Merge pull request #846 from ArnoChenFx/db-connection-and-storage-lifecycle
Browse filesRefactor Database Connection Management and Improve Storage Lifecycle Handling
- examples/lightrag_api_oracle_demo.py +8 -20
- examples/lightrag_oracle_demo.py +8 -41
- examples/lightrag_tidb_demo.py +5 -30
- examples/lightrag_zhipu_postgres_demo.py +6 -25
- lightrag/api/lightrag_server.py +11 -188
- lightrag/base.py +17 -0
- lightrag/kg/mongo_impl.py +117 -94
- lightrag/kg/oracle_impl.py +101 -5
- lightrag/kg/postgres_impl.py +106 -4
- lightrag/kg/tidb_impl.py +93 -8
- lightrag/lightrag.py +68 -1
examples/lightrag_api_oracle_demo.py
CHANGED
@@ -17,7 +17,6 @@ from lightrag.llm.openai import openai_complete_if_cache, openai_embed
|
|
17 |
from lightrag.utils import EmbeddingFunc
|
18 |
import numpy as np
|
19 |
|
20 |
-
from lightrag.kg.oracle_impl import OracleDB
|
21 |
|
22 |
print(os.getcwd())
|
23 |
script_directory = Path(__file__).resolve().parent.parent
|
@@ -48,6 +47,14 @@ print(f"EMBEDDING_MAX_TOKEN_SIZE: {EMBEDDING_MAX_TOKEN_SIZE}")
|
|
48 |
if not os.path.exists(WORKING_DIR):
|
49 |
os.mkdir(WORKING_DIR)
|
50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
async def llm_model_func(
|
53 |
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
@@ -89,20 +96,6 @@ async def init():
|
|
89 |
# We storage data in unified tables, so we need to set a `workspace` parameter to specify which docs we want to store and query
|
90 |
# Below is an example of how to connect to Oracle Autonomous Database on Oracle Cloud
|
91 |
|
92 |
-
oracle_db = OracleDB(
|
93 |
-
config={
|
94 |
-
"user": "",
|
95 |
-
"password": "",
|
96 |
-
"dsn": "",
|
97 |
-
"config_dir": "path_to_config_dir",
|
98 |
-
"wallet_location": "path_to_wallet_location",
|
99 |
-
"wallet_password": "wallet_password",
|
100 |
-
"workspace": "company",
|
101 |
-
} # specify which docs you want to store and query
|
102 |
-
)
|
103 |
-
|
104 |
-
# Check if Oracle DB tables exist, if not, tables will be created
|
105 |
-
await oracle_db.check_tables()
|
106 |
# Initialize LightRAG
|
107 |
# We use Oracle DB as the KV/vector/graph storage
|
108 |
# You can add `addon_params={"example_number": 1, "language": "Simplfied Chinese"}` to control the prompt
|
@@ -121,11 +114,6 @@ async def init():
|
|
121 |
vector_storage="OracleVectorDBStorage",
|
122 |
)
|
123 |
|
124 |
-
# Setthe KV/vector/graph storage's `db` property, so all operation will use same connection pool
|
125 |
-
rag.graph_storage_cls.db = oracle_db
|
126 |
-
rag.key_string_value_json_storage_cls.db = oracle_db
|
127 |
-
rag.vector_db_storage_cls.db = oracle_db
|
128 |
-
|
129 |
return rag
|
130 |
|
131 |
|
|
|
17 |
from lightrag.utils import EmbeddingFunc
|
18 |
import numpy as np
|
19 |
|
|
|
20 |
|
21 |
print(os.getcwd())
|
22 |
script_directory = Path(__file__).resolve().parent.parent
|
|
|
47 |
if not os.path.exists(WORKING_DIR):
|
48 |
os.mkdir(WORKING_DIR)
|
49 |
|
50 |
+
os.environ["ORACLE_USER"] = ""
|
51 |
+
os.environ["ORACLE_PASSWORD"] = ""
|
52 |
+
os.environ["ORACLE_DSN"] = ""
|
53 |
+
os.environ["ORACLE_CONFIG_DIR"] = "path_to_config_dir"
|
54 |
+
os.environ["ORACLE_WALLET_LOCATION"] = "path_to_wallet_location"
|
55 |
+
os.environ["ORACLE_WALLET_PASSWORD"] = "wallet_password"
|
56 |
+
os.environ["ORACLE_WORKSPACE"] = "company"
|
57 |
+
|
58 |
|
59 |
async def llm_model_func(
|
60 |
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
|
|
96 |
# We storage data in unified tables, so we need to set a `workspace` parameter to specify which docs we want to store and query
|
97 |
# Below is an example of how to connect to Oracle Autonomous Database on Oracle Cloud
|
98 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
# Initialize LightRAG
|
100 |
# We use Oracle DB as the KV/vector/graph storage
|
101 |
# You can add `addon_params={"example_number": 1, "language": "Simplfied Chinese"}` to control the prompt
|
|
|
114 |
vector_storage="OracleVectorDBStorage",
|
115 |
)
|
116 |
|
|
|
|
|
|
|
|
|
|
|
117 |
return rag
|
118 |
|
119 |
|
examples/lightrag_oracle_demo.py
CHANGED
@@ -6,7 +6,6 @@ from lightrag import LightRAG, QueryParam
|
|
6 |
from lightrag.llm.openai import openai_complete_if_cache, openai_embed
|
7 |
from lightrag.utils import EmbeddingFunc
|
8 |
import numpy as np
|
9 |
-
from lightrag.kg.oracle_impl import OracleDB
|
10 |
|
11 |
print(os.getcwd())
|
12 |
script_directory = Path(__file__).resolve().parent.parent
|
@@ -26,6 +25,14 @@ MAX_TOKENS = 4000
|
|
26 |
if not os.path.exists(WORKING_DIR):
|
27 |
os.mkdir(WORKING_DIR)
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
async def llm_model_func(
|
31 |
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
@@ -63,26 +70,6 @@ async def main():
|
|
63 |
embedding_dimension = await get_embedding_dim()
|
64 |
print(f"Detected embedding dimension: {embedding_dimension}")
|
65 |
|
66 |
-
# Create Oracle DB connection
|
67 |
-
# The `config` parameter is the connection configuration of Oracle DB
|
68 |
-
# More docs here https://python-oracledb.readthedocs.io/en/latest/user_guide/connection_handling.html
|
69 |
-
# We storage data in unified tables, so we need to set a `workspace` parameter to specify which docs we want to store and query
|
70 |
-
