
-
]
|
| 480 |
-
},
|
| 481 |
-
{
|
| 482 |
-
"name": "stdout",
|
| 483 |
-
"output_type": "stream",
|
| 484 |
-
"text": [
|
| 485 |
-
"⠧ Processed 17 chunks, 174 entities(duplicated), 132 relations(duplicated)\r"
|
| 486 |
-
]
|
| 487 |
-
},
|
| 488 |
-
{
|
| 489 |
-
"name": "stderr",
|
| 490 |
-
"output_type": "stream",
|
| 491 |
-
"text": [
|
| 492 |
-
"\n",
|
| 493 |
-
"Extracting entities from chunks: 49%|████▊ | 17/35 [01:06<00:39, 2.19s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
|
| 494 |
-
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
|
| 495 |
-
]
|
| 496 |
-
},
|
| 497 |
-
{
|
| 498 |
-
"name": "stdout",
|
| 499 |
-
"output_type": "stream",
|
| 500 |
-
"text": [
|
| 501 |
-
"⠇ Processed 18 chunks, 185 entities(duplicated), 137 relations(duplicated)\r"
|
| 502 |
-
]
|
| 503 |
-
},
|
| 504 |
-
{
|
| 505 |
-
"name": "stderr",
|
| 506 |
-
"output_type": "stream",
|
| 507 |
-
"text": [
|
| 508 |
-
"\n",
|
| 509 |
-
"Extracting entities from chunks: 51%|█████▏ | 18/35 [01:12<00:53, 3.15s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
|
| 510 |
-
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
|
| 511 |
-
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
|
| 512 |
-
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
|
| 513 |
-
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
|
| 514 |
-
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
|
| 515 |
-
]
|
| 516 |
-
},
|
| 517 |
-
{
|
| 518 |
-
"name": "stdout",
|
| 519 |
-
"output_type": "stream",
|
| 520 |
-
"text": [
|
| 521 |
-
"⠏ Processed 19 chunks, 193 entities(duplicated), 149 relations(duplicated)\r"
|
| 522 |
-
]
|
| 523 |
-
},
|
| 524 |
-
{
|
| 525 |
-
"name": "stderr",
|
| 526 |
-
"output_type": "stream",
|
| 527 |
-
"text": [
|
| 528 |
-
"\n",
|
| 529 |
-
"Extracting entities from chunks: 54%|█████▍ | 19/35 [01:18<01:06, 4.14s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
|
| 530 |
-
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
|
| 531 |
-
]
|
| 532 |
-
},
|
| 533 |
-
{
|
| 534 |
-
"name": "stdout",
|
| 535 |
-
"output_type": "stream",
|
| 536 |
-
"text": [
|
| 537 |
-
"⠋ Processed 20 chunks, 205 entities(duplicated), 158 relations(duplicated)\r"
|
| 538 |
-
]
|
| 539 |
-
},
|
| 540 |
-
{
|
| 541 |
-
"name": "stderr",
|
| 542 |
-
"output_type": "stream",
|
| 543 |
-
"text": [
|
| 544 |
-
"\n",
|
| 545 |
-
"Extracting entities from chunks: 57%|█████▋ | 20/35 [01:19<00:50, 3.35s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
|
| 546 |
-
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
|
| 547 |
-
]
|
| 548 |
-
},
|
| 549 |
-
{
|
| 550 |
-
"name": "stdout",
|
| 551 |
-
"output_type": "stream",
|
| 552 |
-
"text": [
|
| 553 |
-
"⠙ Processed 21 chunks, 220 entities(duplicated), 187 relations(duplicated)\r"
|
| 554 |
-
]
|
| 555 |
-
},
|
| 556 |
-
{
|
| 557 |
-
"name": "stderr",
|
| 558 |
-
"output_type": "stream",
|
| 559 |
-
"text": [
|
| 560 |
-
"\n",
|
| 561 |
-
"Extracting entities from chunks: 60%|██████ | 21/35 [01:27<01:02, 4.47s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
|
| 562 |
-
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
|
| 563 |
-
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
|
| 564 |
-
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
|
| 565 |
-
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
|
| 566 |
-
]
|
| 567 |
-
},
|
| 568 |
-
{
|
| 569 |
-
"name": "stdout",
|
| 570 |
-
"output_type": "stream",
|
| 571 |
-
"text": [
|
| 572 |
-
"⠹ Processed 22 chunks, 247 entities(duplicated), 216 relations(duplicated)\r"
|
| 573 |
-
]
|
| 574 |
-
},
|
| 575 |
-
{
|
| 576 |
-
"name": "stderr",
|
| 577 |
-
"output_type": "stream",
|
| 578 |
-
"text": [
|
| 579 |
-
"\n",
|
| 580 |
-
"Extracting entities from chunks: 63%|██████▎ | 22/35 [01:30<00:54, 4.16s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
|
| 581 |
-
]
|
| 582 |
-
},
|
| 583 |
-
{
|
| 584 |
-
"name": "stdout",
|
| 585 |
-
"output_type": "stream",
|
| 586 |
-
"text": [
|
| 587 |
-
"⠸ Processed 23 chunks, 260 entities(duplicated), 230 relations(duplicated)\r"
|
| 588 |
-
]
|
| 589 |
-
},
|
| 590 |
-
{
|
| 591 |
-
"name": "stderr",
|
| 592 |
-
"output_type": "stream",
|
| 593 |
-
"text": [
|
| 594 |
-
"\n",
|
| 595 |
-
"Extracting entities from chunks: 66%|██████▌ | 23/35 [01:34<00:48, 4.05s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
|
| 596 |
-
]
|
| 597 |
-
},
|
| 598 |
-
{
|
| 599 |
-
"name": "stdout",
|
| 600 |
-
"output_type": "stream",
|
| 601 |
-
"text": [
|
| 602 |
-
"⠼ Processed 24 chunks, 291 entities(duplicated), 253 relations(duplicated)\r"
|
| 603 |
-
]
|
| 604 |
-
},
|
| 605 |
-
{
|
| 606 |
-
"name": "stderr",
|
| 607 |
-
"output_type": "stream",
|
| 608 |
-
"text": [
|
| 609 |
-
"\n",
|
| 610 |
-
"Extracting entities from chunks: 69%|██████▊ | 24/35 [01:38<00:44, 4.03s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
|
| 611 |
-
]
|
| 612 |
-
},
|
| 613 |
-
{
|
| 614 |
-
"name": "stdout",
|
| 615 |
-
"output_type": "stream",
|
| 616 |
-
"text": [
|
| 617 |
-
"⠴ Processed 25 chunks, 304 entities(duplicated), 262 relations(duplicated)\r"
|
| 618 |
-
]
|
| 619 |
-
},
|
| 620 |
-
{
|
| 621 |
-
"name": "stderr",
|
| 622 |
-
"output_type": "stream",
|
| 623 |
-
"text": [
|
| 624 |
-
"\n",
|
| 625 |
-
"Extracting entities from chunks: 71%|███████▏ | 25/35 [01:41<00:36, 3.67s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
|
| 626 |
-
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
|
| 627 |
-
]
|
| 628 |
-
},
|
| 629 |
-
{
|
| 630 |
-
"name": "stdout",
|
| 631 |
-
"output_type": "stream",
|
| 632 |
-
"text": [
|
| 633 |
-
"⠦ Processed 26 chunks, 313 entities(duplicated), 271 relations(duplicated)\r"
|
| 634 |
-
]
|
| 635 |
-
},
|
| 636 |
-
{
|
| 637 |
-
"name": "stderr",
|
| 638 |
-
"output_type": "stream",
|
| 639 |
-
"text": [
|
| 640 |
-
"\n",
|
| 641 |
-
"Extracting entities from chunks: 74%|███████▍ | 26/35 [01:41<00:24, 2.76s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
|
| 642 |
-
]
|
| 643 |
-
},
|
| 644 |
-
{
|
| 645 |
-
"name": "stdout",
|
| 646 |
-
"output_type": "stream",
|
| 647 |
-
"text": [
|
| 648 |
-
"⠧ Processed 27 chunks, 321 entities(duplicated), 283 relations(duplicated)\r"
|
| 649 |
-
]
|
| 650 |
-
},
|
| 651 |
-
{
|
| 652 |
-
"name": "stderr",
|
| 653 |
-
"output_type": "stream",
|
| 654 |
-
"text": [
|
| 655 |
-
"\n",
|
| 656 |
-
"Extracting entities from chunks: 77%|███████▋ | 27/35 [01:47<00:28, 3.52s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
|
| 657 |
-
]
|
| 658 |
-
},
|
| 659 |
-
{
|
| 660 |
-
"name": "stdout",
|
| 661 |
-
"output_type": "stream",
|
| 662 |
-
"text": [
|
| 663 |
-
"⠇ Processed 28 chunks, 333 entities(duplicated), 290 relations(duplicated)\r"
|
| 664 |
-
]
|
| 665 |
-
},
|
| 666 |
-
{
|
| 667 |
-
"name": "stderr",
|
| 668 |
-
"output_type": "stream",
|
| 669 |
-
"text": [
|
| 670 |
-
"\n",
|
| 671 |
-
"Extracting entities from chunks: 80%|████████ | 28/35 [01:52<00:28, 4.08s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
|
| 672 |
-
]
|
| 673 |
-
},
|
| 674 |
-
{
|
| 675 |
-
"name": "stdout",
|
| 676 |
-
"output_type": "stream",
|
| 677 |
-
"text": [
|
| 678 |
-
"⠏ Processed 29 chunks, 348 entities(duplicated), 307 relations(duplicated)\r"
|
| 679 |
-
]
|
| 680 |
-
},
|
| 681 |
-
{
|
| 682 |
-
"name": "stderr",
|
| 683 |
-
"output_type": "stream",
|
| 684 |
-
"text": [
|
| 685 |
-
"\n",
|
| 686 |
-
"Extracting entities from chunks: 83%|████████▎ | 29/35 [01:59<00:29, 4.88s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
|
| 687 |
-
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
|
| 688 |
-
]
|
| 689 |
-
},
|
| 690 |
-
{
|
| 691 |
-
"name": "stdout",
|
| 692 |
-
"output_type": "stream",
|
| 693 |
-
"text": [
|
| 694 |
-
"⠋ Processed 30 chunks, 362 entities(duplicated), 329 relations(duplicated)\r"
|
| 695 |
-
]
|
| 696 |
-
},
|
| 697 |
-
{
|
| 698 |
-
"name": "stderr",
|
| 699 |
-
"output_type": "stream",
|
| 700 |
-
"text": [
|
| 701 |
-
"\n",
|
| 702 |
-
"Extracting entities from chunks: 86%|████████▌ | 30/35 [02:02<00:21, 4.29s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
|
| 703 |
-
]
|
| 704 |
-
},
|
| 705 |
-
{
|
| 706 |
-
"name": "stdout",
|
| 707 |
-
"output_type": "stream",
|
| 708 |
-
"text": [
|
| 709 |
-
"⠙ Processed 31 chunks, 373 entities(duplicated), 337 relations(duplicated)\r"
|
| 710 |
-
]
|
| 711 |
-
},
|
| 712 |
-
{
|
| 713 |
-
"name": "stderr",
|
| 714 |
-
"output_type": "stream",
|
| 715 |
-
"text": [
|
| 716 |
-
"\n",
|
| 717 |
-
"Extracting entities from chunks: 89%|████████▊ | 31/35 [02:03<00:13, 3.28s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
|
| 718 |
-
]
|
| 719 |
-
},
|
| 720 |
-
{
|
| 721 |
-
"name": "stdout",
|
| 722 |
-
"output_type": "stream",
|
| 723 |
-
"text": [
|
| 724 |
-
"⠹ Processed 32 chunks, 390 entities(duplicated), 369 relations(duplicated)\r"
|
| 725 |
-
]
|
| 726 |
-
},
|
| 727 |
-
{
|
| 728 |
-
"name": "stderr",
|
| 729 |
-
"output_type": "stream",
|
| 730 |
-
"text": [
|
| 731 |
-
"\n",
|
| 732 |
-
"Extracting entities from chunks: 91%|█████████▏| 32/35 [02:03<00:07, 2.55s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
|
| 733 |
-
]
|
| 734 |
-
},
|
| 735 |
-
{
|
| 736 |
-
"name": "stdout",
|
| 737 |
-
"output_type": "stream",
|
| 738 |
-
"text": [
|
| 739 |
-
"⠸ Processed 33 chunks, 405 entities(duplicated), 378 relations(duplicated)\r"
|
| 740 |
-
]
|
| 741 |
-
},
|
| 742 |
-
{
|
| 743 |
-
"name": "stderr",
|
| 744 |
-
"output_type": "stream",
|
| 745 |
-
"text": [
|
| 746 |
-
"\n",
|
| 747 |
-
"Extracting entities from chunks: 94%|█████████▍| 33/35 [02:07<00:05, 2.84s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
|
| 748 |
-
]
|
| 749 |
-
},
|
| 750 |
-
{
|
| 751 |
-
"name": "stdout",
|
| 752 |
-
"output_type": "stream",
|
| 753 |
-
"text": [
|
| 754 |
-
"⠼ Processed 34 chunks, 435 entities(duplicated), 395 relations(duplicated)\r"
|
| 755 |
-
]
|
| 756 |
-
},
|
| 757 |
-
{
|
| 758 |
-
"name": "stderr",
|
| 759 |
-
"output_type": "stream",
|
| 760 |
-
"text": [
|
| 761 |
-
"\n",
|
| 762 |
-
"Extracting entities from chunks: 97%|█████████▋| 34/35 [02:10<00:02, 2.94s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
|
| 763 |
-
]
|
| 764 |
-
},
|
| 765 |
-
{
|
| 766 |
-
"name": "stdout",
|
| 767 |
-
"output_type": "stream",
|
| 768 |
-
"text": [
|
| 769 |
-
"⠴ Processed 35 chunks, 456 entities(duplicated), 440 relations(duplicated)\r"
|
| 770 |
-
]
|
| 771 |
-
},
|
| 772 |
-
{
|
| 773 |
-
"name": "stderr",
|
| 774 |
-
"output_type": "stream",
|
| 775 |
-