# Below is an example of how to connect to Oracle Autonomous Database on Oracle Cloud
|
71 |
-
oracle_db = OracleDB(
|
72 |
-
config={
|
73 |
-
"user": "username",
|
74 |
-
"password": "xxxxxxxxx",
|
75 |
-
"dsn": "xxxxxxx_medium",
|
76 |
-
"config_dir": "dir/path/to/oracle/config",
|
77 |
-
"wallet_location": "dir/path/to/oracle/wallet",
|
78 |
-
"wallet_password": "xxxxxxxxx",
|
79 |
-
"workspace": "company", # specify which docs you want to store and query
|
80 |
-
}
|
81 |
-
)
|
82 |
-
|
83 |
-
# Check if Oracle DB tables exist, if not, tables will be created
|
84 |
-
await oracle_db.check_tables()
|
85 |
-
|
86 |
# Initialize LightRAG
|
87 |
# We use Oracle DB as the KV/vector/graph storage
|
88 |
# You can add `addon_params={"example_number": 1, "language": "Simplfied Chinese"}` to control the prompt
|
@@ -112,26 +99,6 @@ async def main():
|
|
112 |
},
|
113 |
)
|
114 |
|
115 |
-
# Setthe KV/vector/graph storage's `db` property, so all operation will use same connection pool
|
116 |
-
|
117 |
-
for storage in [
|
118 |
-
rag.vector_db_storage_cls,
|
119 |
-
rag.graph_storage_cls,
|
120 |
-
rag.doc_status,
|
121 |
-
rag.full_docs,
|
122 |
-
rag.text_chunks,
|
123 |
-
rag.llm_response_cache,
|
124 |
-
rag.key_string_value_json_storage_cls,
|
125 |
-
rag.chunks_vdb,
|
126 |
-
rag.relationships_vdb,
|
127 |
-
rag.entities_vdb,
|
128 |
-
rag.graph_storage_cls,
|
129 |
-
rag.chunk_entity_relation_graph,
|
130 |
-
rag.llm_response_cache,
|
131 |
-
]:
|
132 |
-
# set client
|
133 |
-
storage.db = oracle_db
|
134 |
-
|
135 |
# Extract and Insert into LightRAG storage
|
136 |
with open(WORKING_DIR + "/docs.txt", "r", encoding="utf-8") as f:
|
137 |
all_text = f.read()
|
|
|
6 |
from lightrag.llm.openai import openai_complete_if_cache, openai_embed
|
7 |
from lightrag.utils import EmbeddingFunc
|
8 |
import numpy as np
|
|
|
9 |
|
10 |
print(os.getcwd())
|
11 |
script_directory = Path(__file__).resolve().parent.parent
|
|
|
25 |
if not os.path.exists(WORKING_DIR):
|
26 |
os.mkdir(WORKING_DIR)
|
27 |
|
28 |
+
os.environ["ORACLE_USER"] = "username"
|
29 |
+
os.environ["ORACLE_PASSWORD"] = "xxxxxxxxx"
|
30 |
+
os.environ["ORACLE_DSN"] = "xxxxxxx_medium"
|
31 |
+
os.environ["ORACLE_CONFIG_DIR"] = "path_to_config_dir"
|
32 |
+
os.environ["ORACLE_WALLET_LOCATION"] = "path_to_wallet_location"
|
33 |
+
os.environ["ORACLE_WALLET_PASSWORD"] = "wallet_password"
|
34 |
+
os.environ["ORACLE_WORKSPACE"] = "company"
|
35 |
+
|
36 |
|
37 |
async def llm_model_func(
|
38 |
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
|
|
70 |
embedding_dimension = await get_embedding_dim()
|
71 |
print(f"Detected embedding dimension: {embedding_dimension}")
|
72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
# Initialize LightRAG
|
74 |
# We use Oracle DB as the KV/vector/graph storage
|
75 |
# You can add `addon_params={"example_number": 1, "language": "Simplfied Chinese"}` to control the prompt
|
|
|
99 |
},
|
100 |
)
|
101 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
# Extract and Insert into LightRAG storage
|
103 |
with open(WORKING_DIR + "/docs.txt", "r", encoding="utf-8") as f:
|
104 |
all_text = f.read()
|
examples/lightrag_tidb_demo.py
CHANGED
@@ -4,7 +4,6 @@ import os
|
|
4 |
import numpy as np
|
5 |
|
6 |
from lightrag import LightRAG, QueryParam
|
7 |
-
from lightrag.kg.tidb_impl import TiDB
|
8 |
from lightrag.llm import siliconcloud_embedding, openai_complete_if_cache
|
9 |
from lightrag.utils import EmbeddingFunc
|
10 |
|
@@ -17,11 +16,11 @@ APIKEY = ""
|
|
17 |
CHATMODEL = ""
|
18 |
EMBEDMODEL = ""
|
19 |
|
20 |
-
TIDB_HOST = ""
|
21 |
-
TIDB_PORT = ""
|
22 |
-
TIDB_USER = ""
|
23 |
-
TIDB_PASSWORD = ""
|
24 |
-
TIDB_DATABASE = "lightrag"
|
25 |
|
26 |
if not os.path.exists(WORKING_DIR):
|
27 |
os.mkdir(WORKING_DIR)
|
@@ -62,21 +61,6 @@ async def main():
|
|
62 |
embedding_dimension = await get_embedding_dim()
|
63 |
print(f"Detected embedding dimension: {embedding_dimension}")
|
64 |
|
65 |
-
# Create TiDB DB connection
|
66 |
-
tidb = TiDB(
|
67 |
-
config={
|
68 |
-
"host": TIDB_HOST,
|
69 |
-
"port": TIDB_PORT,
|
70 |
-
"user": TIDB_USER,
|
71 |
-
"password": TIDB_PASSWORD,
|
72 |
-
"database": TIDB_DATABASE,
|
73 |
-
"workspace": "company", # specify which docs you want to store and query
|
74 |
-
}
|
75 |
-
)
|
76 |
-
|
77 |
-
# Check if TiDB DB tables exist, if not, tables will be created
|
78 |
-
await tidb.check_tables()
|
79 |
-
|
80 |
# Initialize LightRAG
|
81 |
# We use TiDB DB as the KV/vector
|
82 |
# You can add `addon_params={"example_number": 1, "language": "Simplfied Chinese"}` to control the prompt
|
@@ -95,15 +79,6 @@ async def main():
|
|
95 |
graph_storage="TiDBGraphStorage",
|
96 |
)
|
97 |
|
98 |
-
if rag.llm_response_cache:
|
99 |
-
rag.llm_response_cache.db = tidb
|
100 |
-
rag.full_docs.db = tidb
|
101 |
-
rag.text_chunks.db = tidb
|
102 |
-
rag.entities_vdb.db = tidb
|
103 |
-
rag.relationships_vdb.db = tidb
|
104 |
-
rag.chunks_vdb.db = tidb
|
105 |
-
rag.chunk_entity_relation_graph.db = tidb
|
106 |
-
|
107 |
# Extract and Insert into LightRAG storage
|
108 |
with open("./dickens/demo.txt", "r", encoding="utf-8") as f:
|
109 |
await rag.ainsert(f.read())
|
|
|
4 |
import numpy as np
|
5 |
|
6 |