"text": [
|
| 776 |
-
"\n",
|
| 777 |
-
"Extracting entities from chunks: 100%|██████████| 35/35 [02:23<00:00, 4.10s/chunk]\u001b[A\n",
|
| 778 |
-
"INFO:lightrag:Inserting entities into storage...\n",
|
| 779 |
-
"\n",
|
| 780 |
-
"Inserting entities: 100%|██████████| 324/324 [00:00<00:00, 17456.96entity/s]\n",
|
| 781 |
-
"INFO:lightrag:Inserting relationships into storage...\n",
|
| 782 |
-
"\n",
|
| 783 |
-
"Inserting relationships: 100%|██████████| 427/427 [00:00<00:00, 29956.31relationship/s]\n",
|
| 784 |
-
"INFO:lightrag:Inserting 324 vectors to entities\n",
|
| 785 |
-
"\n",
|
| 786 |
-
"Generating embeddings: 0%| | 0/11 [00:00<?, ?batch/s]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
|
| 787 |
-
"\n",
|
| 788 |
-
"Generating embeddings: 9%|▉ | 1/11 [00:00<00:06, 1.48batch/s]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
|
| 789 |
-
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
|
| 790 |
-
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
|
| 791 |
-
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
|
| 792 |
-
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
|
| 793 |
-
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
|
| 794 |
-
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
|
| 795 |
-
"\n",
|
| 796 |
-
"Generating embeddings: 18%|█▊ | 2/11 [00:02<00:11, 1.25s/batch]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
|
| 797 |
-
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
|
| 798 |
-
"\n",
|
| 799 |
-
"Generating embeddings: 27%|██▋ | 3/11 [00:02<00:06, 1.17batch/s]\u001b[A\n",
|
| 800 |
-
"Generating embeddings: 36%|███▋ | 4/11 [00:03<00:04, 1.50batch/s]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
|
| 801 |
-
"\n",
|
| 802 |
-
"Generating embeddings: 45%|████▌ | 5/11 [00:03<00:03, 1.78batch/s]\u001b[A\n",
|
| 803 |
-
"Generating embeddings: 55%|█████▍ | 6/11 [00:03<00:02, 2.01batch/s]\u001b[A\n",
|
| 804 |
-
"Generating embeddings: 64%|██████▎ | 7/11 [00:04<00:01, 2.19batch/s]\u001b[A\n",
|
| 805 |
-
"Generating embeddings: 73%|███████▎ | 8/11 [00:04<00:01, 2.31batch/s]\u001b[A\n",
|
| 806 |
-
"Generating embeddings: 82%|████████▏ | 9/11 [00:04<00:00, 2.41batch/s]\u001b[A\n",
|
| 807 |
-
"Generating embeddings: 91%|█████████ | 10/11 [00:05<00:00, 2.48batch/s]\u001b[A\n",
|
| 808 |
-
"Generating embeddings: 100%|██████████| 11/11 [00:05<00:00, 1.91batch/s]\u001b[A\n",
|
| 809 |
-
"INFO:lightrag:Inserting 427 vectors to relationships\n",
|
| 810 |
-
"\n",
|
| 811 |
-
"Generating embeddings: 0%| | 0/14 [00:00<?, ?batch/s]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
|
| 812 |
-
"\n",
|
| 813 |
-
"Generating embeddings: 7%|▋ | 1/14 [00:01<00:14, 1.11s/batch]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
|
| 814 |
-
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
|
| 815 |
-
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
|
| 816 |
-
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
|
| 817 |
-
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
|
| 818 |
-
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
|
| 819 |
-
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
|
| 820 |
-
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
|
| 821 |
-
"\n",
|
| 822 |
-
"Generating embeddings: 14%|█▍ | 2/14 [00:02<00:14, 1.18s/batch]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
|
| 823 |
-
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
|
| 824 |
-
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
|
| 825 |
-
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
|
| 826 |
-
"\n",
|
| 827 |
-
"Generating embeddings: 21%|██▏ | 3/14 [00:02<00:08, 1.23batch/s]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
|
| 828 |
-
"\n",
|
| 829 |
-
"Generating embeddings: 29%|██▊ | 4/14 [00:03<00:06, 1.56batch/s]\u001b[A\n",
|
| 830 |
-
"Generating embeddings: 36%|███▌ | 5/14 [00:03<00:04, 1.85batch/s]\u001b[A\n",
|
| 831 |
-
"Generating embeddings: 43%|████▎ | 6/14 [00:03<00:03, 2.05batch/s]\u001b[A\n",
|
| 832 |
-
"Generating embeddings: 50%|█████ | 7/14 [00:04<00:03, 2.23batch/s]\u001b[A\n",
|
| 833 |
-
"Generating embeddings: 57%|█████▋ | 8/14 [00:04<00:02, 2.37batch/s]\u001b[A\n",
|
| 834 |
-
"Generating embeddings: 64%|██████▍ | 9/14 [00:04<00:02, 2.46batch/s]\u001b[A\n",
|
| 835 |
-
"Generating embeddings: 71%|███████▏ | 10/14 [00:05<00:01, 2.54batch/s]\u001b[A\n",
|
| 836 |
-
"Generating embeddings: 79%|███████▊ | 11/14 [00:05<00:01, 2.59batch/s]\u001b[A\n",
|
| 837 |
-
"Generating embeddings: 86%|████████▌ | 12/14 [00:06<00:00, 2.64batch/s]\u001b[A\n",
|
| 838 |
-
"Generating embeddings: 93%|█████████▎| 13/14 [00:06<00:00, 2.65batch/s]\u001b[A\n",
|
| 839 |
-
"Generating embeddings: 100%|██████████| 14/14 [00:06<00:00, 2.05batch/s]\u001b[A\n",
|
| 840 |
-
"INFO:lightrag:Writing graph with 333 nodes, 427 edges\n",
|
| 841 |
-
"Processing batch 1: 100%|██████████| 1/1 [02:45<00:00, 165.90s/it]\n"
|
| 842 |
-
]
|
| 843 |
-
}
|
| 844 |
-
],
|
| 845 |
-
"source": [
|
| 846 |
-
"# rag.insert(content)\n",
|
| 847 |
-
"rag.insert(content, split_by_character=\"\\n#\")"
|
| 848 |
-
]
|
| 849 |
-
},
|
| 850 |
-
{
|
| 851 |
-
"cell_type": "code",
|
| 852 |
-
"execution_count": 9,
|
| 853 |
-
"id": "c4f9ae517151a01d",
|
| 854 |
-
"metadata": {
|
| 855 |
-
"ExecuteTime": {
|
| 856 |
-
"end_time": "2025-01-09T03:45:11.668987Z",
|
| 857 |
-
"start_time": "2025-01-09T03:45:11.664744Z"
|
| 858 |
-
}
|
| 859 |
-
},
|
| 860 |
-
"outputs": [],
|
| 861 |
-
"source": [
|
| 862 |
-
"prompt1 = \"\"\"你是一名经验丰富的论文分析科学家,你的任务是对一篇英文学术研究论文进行关键信息提取并深入分析。\n",
|
| 863 |
-
"请按照以下步骤进行分析:\n",
|
| 864 |
-
"1. 该文献主要研究的问题是什么?\n",
|
| 865 |
-
"2. 该文献采用什么方法进行分析?\n",
|
| 866 |
-
"3. 该文献的主要结论是什么?\n",
|
| 867 |
-
"首先在<分析>标签中,针对每个问题详细分析你的思考过程。然后在<回答>标签中给出所有问题的最终答案。\"\"\""
|
| 868 |
-
]
|
| 869 |
-
},
|
| 870 |
-
{
|
| 871 |
-
"cell_type": "code",
|
| 872 |
-
"execution_count": 10,
|
| 873 |
-
"id": "7a6491385b050095",
|
| 874 |
-
"metadata": {
|
| 875 |
-
"ExecuteTime": {
|
| 876 |
-
"end_time": "2025-01-09T03:45:40.829111Z",
|
| 877 |
-
"start_time": "2025-01-09T03:45:13.530298Z"
|
| 878 |
-
}
|
| 879 |
-
},
|
| 880 |
-
"outputs": [
|
| 881 |
-
{
|
| 882 |
-
"name": "stderr",
|
| 883 |
-
"output_type": "stream",
|
| 884 |
-
"text": [
|
| 885 |
-
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
|
| 886 |
-
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
|
| 887 |
-
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
|
| 888 |
-
"INFO:lightrag:Local query uses 5 entites, 12 relations, 3 text units\n",
|
| 889 |
-
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
|
| 890 |
-
"INFO:lightrag:Global query uses 8 entites, 5 relations, 4 text units\n",
|
| 891 |
-
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
|
| 892 |
-
]
|
| 893 |
-
},
|
| 894 |
-
{
|
| 895 |
-
"name": "stdout",
|
| 896 |
-
"output_type": "stream",
|
| 897 |
-
"text": [
|
| 898 |
-
"<分析>\n",
|
| 899 |
-
"1. **该文献主要研究的问题是什么?**\n",
|
| 900 |
-
" - 思考过程:通过浏览论文内容,查找作者明确阐述研究目的的部分。文中多处提及“Our study was performed to explore whether folic acid treatment was associated with cancer outcomes and all-cause mortality after extended follow-up”,表明作者旨在探究叶酸治疗与癌症结局及全因死亡率之间的关系,尤其是在经过长期随访后。\n",
|
| 901 |
-
"2. **该文献采用什么方法进行分析?**\n",
|
| 902 |
-
" - 思考过程:寻找描述研究方法和数据分析过程的段落。文中提到“Survival curves were constructed using the Kaplan-Meier method and differences in survival between groups were analyzed using the log-rank test. Estimates of hazard ratios (HRs) with 95% CIs were obtained by using Cox proportional hazards regression models stratified by trial”,可以看出作者使用了Kaplan-Meier法构建生存曲线、log-rank检验分析组间生存差异以及Cox比例风险回归模型估计风险比等方法。\n",
|
| 903 |
-
"3. **该文献的主要结论是什么?**\n",
|
| 904 |
-
" - 思考过程:定位到论文中总结结论的部分,如“Conclusion Treatment with folic acid plus vitamin $\\mathsf{B}_{12}$ was associated with increased cancer outcomes and all-cause mortality in patients with ischemic heart disease in Norway, where there is no folic acid fortification of foods”,可知作者得出叶酸加维生素$\\mathsf{B}_{12}$治疗与癌症结局和全因死亡率增加有关的结论。\n",
|
| 905 |
-
"<回答>\n",
|
| 906 |
-
"1. 该文献主要研究的问题是:叶酸治疗与癌症结局及全因死亡率之间的关系,尤其是在经过长期随访后,叶酸治疗是否与癌症结局和全因死亡率相关。\n",
|
| 907 |
-
"2. 该文献采用的分析方法包括:使用Kaplan-Meier法构建生存曲线、log-rank检验分析组间生存差异、Cox比例风险回归模型估计风险比等。\n",
|
| 908 |
-
"3. 该文献的主要结论是:在挪威没有叶酸强化食品的情况下,叶酸加维生素$\\mathsf{B}_{12}$治疗与缺血性心脏病患者的癌症结局和全因死亡率增加有关。\n",
|
| 909 |
-
"\n",
|
| 910 |
-
"**参考文献**\n",
|
| 911 |
-
"- [VD] In2Norwegianhomocysteine-lowering trialsamongpatientswithischemicheart disease, there was a statistically nonsignificantincreaseincancerincidenceinthe groupsassignedtofolicacidtreatment.15,16 Our study was performed to explore whetherfolicacidtreatmentwasassociatedwithcanceroutcomesandall-cause mortality after extended follow-up.\n",
|
| 912 |
-
"- [VD] Survivalcurveswereconstructedusing theKaplan-Meiermethodanddifferences insurvivalbetweengroupswereanalyzed usingthelog-ranktest.Estimatesofhazard ratios (HRs) with $95\\%$ CIs were obtainedbyusingCoxproportionalhazards regressionmodelsstratifiedbytrial.\n",
|
| 913 |
-
"- [VD] Conclusion Treatment with folic acid plus vitamin $\\mathsf{B}_{12}$ was associated with increased cancer outcomes and all-cause mortality in patients with ischemic heart disease in Norway, where there is no folic acid fortification of foods.\n"
|
| 914 |
-
]
|
| 915 |
-
}
|
| 916 |
-
],
|
| 917 |
-
"source": [
|
| 918 |
-
"resp = rag.query(prompt1, param=QueryParam(mode=\"mix\", top_k=5))\n",
|
| 919 |
-
"print(resp)"
|
| 920 |
-
]
|
| 921 |
-
},
|
| 922 |
-
{
|
| 923 |
-
"cell_type": "markdown",
|
| 924 |
-
"id": "4e5bfad24cb721a8",
|
| 925 |
-
"metadata": {},
|
| 926 |
-
"source": [
|
| 927 |
-
"#### split by character only"
|
| 928 |
-
]
|
| 929 |
-
},
|
| 930 |
-
{
|
| 931 |
-
"cell_type": "code",
|
| 932 |
-
"execution_count": 11,
|
| 933 |
-
"id": "44e2992dc95f8ce0",
|
| 934 |
-
"metadata": {
|
| 935 |
-
"ExecuteTime": {
|
| 936 |
-
"end_time": "2025-01-09T03:47:40.988796Z",
|
| 937 |
-
"start_time": "2025-01-09T03:47:40.982648Z"
|
| 938 |
-
}
|
| 939 |
-
},
|
| 940 |
-
"outputs": [],
|
| 941 |
-
"source": [
|
| 942 |
-
"WORKING_DIR = \"../../llm_rag/paper_db/R000088_test2\"\n",
|
| 943 |
-
"if not os.path.exists(WORKING_DIR):\n",
|
| 944 |
-
" os.mkdir(WORKING_DIR)"
|
| 945 |
-
]
|
| 946 |
-
},
|
| 947 |
-
{
|
| 948 |
-
"cell_type": "code",
|
| 949 |
-
"execution_count": 12,
|
| 950 |
-
"id": "62c63385d2d973d5",
|
| 951 |
-
"metadata": {
|
| 952 |
-
"ExecuteTime": {
|
| 953 |
-
"end_time": "2025-01-09T03:51:39.951329Z",
|
| 954 |
-
"start_time": "2025-01-09T03:49:15.218976Z"