from lightrag import LightRAG, QueryParam
|
|
|
7 |
from lightrag.llm import siliconcloud_embedding, openai_complete_if_cache
|
8 |
from lightrag.utils import EmbeddingFunc
|
9 |
|
|
|
16 |
CHATMODEL = ""
|
17 |
EMBEDMODEL = ""
|
18 |
|
19 |
+
os.environ["TIDB_HOST"] = ""
|
20 |
+
os.environ["TIDB_PORT"] = ""
|
21 |
+
os.environ["TIDB_USER"] = ""
|
22 |
+
os.environ["TIDB_PASSWORD"] = ""
|
23 |
+
os.environ["TIDB_DATABASE"] = "lightrag"
|
24 |
|
25 |
if not os.path.exists(WORKING_DIR):
|
26 |
os.mkdir(WORKING_DIR)
|
|
|
61 |
embedding_dimension = await get_embedding_dim()
|
62 |
print(f"Detected embedding dimension: {embedding_dimension}")
|
63 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
# Initialize LightRAG
|
65 |
# We use TiDB DB as the KV/vector
|
66 |
# You can add `addon_params={"example_number": 1, "language": "Simplfied Chinese"}` to control the prompt
|
|
|
79 |
graph_storage="TiDBGraphStorage",
|
80 |
)
|
81 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
# Extract and Insert into LightRAG storage
|
83 |
with open("./dickens/demo.txt", "r", encoding="utf-8") as f:
|
84 |
await rag.ainsert(f.read())
|
examples/lightrag_zhipu_postgres_demo.py
CHANGED
@@ -5,7 +5,6 @@ import time
|
|
5 |
from dotenv import load_dotenv
|
6 |
|
7 |
from lightrag import LightRAG, QueryParam
|
8 |
-
from lightrag.kg.postgres_impl import PostgreSQLDB
|
9 |
from lightrag.llm.zhipu import zhipu_complete
|
10 |
from lightrag.llm.ollama import ollama_embedding
|
11 |
from lightrag.utils import EmbeddingFunc
|
@@ -22,22 +21,14 @@ if not os.path.exists(WORKING_DIR):
|
|
22 |
# AGE
|
23 |
os.environ["AGE_GRAPH_NAME"] = "dickens"
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
"password": "rag",
|
31 |
-
"database": "rag",
|
32 |
-
}
|
33 |
-
)
|
34 |
|
35 |
|
36 |
async def main():
|
37 |
-
await postgres_db.initdb()
|
38 |
-
# Check if PostgreSQL DB tables exist, if not, tables will be created
|
39 |
-
await postgres_db.check_tables()
|
40 |
-
|
41 |
rag = LightRAG(
|
42 |
working_dir=WORKING_DIR,
|
43 |
llm_model_func=zhipu_complete,
|
@@ -57,17 +48,7 @@ async def main():
|
|
57 |
graph_storage="PGGraphStorage",
|
58 |
vector_storage="PGVectorStorage",
|
59 |
)
|
60 |
-
|
61 |
-
rag.doc_status.db = postgres_db
|
62 |
-
rag.full_docs.db = postgres_db
|
63 |
-
rag.text_chunks.db = postgres_db
|
64 |
-
rag.llm_response_cache.db = postgres_db
|
65 |
-
rag.key_string_value_json_storage_cls.db = postgres_db
|
66 |
-
rag.chunks_vdb.db = postgres_db
|
67 |
-
rag.relationships_vdb.db = postgres_db
|
68 |
-
rag.entities_vdb.db = postgres_db
|
69 |
-
rag.graph_storage_cls.db = postgres_db
|
70 |
-
rag.chunk_entity_relation_graph.db = postgres_db
|
71 |
# add embedding_func for graph database, it's deleted in commit 5661d76860436f7bf5aef2e50d9ee4a59660146c
|
72 |
rag.chunk_entity_relation_graph.embedding_func = rag.embedding_func
|
73 |
|
|
|
5 |
from dotenv import load_dotenv
|
6 |
|
7 |
from lightrag import LightRAG, QueryParam
|
|
|
8 |
from lightrag.llm.zhipu import zhipu_complete
|
9 |
from lightrag.llm.ollama import ollama_embedding
|
10 |
from lightrag.utils import EmbeddingFunc
|
|
|
21 |
# AGE
|
22 |
os.environ["AGE_GRAPH_NAME"] = "dickens"
|
23 |
|
24 |
+
os.environ["POSTGRES_HOST"] = "localhost"
|
25 |
+
os.environ["POSTGRES_PORT"] = "15432"
|
26 |
+
os.environ["POSTGRES_USER"] = "rag"
|
27 |
+
os.environ["POSTGRES_PASSWORD"] = "rag"
|
28 |
+
os.environ["POSTGRES_DATABASE"] = "rag"
|
|
|
|
|
|
|
|
|
29 |
|
30 |
|
31 |
async def main():
|
|
|
|
|
|
|
|
|
32 |
rag = LightRAG(
|
33 |
working_dir=WORKING_DIR,
|
34 |
llm_model_func=zhipu_complete,
|
|
|
48 |
graph_storage="PGGraphStorage",
|
49 |
vector_storage="PGVectorStorage",
|
50 |
)
|
51 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
# add embedding_func for graph database, it's deleted in commit 5661d76860436f7bf5aef2e50d9ee4a59660146c
|
53 |
rag.chunk_entity_relation_graph.embedding_func = rag.embedding_func
|
54 |
|
lightrag/api/lightrag_server.py
CHANGED
@@ -15,11 +15,6 @@ import logging
|
|
15 |
import argparse
|
16 |
from typing import List, Any, Literal, Optional, Dict
|
17 |
from pydantic import BaseModel, Field, field_validator
|
18 |
-
from lightrag import LightRAG, QueryParam
|
19 |
-
from lightrag.base import DocProcessingStatus, DocStatus
|
20 |
-
from lightrag.types import GPTKeywordExtractionFormat
|
21 |
-
from lightrag.api import __api_version__
|
22 |
-
from lightrag.utils import EmbeddingFunc
|
23 |
from pathlib import Path
|
24 |
import shutil
|
25 |
import aiofiles
|
@@ -36,39 +31,13 @@ import configparser
|
|
36 |
import traceback
|
37 |
from datetime import datetime
|
38 |
|
|
|
|
|
|
|
|
|
|
|
39 |
from lightrag.utils import logger
|
40 |
-
from .ollama_api import
|
41 |
-
OllamaAPI,
|
42 |
-
)
|
43 |
-
from .ollama_api import ollama_server_infos
|
44 |
-
|
45 |
-
|
46 |
-
def get_db_type_from_storage_class(class_name: str) -> str | None:
|
47 |
-
"""Determine database type based on storage class name"""
|
48 |
-
if class_name.startswith("PG"):
|
49 |
-
return "postgres"
|
50 |
-
elif class_name.startswith("Oracle"):
|
51 |
-
return "oracle"
|
52 |
-
elif class_name.startswith("TiDB"):
|
53 |
-
return "tidb"
|
54 |
-
return None
|
55 |
-
|
56 |
-
|
57 |
-
def import_db_module(db_type: str):