|
| 955 |
-
}
|
| 956 |
-
},
|
| 957 |
-
"outputs": [
|
| 958 |
-
{
|
| 959 |
-
"name": "stderr",
|
| 960 |
-
"output_type": "stream",
|
| 961 |
-
"text": [
|
| 962 |
-
"INFO:lightrag:Logger initialized for working directory: ../../llm_rag/paper_db/R000088_test2\n",
|
| 963 |
-
"INFO:lightrag:Load KV llm_response_cache with 0 data\n",
|
| 964 |
-
"INFO:lightrag:Load KV full_docs with 0 data\n",
|
| 965 |
-
"INFO:lightrag:Load KV text_chunks with 0 data\n",
|
| 966 |
-
"INFO:nano-vectordb:Init {'embedding_dim': 4096, 'metric': 'cosine', 'storage_file': '../../llm_rag/paper_db/R000088_test2/vdb_entities.json'} 0 data\n",
|
| 967 |
-
"INFO:nano-vectordb:Init {'embedding_dim': 4096, 'metric': 'cosine', 'storage_file': '../../llm_rag/paper_db/R000088_test2/vdb_relationships.json'} 0 data\n",
|
| 968 |
-
"INFO:nano-vectordb:Init {'embedding_dim': 4096, 'metric': 'cosine', 'storage_file': '../../llm_rag/paper_db/R000088_test2/vdb_chunks.json'} 0 data\n",
|
| 969 |
-
"INFO:lightrag:Loaded document status storage with 0 records\n",
|
| 970 |
-
"INFO:lightrag:Processing 1 new unique documents\n",
|
| 971 |
-
"Processing batch 1: 0%| | 0/1 [00:00<?, ?it/s]INFO:lightrag:Inserting 12 vectors to chunks\n",
|
| 972 |
-
"\n",
|
| 973 |
-
"Generating embeddings: 0%| | 0/1 [00:00<?, ?batch/s]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
|
| 974 |
-
"\n",
|
| 975 |
-
"Generating embeddings: 100%|██████████| 1/1 [00:02<00:00, 2.95s/batch]\u001b[A\n",
|
| 976 |
-
"\n",
|
| 977 |
-
"Extracting entities from chunks: 0%| | 0/12 [00:00<?, ?chunk/s]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
|
| 978 |
-
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
|
| 979 |
-
]
|
| 980 |
-
},
|
| 981 |
-
{
|
| 982 |
-
"name": "stdout",
|
| 983 |
-
"output_type": "stream",
|
| 984 |
-
"text": [
|
| 985 |
-
"⠙ Processed 1 chunks, 0 entities(duplicated), 0 relations(duplicated)\r"
|
| 986 |
-
]
|
| 987 |
-
},
|
| 988 |
-
{
|
| 989 |
-
"name": "stderr",
|
| 990 |
-
"output_type": "stream",
|
| 991 |
-
"text": [
|
| 992 |
-
"\n",
|
| 993 |
-
"Extracting entities from chunks: 8%|▊ | 1/12 [00:03<00:43, 3.93s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
|
| 994 |
-
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
|
| 995 |
-
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
|
| 996 |
-
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
|
| 997 |
-
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
|
| 998 |
-
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
|
| 999 |
-
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
|
| 1000 |
-
]
|
| 1001 |
-
},
|
| 1002 |
-
{
|
| 1003 |
-
"name": "stdout",
|
| 1004 |
-
"output_type": "stream",
|
| 1005 |
-
"text": [
|
| 1006 |
-
"⠹ Processed 2 chunks, 8 entities(duplicated), 8 relations(duplicated)\r"
|
| 1007 |
-
]
|
| 1008 |
-
},
|
| 1009 |
-
{
|
| 1010 |
-
"name": "stderr",
|
| 1011 |
-
"output_type": "stream",
|
| 1012 |
-
"text": [
|
| 1013 |
-
"\n",
|
| 1014 |
-
"Extracting entities from chunks: 17%|█▋ | 2/12 [00:29<02:44, 16.46s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
|
| 1015 |
-
]
|
| 1016 |
-
},
|
| 1017 |
-
{
|
| 1018 |
-
"name": "stdout",
|
| 1019 |
-
"output_type": "stream",
|
| 1020 |
-
"text": [
|
| 1021 |
-
"⠸ Processed 3 chunks, 17 entities(duplicated), 15 relations(duplicated)\r"
|
| 1022 |
-
]
|
| 1023 |
-
},
|
| 1024 |
-
{
|
| 1025 |
-
"name": "stderr",
|
| 1026 |
-
"output_type": "stream",
|
| 1027 |
-
"text": [
|
| 1028 |
-
"\n",
|
| 1029 |
-
"Extracting entities from chunks: 25%|██▌ | 3/12 [00:30<01:25, 9.45s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
|
| 1030 |
-
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
|
| 1031 |
-
]
|
| 1032 |
-
},
|
| 1033 |
-
{
|
| 1034 |
-
"name": "stdout",
|
| 1035 |
-
"output_type": "stream",
|
| 1036 |
-
"text": [
|
| 1037 |
-
"⠼ Processed 4 chunks, 27 entities(duplicated), 22 relations(duplicated)\r"
|
| 1038 |
-
]
|
| 1039 |
-
},
|
| 1040 |
-
{
|
| 1041 |
-
"name": "stderr",
|
| 1042 |
-
"output_type": "stream",
|
| 1043 |
-
"text": [
|
| 1044 |
-
"\n",
|
| 1045 |
-
"Extracting entities from chunks: 33%|███▎ | 4/12 [00:39<01:16, 9.52s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
|
| 1046 |
-
]
|
| 1047 |
-
},
|
| 1048 |
-
{
|
| 1049 |
-
"name": "stdout",
|
| 1050 |
-
"output_type": "stream",
|
| 1051 |
-
"text": [
|
| 1052 |
-
"⠴ Processed 5 chunks, 36 entities(duplicated), 33 relations(duplicated)\r"
|
| 1053 |
-
]
|
| 1054 |
-
},
|
| 1055 |
-
{
|
| 1056 |
-
"name": "stderr",
|
| 1057 |
-
"output_type": "stream",
|
| 1058 |
-
"text": [
|
| 1059 |
-
"\n",
|
| 1060 |
-
"Extracting entities from chunks: 42%|████▏ | 5/12 [00:40<00:43, 6.24s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
|
| 1061 |
-
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
|
| 1062 |
-
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
|
| 1063 |
-
]
|
| 1064 |
-
},
|
| 1065 |
-
{
|
| 1066 |
-
"name": "stdout",
|
| 1067 |
-
"output_type": "stream",
|
| 1068 |
-
"text": [
|
| 1069 |
-
"⠦ Processed 6 chunks, 49 entities(duplicated), 42 relations(duplicated)\r"
|
| 1070 |
-
]
|
| 1071 |
-
},
|
| 1072 |
-
{
|
| 1073 |
-
"name": "stderr",
|
| 1074 |
-
"output_type": "stream",
|
| 1075 |
-
"text": [
|
| 1076 |
-
"\n",
|
| 1077 |