|
58 |
-
"""Dynamically import database module"""
|
59 |
-
if db_type == "postgres":
|
60 |
-
from ..kg.postgres_impl import PostgreSQLDB
|
61 |
-
|
62 |
-
return PostgreSQLDB
|
63 |
-
elif db_type == "oracle":
|
64 |
-
from ..kg.oracle_impl import OracleDB
|
65 |
-
|
66 |
-
return OracleDB
|
67 |
-
elif db_type == "tidb":
|
68 |
-
from ..kg.tidb_impl import TiDB
|
69 |
-
|
70 |
-
return TiDB
|
71 |
-
return None
|
72 |
|
73 |
|
74 |
# Load environment variables
|
@@ -929,52 +898,12 @@ def create_app(args):
|
|
929 |
@asynccontextmanager
|
930 |
async def lifespan(app: FastAPI):
|
931 |
"""Lifespan context manager for startup and shutdown events"""
|
932 |
-
# Initialize database connections
|
933 |
-
db_instances = {}
|
934 |
# Store background tasks
|
935 |
app.state.background_tasks = set()
|
936 |
|
937 |
try:
|
938 |
-
#
|
939 |
-
|
940 |
-
for storage_name, storage_instance in storage_instances:
|
941 |
-
db_type = get_db_type_from_storage_class(
|
942 |
-
storage_instance.__class__.__name__
|
943 |
-
)
|
944 |
-
if db_type:
|
945 |
-
db_types.add(db_type)
|
946 |
-
|
947 |
-
# Import and initialize databases as needed
|
948 |
-
for db_type in db_types:
|
949 |
-
if db_type == "postgres":
|
950 |
-
DB = import_db_module("postgres")
|
951 |
-
db = DB(_get_postgres_config())
|
952 |
-
await db.initdb()
|
953 |
-
await db.check_tables()
|
954 |
-
db_instances["postgres"] = db
|
955 |
-
elif db_type == "oracle":
|
956 |
-
DB = import_db_module("oracle")
|
957 |
-
db = DB(_get_oracle_config())
|
958 |
-
await db.check_tables()
|
959 |
-
db_instances["oracle"] = db
|
960 |
-
elif db_type == "tidb":
|
961 |
-
DB = import_db_module("tidb")
|
962 |
-
db = DB(_get_tidb_config())
|
963 |
-
await db.check_tables()
|
964 |
-
db_instances["tidb"] = db
|
965 |
-
|
966 |
-
# Inject database instances into storage classes
|
967 |
-
for storage_name, storage_instance in storage_instances:
|
968 |
-
db_type = get_db_type_from_storage_class(
|
969 |
-
storage_instance.__class__.__name__
|
970 |
-
)
|
971 |
-
if db_type:
|
972 |
-
if db_type not in db_instances:
|
973 |
-
error_msg = f"Database type '{db_type}' is required by {storage_name} but not initialized"
|
974 |
-
logger.error(error_msg)
|
975 |
-
raise RuntimeError(error_msg)
|
976 |
-
storage_instance.db = db_instances[db_type]
|
977 |
-
logger.info(f"Injected {db_type} db to {storage_name}")
|
978 |
|
979 |
# Auto scan documents if enabled
|
980 |
if args.auto_scan_at_startup:
|
@@ -1000,17 +929,7 @@ def create_app(args):
|
|
1000 |
|
1001 |
finally:
|
1002 |
# Clean up database connections
|
1003 |
-
|
1004 |
-
if hasattr(db, "pool"):
|
1005 |
-
await db.pool.close()
|
1006 |
-
# Use more accurate database name display
|
1007 |
-
db_names = {
|
1008 |
-
"postgres": "PostgreSQL",
|
1009 |
-
"oracle": "Oracle",
|
1010 |
-
"tidb": "TiDB",
|
1011 |
-
}
|
1012 |
-
db_name = db_names.get(db_type, db_type)
|
1013 |
-
logger.info(f"Closed {db_name} database connection pool")
|
1014 |
|
1015 |
# Initialize FastAPI
|
1016 |
app = FastAPI(
|
@@ -1042,92 +961,6 @@ def create_app(args):
|
|
1042 |
allow_headers=["*"],
|
1043 |
)
|
1044 |
|
1045 |
-
# Database configuration functions
|
1046 |
-
def _get_postgres_config():
|
1047 |
-
return {
|
1048 |
-
"host": os.environ.get(
|
1049 |
-
"POSTGRES_HOST",
|
1050 |
-
config.get("postgres", "host", fallback="localhost"),
|
1051 |
-
),
|
1052 |
-
"port": os.environ.get(
|
1053 |
-
"POSTGRES_PORT", config.get("postgres", "port", fallback=5432)
|
1054 |
-
),
|
1055 |
-
"user": os.environ.get(
|
1056 |
-
"POSTGRES_USER", config.get("postgres", "user", fallback=None)
|
1057 |
-
),
|
1058 |
-
"password": os.environ.get(
|
1059 |
-
"POSTGRES_PASSWORD",
|
1060 |
-
config.get("postgres", "password", fallback=None),
|
1061 |
-
),
|
1062 |
-
"database": os.environ.get(
|
1063 |
-
"POSTGRES_DATABASE",
|
1064 |
-
config.get("postgres", "database", fallback=None),
|
1065 |
-
),
|
1066 |
-
"workspace": os.environ.get(
|
1067 |
-
"POSTGRES_WORKSPACE",
|
1068 |
-
config.get("postgres", "workspace", fallback="default"),
|
1069 |
-
),
|
1070 |
-
}
|
1071 |
-
|
1072 |
-
def _get_oracle_config():
|
1073 |
-
return {
|
1074 |
-
"user": os.environ.get(
|
1075 |
-
"ORACLE_USER",
|
1076 |
-
config.get("oracle", "user", fallback=None),
|
1077 |
-
),
|
1078 |
-
"password": os.environ.get(
|
1079 |
-
"ORACLE_PASSWORD",
|
1080 |
-
config.get("oracle", "password", fallback=None),
|
1081 |
-
),
|
1082 |
-
"dsn": os.environ.get(
|
1083 |
-
"ORACLE_DSN",
|
1084 |
-
config.get("oracle", "dsn", fallback=None),
|
1085 |
-
),
|
1086 |
-
"config_dir": os.environ.get(
|
1087 |
-
"ORACLE_CONFIG_DIR",
|
1088 |
-
config.get("oracle", "config_dir", fallback=None),
|
1089 |
-
),
|
1090 |
-
"wallet_location": os.environ.get(
|
1091 |
-
"ORACLE_WALLET_LOCATION",
|
1092 |
-
config.get("oracle", "wallet_location", fallback=None),
|
1093 |
-
),
|
1094 |
-
"wallet_password": os.environ.get(
|
1095 |
-
"ORACLE_WALLET_PASSWORD",
|
1096 |
-
config.get("oracle", "wallet_password", fallback=None),
|
1097 |
-
),
|
1098 |
-
"workspace": os.environ.get(
|
1099 |
-
"ORACLE_WORKSPACE",
|
1100 |
-
config.get("oracle", "workspace", fallback="default"),
|
1101 |
-
),
|
1102 |
-
}
|
1103 |
-
|
1104 |
-
def _get_tidb_config():
|
1105 |
-
return {
|
1106 |
-
"host": os.environ.get(
|
1107 |
-
"TIDB_HOST",
|
1108 |
-
config.get("tidb", "host", fallback="localhost"),
|
1109 |
-
),
|
1110 |
-
"port": os.environ.get(
|
1111 |
-
"TIDB_PORT", config.get("tidb", "port", fallback=4000)
|
1112 |
-
),
|
1113 |
-
"user": os.environ.get(
|
1114 |
-
"TIDB_USER",
|
1115 |
-
config.get("tidb", "user", fallback=None),
|
1116 |
-
),
|
1117 |
-
"password": os.environ.get(
|
1118 |
-
"TIDB_PASSWORD",
|
1119 |
-
config.get("tidb", "password", fallback=None),
|
1120 |
-
),
|
1121 |
-
"database": os.environ.get(
|
1122 |
-
"TIDB_DATABASE",
|
1123 |
-
config.get("tidb", "database", fallback=None),
|
1124 |
-
),
|
1125 |
-
"workspace": os.environ.get(
|
1126 |
-
"TIDB_WORKSPACE",
|
1127 |
-
config.get("tidb", "workspace", fallback="default"),
|
1128 |
-
),
|
1129 |
-
}
|
1130 |
-
|
1131 |
# Create the optional API key dependency
|
1132 |
optional_api_key = get_api_key_dependency(api_key)
|
1133 |
|
@@ -1262,6 +1095,7 @@ def create_app(args):
|
|
1262 |
},
|
1263 |
log_level=args.log_level,
|
1264 |
namespace_prefix=args.namespace_prefix,
|
|
|
1265 |
)
|
1266 |
else:
|
1267 |
rag = LightRAG(
|
@@ -1293,20 +1127,9 @@ def create_app(args):
|
|
1293 |
},
|
1294 |
log_level=args.log_level,
|
1295 |
namespace_prefix=args.namespace_prefix,
|
|
|
1296 |
)
|
1297 |
|
1298 |
-
# Collect all storage instances
|
1299 |
-
storage_instances = [
|
1300 |
-
("full_docs", rag.full_docs),
|
1301 |
-
("text_chunks", rag.text_chunks),
|
1302 |
-
("chunk_entity_relation_graph", rag.chunk_entity_relation_graph),
|
1303 |
-
("entities_vdb", rag.entities_vdb),
|
1304 |
-
("relationships_vdb", rag.relationships_vdb),
|
1305 |
-
("chunks_vdb", rag.chunks_vdb),
|
1306 |
-
("doc_status", rag.doc_status),
|
1307 |
-
("llm_response_cache", rag.llm_response_cache),
|
1308 |
-
]
|
1309 |
-
|
1310 |
async def pipeline_enqueue_file(file_path: Path) -> bool:
|
1311 |
"""Add a file to the queue for processing
|
1312 |
|
|
|
15 |
import argparse
|
16 |
from typing import List, Any, Literal, Optional, Dict
|
17 |
from pydantic import BaseModel, Field, field_validator
|
|
|
|
|
|
|
|
|
|
|
18 |
from pathlib import Path
|
19 |
import shutil
|
20 |
import aiofiles
|
|
|
31 |
import traceback
|
32 |
from datetime import datetime
|
33 |
|
34 |
+
from lightrag import LightRAG, QueryParam
|
35 |
+
from lightrag.base import DocProcessingStatus, DocStatus
|
36 |
+
from lightrag.types import GPTKeywordExtractionFormat
|
37 |
+
from lightrag.api import __api_version__
|
38 |
+
from lightrag.utils import EmbeddingFunc
|
39 |
from lightrag.utils import logger
|
40 |
+
from .ollama_api import OllamaAPI, ollama_server_infos
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
|
43 |
# Load environment variables
|
|
|
898 |
@asynccontextmanager
|
899 |
async def lifespan(app: FastAPI):
|
900 |
"""Lifespan context manager for startup and shutdown events"""
|
|
|
|
|
901 |
# Store background tasks
|
902 |
app.state.background_tasks = set()
|
903 |
|
904 |
try:
|
905 |
+
# Initialize database connections
|
906 |
+
await rag.initialize_storages()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
907 |
|
908 |
# Auto scan documents if enabled
|
909 |
if args.auto_scan_at_startup:
|
|
|
929 |
|
930 |
finally:
|
931 |
# Clean up database connections
|
932 |
+
await rag.finalize_storages()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
933 |
|
934 |
# Initialize FastAPI
|
935 |
app = FastAPI(
|
|
|
961 |
allow_headers=["*"],
|
962 |
)
|
963 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
964 |
# Create the optional API key dependency
|
965 |
optional_api_key = get_api_key_dependency(api_key)
|
966 |
|
|
|
1095 |
},
|
1096 |
log_level=args.log_level,
|
1097 |
namespace_prefix=args.namespace_prefix,
|
1098 |
+
auto_manage_storages_states=False,
|
1099 |
)
|
1100 |
else:
|
1101 |
rag = LightRAG(
|
|
|
1127 |
},
|
1128 |
log_level=args.log_level,
|
1129 |
namespace_prefix=args.namespace_prefix,
|
1130 |
+
auto_manage_storages_states=False,
|
1131 |
)
|
1132 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1133 |
async def pipeline_enqueue_file(file_path: Path) -> bool:
|
1134 |
"""Add a file to the queue for processing
|
1135 |
|
lightrag/base.py
CHANGED
@@ -87,6 +87,14 @@ class StorageNameSpace(ABC):
|
|
87 |
namespace: str
|
88 |
global_config: dict[str, Any]
|
89 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
@abstractmethod
|
91 |
async def index_done_callback(self) -> None:
|
92 |
"""Commit the storage operations after indexing"""
|
@@ -247,3 +255,12 @@ class DocStatusStorage(BaseKVStorage, ABC):
|
|
247 |
self, status: DocStatus
|
248 |
) -> dict[str, DocProcessingStatus]:
|
249 |
"""Get all documents with a specific status"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
namespace: str
|
88 |
global_config: dict[str, Any]
|
89 |
|
90 |
+
async def initialize(self):
|
91 |
+
"""Initialize the storage"""
|
92 |
+
pass
|
93 |
+
|
94 |
+
async def finalize(self):
|
95 |
+
"""Finalize the storage"""
|
96 |
+
pass
|
97 |
+
|
98 |
@abstractmethod
|
99 |
async def index_done_callback(self) -> None:
|
100 |
"""Commit the storage operations after indexing"""
|
|
|
255 |
self, status: DocStatus
|
256 |