-
"Extracting entities from chunks: 50%|█████ | 6/12 [00:49<00:43, 7.33s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
|
| 1078 |
-
]
|
| 1079 |
-
},
|
| 1080 |
-
{
|
| 1081 |
-
"name": "stdout",
|
| 1082 |
-
"output_type": "stream",
|
| 1083 |
-
"text": [
|
| 1084 |
-
"⠧ Processed 7 chunks, 62 entities(duplicated), 65 relations(duplicated)\r"
|
| 1085 |
-
]
|
| 1086 |
-
},
|
| 1087 |
-
{
|
| 1088 |
-
"name": "stderr",
|
| 1089 |
-
"output_type": "stream",
|
| 1090 |
-
"text": [
|
| 1091 |
-
"\n",
|
| 1092 |
-
"Extracting entities from chunks: 58%|█████▊ | 7/12 [01:05<00:50, 10.05s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
|
| 1093 |
-
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
|
| 1094 |
-
]
|
| 1095 |
-
},
|
| 1096 |
-
{
|
| 1097 |
-
"name": "stdout",
|
| 1098 |
-
"output_type": "stream",
|
| 1099 |
-
"text": [
|
| 1100 |
-
"⠇ Processed 8 chunks, 81 entities(duplicated), 90 relations(duplicated)\r"
|
| 1101 |
-
]
|
| 1102 |
-
},
|
| 1103 |
-
{
|
| 1104 |
-
"name": "stderr",
|
| 1105 |
-
"output_type": "stream",
|
| 1106 |
-
"text": [
|
| 1107 |
-
"\n",
|
| 1108 |
-
"Extracting entities from chunks: 67%|██████▋ | 8/12 [01:23<00:50, 12.69s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
|
| 1109 |
-
]
|
| 1110 |
-
},
|
| 1111 |
-
{
|
| 1112 |
-
"name": "stdout",
|
| 1113 |
-
"output_type": "stream",
|
| 1114 |
-
"text": [
|
| 1115 |
-
"⠏ Processed 9 chunks, 99 entities(duplicated), 117 relations(duplicated)\r"
|
| 1116 |
-
]
|
| 1117 |
-
},
|
| 1118 |
-
{
|
| 1119 |
-
"name": "stderr",
|
| 1120 |
-
"output_type": "stream",
|
| 1121 |
-
"text": [
|
| 1122 |
-
"\n",
|
| 1123 |
-
"Extracting entities from chunks: 75%|███████▌ | 9/12 [01:32<00:34, 11.54s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
|
| 1124 |
-
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
|
| 1125 |
-
]
|
| 1126 |
-
},
|
| 1127 |
-
{
|
| 1128 |
-
"name": "stdout",
|
| 1129 |
-
"output_type": "stream",
|
| 1130 |
-
"text": [
|
| 1131 |
-
"⠋ Processed 10 chunks, 123 entities(duplicated), 140 relations(duplicated)\r"
|
| 1132 |
-
]
|
| 1133 |
-
},
|
| 1134 |
-
{
|
| 1135 |
-
"name": "stderr",
|
| 1136 |
-
"output_type": "stream",
|
| 1137 |
-
"text": [
|
| 1138 |
-
"\n",
|
| 1139 |
-
"Extracting entities from chunks: 83%|████████▎ | 10/12 [01:48<00:25, 12.79s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
|
| 1140 |
-
]
|
| 1141 |
-
},
|
| 1142 |
-
{
|
| 1143 |
-
"name": "stdout",
|
| 1144 |
-
"output_type": "stream",
|
| 1145 |
-
"text": [
|
| 1146 |
-
"⠙ Processed 11 chunks, 158 entities(duplicated), 174 relations(duplicated)\r"
|
| 1147 |
-
]
|
| 1148 |
-
},
|
| 1149 |
-
{
|
| 1150 |
-
"name": "stderr",
|
| 1151 |
-
"output_type": "stream",
|
| 1152 |
-
"text": [
|
| 1153 |
-
"\n",
|
| 1154 |
-
"Extracting entities from chunks: 92%|█████████▏| 11/12 [02:03<00:13, 13.50s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
|
| 1155 |
-
]
|
| 1156 |
-
},
|
| 1157 |
-
{
|
| 1158 |
-
"name": "stdout",
|
| 1159 |
-
"output_type": "stream",
|
| 1160 |
-
"text": [
|
| 1161 |
-
"⠹ Processed 12 chunks, 194 entities(duplicated), 221 relations(duplicated)\r"
|
| 1162 |
-
]
|
| 1163 |
-
},
|
| 1164 |
-
{
|
| 1165 |
-
"name": "stderr",
|
| 1166 |
-
"output_type": "stream",
|
| 1167 |
-
"text": [
|
| 1168 |
-
"\n",
|
| 1169 |
-
"Extracting entities from chunks: 100%|██████████| 12/12 [02:13<00:00, 11.15s/chunk]\u001b[A\n",
|
| 1170 |
-
"INFO:lightrag:Inserting entities into storage...\n",
|
| 1171 |
-
"\n",
|
| 1172 |
-
"Inserting entities: 100%|██████████| 170/170 [00:00<00:00, 11610.25entity/s]\n",
|
| 1173 |
-
"INFO:lightrag:Inserting relationships into storage...\n",
|
| 1174 |
-
"\n",
|
| 1175 |
-
"Inserting relationships: 100%|██████████| 218/218 [00:00<00:00, 15913.51relationship/s]\n",
|
| 1176 |
-
"INFO:lightrag:Inserting 170 vectors to entities\n",
|
| 1177 |
-
"\n",
|
| 1178 |
-
"Generating embeddings: 0%| | 0/6 [00:00<?, ?batch/s]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
|
| 1179 |
-
"\n",
|
| 1180 |
-
"Generating embeddings: 17%|█▋ | 1/6 [00:01<00:05, 1.10s/batch]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
|
| 1181 |
-
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
|
| 1182 |
-
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
|
| 1183 |
-
"\n",
|
| 1184 |
-
"Generating embeddings: 33%|███▎ | 2/6 [00:02<00:04, 1.07s/batch]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
|
| 1185 |
-
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
|
| 1186 |
-
"\n",
|
| 1187 |
-
"Generating embeddings: 50%|█████ | 3/6 [00:02<00:02, 1.33batch/s]\u001b[A\n",
|
| 1188 |
-
"Generating embeddings: 67%|██████▋ | 4/6 [00:02<00:01, 1.67batch/s]\u001b[A\n",
|
| 1189 |
-
"Generating embeddings: 83%|████████▎ | 5/6 [00:03<00:00, 1.95batch/s]\u001b[A\n",
|
| 1190 |
-
"Generating embeddings: 100%|██████████| 6/6 [00:03<00:00, 1.66batch/s]\u001b[A\n",
|
| 1191 |
-
"INFO:lightrag:Inserting 218 vectors to relationships\n",
|
| 1192 |
-
"\n",
|
| 1193 |
-
"Generating embeddings: 0%| | 0/7 [00:00<?, ?batch/s]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
|
| 1194 |
-
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
|
| 1195 |
-
"\n",
|
| 1196 |
-
"Generating embeddings: 14%|█▍ | 1/7 [00:01<00:10, 1.74s/batch]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