) -> dict[str, DocProcessingStatus]:
|
257 |
"""Get all documents with a specific status"""
|
258 |
+
|
259 |
+
|
260 |
+
class StoragesStatus(str, Enum):
|
261 |
+
"""Storages status"""
|
262 |
+
|
263 |
+
NOT_CREATED = "not_created"
|
264 |
+
CREATED = "created"
|
265 |
+
INITIALIZED = "initialized"
|
266 |
+
FINALIZED = "finalized"
|
lightrag/kg/mongo_impl.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
import os
|
2 |
-
from dataclasses import dataclass
|
3 |
import numpy as np
|
4 |
import configparser
|
5 |
import asyncio
|
@@ -26,8 +26,11 @@ if not pm.is_installed("motor"):
|
|
26 |
pm.install("motor")
|
27 |
|
28 |
try:
|
29 |
-
from motor.motor_asyncio import
|
30 |
-
|
|
|
|
|
|
|
31 |
from pymongo.operations import SearchIndexModel
|
32 |
from pymongo.errors import PyMongoError
|
33 |
except ImportError as e:
|
@@ -39,31 +42,63 @@ config = configparser.ConfigParser()
|
|
39 |
config.read("config.ini", "utf-8")
|
40 |
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
@final
|
43 |
@dataclass
|
44 |
class MongoKVStorage(BaseKVStorage):
|
45 |
-
|
46 |
-
|
47 |
-
"MONGO_URI",
|
48 |
-
config.get(
|
49 |
-
"mongodb", "uri", fallback="mongodb://root:root@localhost:27017/"
|
50 |
-
),
|
51 |
-
)
|
52 |
-
client = AsyncIOMotorClient(uri)
|
53 |
-
database = client.get_database(
|
54 |
-
os.environ.get(
|
55 |
-
"MONGO_DATABASE",
|
56 |
-
config.get("mongodb", "database", fallback="LightRAG"),
|
57 |
-
)
|
58 |
-
)
|
59 |
|
|
|
60 |
self._collection_name = self.namespace
|
61 |
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
64 |
|
65 |
-
|
66 |
-
|
|
|
|
|
|
|
67 |
|
68 |
async def get_by_id(self, id: str) -> dict[str, Any] | None:
|
69 |
return await self._data.find_one({"_id": id})
|
@@ -120,28 +155,23 @@ class MongoKVStorage(BaseKVStorage):
|
|
120 |
@final
|
121 |
@dataclass
|
122 |
class MongoDocStatusStorage(DocStatusStorage):
|
123 |
-
|
124 |
-
|
125 |
-
"MONGO_URI",
|
126 |
-
config.get(
|
127 |
-
"mongodb", "uri", fallback="mongodb://root:root@localhost:27017/"
|
128 |
-
),
|
129 |
-
)
|
130 |
-
client = AsyncIOMotorClient(uri)
|
131 |
-
database = client.get_database(
|
132 |
-
os.environ.get(
|
133 |
-
"MONGO_DATABASE",
|
134 |
-
config.get("mongodb", "database", fallback="LightRAG"),
|
135 |
-
)
|
136 |
-
)
|
137 |
|
|
|
138 |
self._collection_name = self.namespace
|
139 |
-
self._data = database.get_collection(self._collection_name)
|
140 |
|
141 |
-
|
|
|
|
|
|
|
|
|
142 |
|
143 |
-
|
144 |
-
|
|
|
|
|
|
|
145 |
|
146 |
async def get_by_id(self, id: str) -> Union[dict[str, Any], None]:
|
147 |
return await self._data.find_one({"_id": id})
|
@@ -202,36 +232,33 @@ class MongoDocStatusStorage(DocStatusStorage):
|
|
202 |
@dataclass
|
203 |
class MongoGraphStorage(BaseGraphStorage):
|
204 |
"""
|
205 |
-
A concrete implementation using MongoDB
|
206 |
"""
|
207 |
|
|
|
|
|
|
|
208 |
def __init__(self, namespace, global_config, embedding_func):
|
209 |
super().__init__(
|
210 |
namespace=namespace,
|
211 |
global_config=global_config,
|
212 |
embedding_func=embedding_func,
|
213 |
)
|
214 |
-
uri = os.environ.get(
|
215 |
-
"MONGO_URI",
|
216 |
-
config.get(
|
217 |
-
"mongodb", "uri", fallback="mongodb://root:root@localhost:27017/"
|
218 |
-
),
|
219 |
-
)
|
220 |
-
client = AsyncIOMotorClient(uri)
|
221 |
-
database = client.get_database(
|
222 |
-
os.environ.get(
|
223 |
-
"MONGO_DATABASE",
|
224 |
-
config.get("mongodb", "database", fallback="LightRAG"),
|
225 |
-
)
|
226 |
-
)
|
227 |
-
|
228 |
self._collection_name = self.namespace
|
229 |
-
self.collection = database.get_collection(self._collection_name)
|
230 |
|
231 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
232 |
|
233 |
-
|
234 |
-
|
|
|
|
|
|
|
235 |
|
236 |
#
|
237 |
# -------------------------------------------------------------------------
|
@@ -770,6 +797,9 @@ class MongoGraphStorage(BaseGraphStorage):
|
|
770 |
@final
|
771 |
@dataclass
|
772 |
class MongoVectorDBStorage(BaseVectorStorage):
|
|
|
|
|
|
|
773 |
def __post_init__(self):
|
774 |
kwargs = self.global_config.get("vector_db_storage_cls_kwargs", {})
|
775 |
cosine_threshold = kwargs.get("cosine_better_than_threshold")
|
@@ -778,41 +808,36 @@ class MongoVectorDBStorage(BaseVectorStorage):
|
|
778 |
"cosine_better_than_threshold must be specified in vector_db_storage_cls_kwargs"
|
779 |
)
|
780 |
self.cosine_better_than_threshold = cosine_threshold
|
781 |
-
|
782 |
-
uri = os.environ.get(
|
783 |
-
"MONGO_URI",
|
784 |
-
config.get(
|
785 |
-
"mongodb", "uri", fallback="mongodb://root:root@localhost:27017/"
|
786 |
-
),
|
787 |
-
)
|
788 |
-
client = AsyncIOMotorClient(uri)
|
789 |
-
database = client.get_database(
|
790 |
-
os.environ.get(
|
791 |
-
"MONGO_DATABASE",
|
792 |
-
config.get("mongodb", "database", fallback="LightRAG"),
|
793 |
-
)
|
794 |
-
)
|
795 |
-
|
796 |
self._collection_name = self.namespace
|
797 |
-
self._data = database.get_collection(self._collection_name)
|
798 |
self._max_batch_size = self.global_config["embedding_batch_num"]
|
799 |
|
800 |
-
|
|
|
|
|
|
|
801 |
|
802 |
-
|
803 |
-
|
804 |
|
805 |
-
|
806 |
-
self.create_vector_index(uri, database.name, self._collection_name)
|
807 |
|
808 |
-
def
|
809 |
-
|
810 |
-
|
811 |
-
|
812 |
-
self.
|
813 |
-
)
|
814 |
|
|
|
|
|
815 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
816 |
search_index_model = SearchIndexModel(
|
817 |
definition={
|
818 |
"fields": [
|
@@ -824,11 +849,11 @@ class MongoVectorDBStorage(BaseVectorStorage):
|
|
824 |
}
|
825 |
]
|
826 |
},
|
827 |
-
name=
|
828 |
type="vectorSearch",
|
829 |
)
|
830 |
|
831 |
-
|
832 |
logger.info("Vector index created successfully.")
|
833 |
|
834 |
except PyMongoError as _:
|
@@ -913,15 +938,13 @@ class MongoVectorDBStorage(BaseVectorStorage):
|
|
913 |
raise NotImplementedError
|
914 |
|
915 |
|
916 |
-
def
|
917 |
-
|
918 |
-
client = MongoClient(uri)
|
919 |
-
database = client.get_database(database_name)
|
920 |
-
|
921 |
-
collection_names = database.list_collection_names()
|
922 |
|
923 |
if collection_name not in collection_names:
|
924 |
-
|
925 |
logger.info(f"Created collection: {collection_name}")
|
|
|
926 |
else:
|
927 |
logger.debug(f"Collection '{collection_name}' already exists.")
|
|
|
|
1 |
import os
|
2 |
+
from dataclasses import dataclass, field
|
3 |
import numpy as np
|
4 |
import configparser
|
5 |
import asyncio
|
|
|
26 |
pm.install("motor")
|
27 |
|
28 |
try:
|
29 |
+
from motor.motor_asyncio import (
|
30 |
+
AsyncIOMotorClient,
|
31 |
+
AsyncIOMotorDatabase,
|
32 |
+
AsyncIOMotorCollection,
|
33 |
+
)
|
34 |
from pymongo.operations import SearchIndexModel
|
35 |
from pymongo.errors import PyMongoError
|
36 |
except ImportError as e:
|
|
|
42 |
config.read("config.ini", "utf-8")
|
43 |
|
44 |
|
45 |
+
class ClientManager:
|
46 |
+
_instances = {"db": None, "ref_count": 0}
|
47 |
+
_lock = asyncio.Lock()
|
48 |
+
|
49 |
+
@classmethod
|
50 |
+
async def get_client(cls) -> AsyncIOMotorDatabase:
|
51 |
+
async with cls._lock:
|
52 |
+
if cls._instances["db"] is None:
|
53 |
+
uri = os.environ.get(
|
54 |
+
"MONGO_URI",
|
55 |
+
config.get(
|
56 |
+
"mongodb",
|
57 |
+
"uri",
|
58 |
+
fallback="mongodb://root:root@localhost:27017/",
|
59 |
+
),
|
60 |
+
)
|
61 |
+
database_name = os.environ.get(
|
62 |
+
"MONGO_DATABASE",
|
63 |
+
config.get("mongodb", "database", fallback="LightRAG"),
|
64 |
+
)
|
65 |
+
client = AsyncIOMotorClient(uri)
|
66 |
+
db = client.get_database(database_name)
|
67 |
+
cls._instances["db"] = db
|
68 |
+
cls._instances["ref_count"] = 0
|
69 |
+
cls._instances["ref_count"] += 1
|
70 |
+
return cls._instances["db"]
|
71 |
+
|
72 |
+
@classmethod
|
73 |
+
async def release_client(cls, db: AsyncIOMotorDatabase):
|
74 |
+
async with cls._lock:
|
75 |
+
if db is not None:
|
76 |
+
if db is cls._instances["db"]:
|
77 |
+
cls._instances["ref_count"] -= 1
|
78 |
+
if cls._instances["ref_count"] == 0:
|
79 |
+
cls._instances["db"] = None
|
80 |
+
|
81 |
+
|
82 |
@final
|
83 |
@dataclass
|
84 |
class MongoKVStorage(BaseKVStorage):
|
85 |
+
db: AsyncIOMotorDatabase = field(default=None)
|
86 |
+
_data: AsyncIOMotorCollection = field(default=None)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
+
def __post_init__(self):
|
89 |
self._collection_name = self.namespace
|
90 |
|
91 |
+
async def initialize(self):
|
92 |
+
if self.db is None:
|
93 |
+
self.db = await ClientManager.get_client()
|
94 |
+
self._data = await get_or_create_collection(self.db, self._collection_name)
|
95 |
+
logger.debug(f"Use MongoDB as KV {self._collection_name}")
|
96 |
|
97 |
+
async def finalize(self):
|
98 |
+
if self.db is not None:
|
99 |
+
await ClientManager.release_client(self.db)
|
100 |
+
self.db = None
|
101 |
+
self._data = None
|
102 |
|
103 |
async def get_by_id(self, id: str) -> dict[str, Any] | None:
|
104 |
return await self._data.find_one({"_id": id})
|
|
|
155 |
@final
|
156 |
@dataclass
|
157 |
class MongoDocStatusStorage(DocStatusStorage):
|
158 |
+
db: AsyncIOMotorDatabase = field(default=None)
|
159 |
+
_data: AsyncIOMotorCollection = field(default=None)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
|
161 |
+
def __post_init__(self):
|
162 |
self._collection_name = self.namespace
|
|
|
163 |
|
164 |
+
async def initialize(self):
|
165 |
+
if self.db is None:
|
166 |
+
self.db = await ClientManager.get_client()
|
167 |
+
self._data = await get_or_create_collection(self.db, self._collection_name)
|
168 |
+
logger.debug(f"Use MongoDB as DocStatus {self._collection_name}")
|
169 |
|
170 |
+
async def finalize(self):
|
171 |
+
if self.db is not None:
|
172 |
+
await ClientManager.release_client(self.db)
|
173 |
+
self.db = None
|
174 |
+
self._data = None
|
175 |
|
176 |
async def get_by_id(self, id: str) -> Union[dict[str, Any], None]:
|
177 |
return await self._data.find_one({"_id": id})
|
|
|
232 |
@dataclass
|
233 |
class MongoGraphStorage(BaseGraphStorage):
|
234 |
"""
|
235 |
+
A concrete implementation using MongoDB's $graphLookup to demonstrate multi-hop queries.