|
| 1197 |
-
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
|
| 1198 |
-
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
|
| 1199 |
-
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
|
| 1200 |
-
"\n",
|
| 1201 |
-
"Generating embeddings: 29%|██▊ | 2/7 [00:02<00:05, 1.04s/batch]\u001b[A\n",
|
| 1202 |
-
"Generating embeddings: 43%|████▎ | 3/7 [00:02<00:02, 1.35batch/s]\u001b[A\n",
|
| 1203 |
-
"Generating embeddings: 57%|█████▋ | 4/7 [00:03<00:01, 1.69batch/s]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
|
| 1204 |
-
"\n",
|
| 1205 |
-
"Generating embeddings: 71%|███████▏ | 5/7 [00:03<00:01, 1.96batch/s]\u001b[A\n",
|
| 1206 |
-
"Generating embeddings: 86%|████████▌ | 6/7 [00:03<00:00, 2.17batch/s]\u001b[A\n",
|
| 1207 |
-
"Generating embeddings: 100%|██████████| 7/7 [00:04<00:00, 1.68batch/s]\u001b[A\n",
|
| 1208 |
-
"INFO:lightrag:Writing graph with 174 nodes, 218 edges\n",
|
| 1209 |
-
"Processing batch 1: 100%|██████████| 1/1 [02:24<00:00, 144.69s/it]\n"
|
| 1210 |
-
]
|
| 1211 |
-
}
|
| 1212 |
-
],
|
| 1213 |
-
"source": [
|
| 1214 |
-
"rag = LightRAG(\n",
|
| 1215 |
-
" working_dir=WORKING_DIR,\n",
|
| 1216 |
-
" llm_model_func=llm_model_func,\n",
|
| 1217 |
-
" embedding_func=EmbeddingFunc(\n",
|
| 1218 |
-
" embedding_dim=4096, max_token_size=8192, func=embedding_func\n",
|
| 1219 |
-
" ),\n",
|
| 1220 |
-
" chunk_token_size=512,\n",
|
| 1221 |
-
")\n",
|
| 1222 |
-
"\n",
|
| 1223 |
-
"# rag.insert(content)\n",
|
| 1224 |
-
"rag.insert(content, split_by_character=\"\\n#\", split_by_character_only=True)"
|
| 1225 |
-
]
|
| 1226 |
-
},
|
| 1227 |
-
{
|
| 1228 |
-
"cell_type": "code",
|
| 1229 |
-
"execution_count": 13,
|
| 1230 |
-
"id": "3c7aa9836d8d43c7",
|
| 1231 |
-
"metadata": {
|
| 1232 |
-
"ExecuteTime": {
|
| 1233 |
-
"end_time": "2025-01-09T03:52:37.000418Z",
|
| 1234 |
-
"start_time": "2025-01-09T03:52:09.933584Z"
|
| 1235 |
-
}
|
| 1236 |
-
},
|
| 1237 |
-
"outputs": [
|
| 1238 |
-
{
|
| 1239 |
-
"name": "stderr",
|
| 1240 |
-
"output_type": "stream",
|
| 1241 |
-
"text": [
|
| 1242 |
-
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
|
| 1243 |
-
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
|
| 1244 |
-
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
|
| 1245 |
-
"INFO:lightrag:Local query uses 5 entites, 3 relations, 2 text units\n",
|
| 1246 |
-
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
|
| 1247 |
-
"INFO:lightrag:Global query uses 9 entites, 5 relations, 4 text units\n",
|
| 1248 |
-
"INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
|
| 1249 |
-
]
|
| 1250 |
-
},
|
| 1251 |
-
{
|
| 1252 |
-
"name": "stdout",
|
| 1253 |
-
"output_type": "stream",
|
| 1254 |
-
"text": [
|
| 1255 |
-
"<分析>\n",
|
| 1256 |
-
"- **该文献主要研究的问题是什么?**\n",
|
| 1257 |
-
" - **思考过程**:通过浏览论文的标题、摘要、引言等部分,寻找关于研究目的和问题的描述。论文标题为“Cancer Incidence and Mortality After Treatment With Folic Acid and Vitamin B12”,摘要中的“Objective”部分明确指出研究目的是“To evaluate effects of treatment with B vitamins on cancer outcomes and all-cause mortality in 2 randomized controlled trials”。因此,可以确定该文献主要研究的问题是评估B族维生素治疗对两项随机对照试验中癌症结局和全因死亡率的影响。\n",
|
| 1258 |
-
"- **该文献采用什么方法进行分析?**\n",
|
| 1259 |
-
" - **思考过程**:在论文的“METHODS”部分详细描述了研究方法。文中提到这是一个对两项随机、双盲、安慰剂对照临床试验(Norwegian Vitamin [NORVIT] trial和Western Norway B Vitamin Intervention Trial [WENBIT])数据的联合分析,并进行了观察性的试验后随访。具体包括对参与者进行分组干预(不同剂量的叶酸、维生素B12、维生素B6或安慰剂),收集临床信息和血样,分析循环B族维生素、同型半胱氨酸和可替宁等指标,并进行基因分型等,还涉及到多种统计分析方法,如计算预期癌症发生率、构建生存曲线、进行Cox比例风险回归模型分析等。\n",
|
| 1260 |
-
"- **该文献的主要结论是什么?**\n",
|
| 1261 |
-
" - **思考过程**:在论文的“Results”和“Conclusion”部分寻找主要结论。研究结果表明,在治疗期间,接受叶酸加维生素B12治疗的参与者血清叶酸浓度显著增加,且在后续随访中,该组癌症发病率、癌症死亡率和全因死亡率均有所上升,主要是肺癌发病率增加,而维生素B6治疗未显示出显著影响。结论部分明确指出“Treatment with folic acid plus vitamin $\\mathsf{B}_{12}$ was associated with increased cancer outcomes and all-cause mortality in patients with ischemic heart disease in Norway, where there is no folic acid fortification of foods”。\n",
|
| 1262 |
-
"</分析>\n",
|
| 1263 |
-
"\n",
|
| 1264 |
-
"<回答>\n",
|
| 1265 |
-
"- **主要研究问题**:评估B族维生素治疗对两项随机对照试验中癌症结局和全因死亡率的影响。\n",
|
| 1266 |
-
"- **研究方法**:采用对两项随机、双盲、安慰剂对照临床试验(Norwegian Vitamin [NORVIT] trial和Western Norway B Vitamin Intervention Trial [WENBIT])数据的联合分析,并进行观察性的试验后随访,涉及分组干预、多种指标检测以及多种统计分析方法。\n",
|
| 1267 |
-
"- **主要结论**:在挪威(食品中未添加叶酸),对于缺血性心脏病患者,叶酸加维生素B12治疗与癌症结局和全因死亡率的增加有关,而维生素B6治疗未显示出显著影响。\n",
|
| 1268 |
-
"\n",
|
| 1269 |
-
"**参考文献**\n",
|
| 1270 |
-
"- [VD] Cancer Incidence and Mortality After Treatment With Folic Acid and Vitamin B12\n",
|
| 1271 |
-
"- [VD] METHODS Study Design, Participants, and Study Intervention\n",
|
| 1272 |
-
"- [VD] RESULTS\n",
|
| 1273 |
-
"- [VD] Conclusion\n",
|
| 1274 |
-
"- [VD] Objective To evaluate effects of treatment with B vitamins on cancer outcomes and all-cause mortality in 2 randomized controlled trials.\n"
|
| 1275 |
-
]
|
| 1276 |
-
}
|
| 1277 |
-
],
|
| 1278 |
-
"source": [
|
| 1279 |
-
"resp = rag.query(prompt1, param=QueryParam(mode=\"mix\", top_k=5))\n",
|
| 1280 |
-
"print(resp)"
|
| 1281 |
-
]
|
| 1282 |
-
},
|
| 1283 |
-
{
|
| 1284 |
-
"cell_type": "code",
|
| 1285 |
-
"execution_count": null,
|
| 1286 |
-
"id": "7ba6fa79a2550d10",
|
| 1287 |
-
"metadata": {},
|
| 1288 |
-
"outputs": [],
|
| 1289 |
-
"source": []
|
| 1290 |
-
}
|
| 1291 |
-
],
|
| 1292 |
-
"metadata": {
|
| 1293 |
-
"kernelspec": {
|
| 1294 |
-
"display_name": "Python 3",
|
| 1295 |
-
"language": "python",
|
| 1296 |
-
"name": "python3"
|
| 1297 |
-
},
|
| 1298 |
-
"language_info": {
|
| 1299 |
-
"codemirror_mode": {
|
| 1300 |
-
"name": "ipython",
|
| 1301 |
-
"version": 2
|
| 1302 |
-
},
|
| 1303 |
-
"file_extension": ".py",
|
| 1304 |
-
"mimetype": "text/x-python",
|
| 1305 |
-
"name": "python",
|
| 1306 |
-
"nbconvert_exporter": "python",
|
| 1307 |
-
"pygments_lexer": "ipython2",
|
| 1308 |
-
"version": "2.7.6"
|
| 1309 |
-
}
|
| 1310 |
-
},
|
| 1311 |
-
"nbformat": 4,
|
| 1312 |
-
"nbformat_minor": 5
|
| 1313 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
examples/vram_management_demo.py
CHANGED
|
@@ -14,6 +14,7 @@ TEXT_FILES_DIR = "/llm/mt"
|
|
| 14 |
if not os.path.exists(WORKING_DIR):
|
| 15 |
os.mkdir(WORKING_DIR)
|
| 16 |
|
|
|
|
| 17 |
async def initialize_rag():
|
| 18 |
# Initialize LightRAG
|
| 19 |
rag = LightRAG(
|
|
@@ -31,6 +32,7 @@ async def initialize_rag():
|
|
| 31 |
|
| 32 |
return rag
|
| 33 |
|
|
|
|
| 34 |
# Read all .txt files from the TEXT_FILES_DIR directory
|
| 35 |
texts = []
|
| 36 |
for filename in os.listdir(TEXT_FILES_DIR):
|
|
@@ -82,7 +84,8 @@ def main():
|
|
| 82 |
try:
|
| 83 |
print(
|
| 84 |
rag.query(
|
| 85 |
-
"What are the top themes in this story?",
|
|
|
|
| 86 |
)
|
| 87 |
)
|
| 88 |
except Exception as e:
|
|
@@ -91,18 +94,17 @@ def main():
|
|
| 91 |
try:
|
| 92 |
print(
|
| 93 |
rag.query(
|
| 94 |
-
"What are the top themes in this story?",
|
|
|
|
| 95 |
)
|
| 96 |
)
|
| 97 |
except Exception as e:
|
| 98 |
print(f"Error performing hybrid search: {e}")
|
| 99 |
|
| 100 |
-
|
| 101 |
# Function to clear VRAM resources
|
| 102 |
def clear_vram():
|
| 103 |
os.system("sudo nvidia-smi --gpu-reset")
|
| 104 |
|
| 105 |
-
|
| 106 |
# Regularly clear VRAM to prevent overflow
|
| 107 |
clear_vram_interval = 3600 # Clear once every hour
|
| 108 |
start_time = time.time()
|
|
@@ -114,5 +116,6 @@ def main():
|
|
| 114 |
start_time = current_time
|
| 115 |
time.sleep(60) # Check the time every minute
|
| 116 |
|
|
|
|
| 117 |
if __name__ == "__main__":
|
| 118 |
main()
|
|
|
|
| 14 |
if not os.path.exists(WORKING_DIR):
|
| 15 |
os.mkdir(WORKING_DIR)
|
| 16 |
|
| 17 |
+
|
| 18 |
async def initialize_rag():
|
| 19 |
# Initialize LightRAG
|
| 20 |
rag = LightRAG(
|
|
|
|
| 32 |
|
| 33 |
return rag
|
| 34 |
|
| 35 |
+
|
| 36 |
# Read all .txt files from the TEXT_FILES_DIR directory
|
| 37 |
texts = []
|
| 38 |
for filename in os.listdir(TEXT_FILES_DIR):
|
|
|
|
| 84 |
try:
|
| 85 |
print(
|
| 86 |
rag.query(
|
| 87 |
+
"What are the top themes in this story?",
|
| 88 |
+
param=QueryParam(mode="global"),
|
| 89 |
)
|
| 90 |
)
|
| 91 |
except Exception as e:
|
|
|
|
| 94 |
try:
|
| 95 |
print(
|
| 96 |
rag.query(
|
| 97 |
+
"What are the top themes in this story?",
|
| 98 |
+
param=QueryParam(mode="hybrid"),
|
| 99 |
)
|
| 100 |
)
|
| 101 |
except Exception as e:
|
| 102 |
print(f"Error performing hybrid search: {e}")
|
| 103 |
|
|
|
|
| 104 |
# Function to clear VRAM resources
|
| 105 |
def clear_vram():
|
| 106 |
os.system("sudo nvidia-smi --gpu-reset")
|
| 107 |
|
|
|
|
| 108 |
# Regularly clear VRAM to prevent overflow
|
| 109 |
clear_vram_interval = 3600 # Clear once every hour
|
| 110 |
start_time = time.time()
|
|
|
|
| 116 |
start_time = current_time
|
| 117 |
time.sleep(60) # Check the time every minute
|
| 118 |
|
| 119 |
+
|
| 120 |
if __name__ == "__main__":
|
| 121 |
main()
|
reproduce/Step_1.py
CHANGED
|
@@ -31,6 +31,7 @@ WORKING_DIR = f"../{cls}"
|
|
| 31 |
if not os.path.exists(WORKING_DIR):
|
| 32 |
os.mkdir(WORKING_DIR)
|
| 33 |
|
|
|
|
| 34 |
async def initialize_rag():
|
| 35 |
rag = LightRAG(working_dir=WORKING_DIR)
|
| 36 |
|
|
@@ -39,6 +40,7 @@ async def initialize_rag():
|
|
| 39 |
|
| 40 |
return rag
|
| 41 |
|
|
|
|
| 42 |
def main():
|
| 43 |
# Initialize RAG instance
|
| 44 |
rag = asyncio.run(initialize_rag())
|
|
|
|
| 31 |
if not os.path.exists(WORKING_DIR):
|
| 32 |
os.mkdir(WORKING_DIR)
|
| 33 |
|
| 34 |
+
|
| 35 |
async def initialize_rag():
|
| 36 |
rag = LightRAG(working_dir=WORKING_DIR)
|
| 37 |
|
|
|
|
| 40 |
|
| 41 |
return rag
|
| 42 |
|
| 43 |
+
|
| 44 |
def main():
|
| 45 |
# Initialize RAG instance
|
| 46 |
rag = asyncio.run(initialize_rag())
|
reproduce/Step_1_openai_compatible.py
CHANGED
|
@@ -62,6 +62,7 @@ WORKING_DIR = f"../{cls}"
|
|
| 62 |
if not os.path.exists(WORKING_DIR):
|
| 63 |
os.mkdir(WORKING_DIR)
|
| 64 |
|
|
|
|
| 65 |
async def initialize_rag():
|
| 66 |
rag = LightRAG(
|
| 67 |
working_dir=WORKING_DIR,
|
|
@@ -76,6 +77,7 @@ async def initialize_rag():
|
|
| 76 |
|
| 77 |
return rag
|
| 78 |
|
|
|
|
| 79 |
def main():
|
| 80 |
# Initialize RAG instance
|
| 81 |
rag = asyncio.run(initialize_rag())
|
|
|
|
| 62 |
if not os.path.exists(WORKING_DIR):
|
| 63 |
os.mkdir(WORKING_DIR)
|
| 64 |
|
| 65 |
+
|
| 66 |
async def initialize_rag():
|
| 67 |
rag = LightRAG(
|
| 68 |
working_dir=WORKING_DIR,
|
|
|
|
| 77 |
|
| 78 |
return rag
|
| 79 |
|
| 80 |
+
|
| 81 |
def main():
|
| 82 |
# Initialize RAG instance
|
| 83 |
rag = asyncio.run(initialize_rag())
|