|
236 |
"""
|
237 |
|
238 |
+
db: AsyncIOMotorDatabase = field(default=None)
|
239 |
+
collection: AsyncIOMotorCollection = field(default=None)
|
240 |
+
|
241 |
def __init__(self, namespace, global_config, embedding_func):
|
242 |
super().__init__(
|
243 |
namespace=namespace,
|
244 |
global_config=global_config,
|
245 |
embedding_func=embedding_func,
|
246 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
247 |
self._collection_name = self.namespace
|
|
|
248 |
|
249 |
+
async def initialize(self):
|
250 |
+
if self.db is None:
|
251 |
+
self.db = await ClientManager.get_client()
|
252 |
+
self.collection = await get_or_create_collection(
|
253 |
+
self.db, self._collection_name
|
254 |
+
)
|
255 |
+
logger.debug(f"Use MongoDB as KG {self._collection_name}")
|
256 |
|
257 |
+
async def finalize(self):
|
258 |
+
if self.db is not None:
|
259 |
+
await ClientManager.release_client(self.db)
|
260 |
+
self.db = None
|
261 |
+
self.collection = None
|
262 |
|
263 |
#
|
264 |
# -------------------------------------------------------------------------
|
|
|
797 |
@final
|
798 |
@dataclass
|
799 |
class MongoVectorDBStorage(BaseVectorStorage):
|
800 |
+
db: AsyncIOMotorDatabase = field(default=None)
|
801 |
+
_data: AsyncIOMotorCollection = field(default=None)
|
802 |
+
|
803 |
def __post_init__(self):
|
804 |
kwargs = self.global_config.get("vector_db_storage_cls_kwargs", {})
|
805 |
cosine_threshold = kwargs.get("cosine_better_than_threshold")
|
|
|
808 |
"cosine_better_than_threshold must be specified in vector_db_storage_cls_kwargs"
|
809 |
)
|
810 |
self.cosine_better_than_threshold = cosine_threshold
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
811 |
self._collection_name = self.namespace
|
|
|
812 |
self._max_batch_size = self.global_config["embedding_batch_num"]
|
813 |
|
814 |
+
async def initialize(self):
|
815 |
+
if self.db is None:
|
816 |
+
self.db = await ClientManager.get_client()
|
817 |
+
self._data = await get_or_create_collection(self.db, self._collection_name)
|
818 |
|
819 |
+
# Ensure vector index exists
|
820 |
+
await self.create_vector_index_if_not_exists()
|
821 |
|
822 |
+
logger.debug(f"Use MongoDB as VDB {self._collection_name}")
|
|
|
823 |
|
824 |
+
async def finalize(self):
|
825 |
+
if self.db is not None:
|
826 |
+
await ClientManager.release_client(self.db)
|
827 |
+
self.db = None
|
828 |
+
self._data = None
|
|
|
829 |
|
830 |
+
async def create_vector_index_if_not_exists(self):
|
831 |
+
"""Creates an Atlas Vector Search index."""
|
832 |
try:
|
833 |
+
index_name = "vector_knn_index"
|
834 |
+
|
835 |
+
indexes = await self._data.list_search_indexes().to_list(length=None)
|
836 |
+
for index in indexes:
|
837 |
+
if index["name"] == index_name:
|
838 |
+
logger.debug("vector index already exist")
|
839 |
+
return
|
840 |
+
|
841 |
search_index_model = SearchIndexModel(
|
842 |
definition={
|
843 |
"fields": [
|
|
|
849 |
}
|
850 |
]
|
851 |
},
|
852 |
+
name=index_name,
|
853 |
type="vectorSearch",
|
854 |
)
|
855 |
|
856 |
+
await self._data.create_search_index(search_index_model)
|
857 |
logger.info("Vector index created successfully.")
|
858 |
|
859 |
except PyMongoError as _:
|
|
|
938 |
raise NotImplementedError
|
939 |
|
940 |
|
941 |
+
async def get_or_create_collection(db: AsyncIOMotorDatabase, collection_name: str):
|
942 |
+
collection_names = await db.list_collection_names()
|
|
|
|
|
|
|
|
|
943 |
|
944 |
if collection_name not in collection_names:
|
945 |
+
collection = await db.create_collection(collection_name)
|
946 |
logger.info(f"Created collection: {collection_name}")
|
947 |
+
return collection
|
948 |
else:
|
949 |
logger.debug(f"Collection '{collection_name}' already exists.")
|
950 |
+
return db.get_collection(collection_name)
|
lightrag/kg/oracle_impl.py
CHANGED
@@ -2,11 +2,11 @@ import array
|
|
2 |
import asyncio
|
3 |
|
4 |
# import html
|
5 |
-
|
6 |
-
from dataclasses import dataclass
|
7 |
from typing import Any, Union, final
|
8 |
-
|
9 |
import numpy as np
|
|
|
10 |
|
11 |
from lightrag.types import KnowledgeGraph
|
12 |
|
@@ -177,17 +177,91 @@ class OracleDB:
|
|
177 |
raise
|
178 |
|
179 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
180 |
@final
|
181 |
@dataclass
|
182 |
class OracleKVStorage(BaseKVStorage):
|
183 |
-
|
184 |
-
# db: OracleDB
|
185 |
meta_fields = None
|
186 |
|
187 |
def __post_init__(self):
|
188 |
self._data = {}
|
189 |
self._max_batch_size = self.global_config.get("embedding_batch_num", 10)
|
190 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
191 |
################ QUERY METHODS ################
|
192 |
|
193 |
async def get_by_id(self, id: str) -> dict[str, Any] | None:
|
@@ -324,6 +398,8 @@ class OracleKVStorage(BaseKVStorage):
|
|
324 |
@final
|
325 |
@dataclass
|
326 |
class OracleVectorDBStorage(BaseVectorStorage):
|
|
|
|
|
327 |
def __post_init__(self):
|
328 |
config = self.global_config.get("vector_db_storage_cls_kwargs", {})
|
329 |
cosine_threshold = config.get("cosine_better_than_threshold")
|
@@ -333,6 +409,15 @@ class OracleVectorDBStorage(BaseVectorStorage):
|
|
333 |
)
|
334 |
self.cosine_better_than_threshold = cosine_threshold
|
335 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
336 |
#################### query method ###############
|
337 |
async def query(self, query: str, top_k: int) -> list[dict[str, Any]]:
|
338 |
embeddings = await self.embedding_func([query])
|
@@ -369,9 +454,20 @@ class OracleVectorDBStorage(BaseVectorStorage):
|
|
369 |
@final
|
370 |
@dataclass
|
371 |
class OracleGraphStorage(BaseGraphStorage):
|
|
|
|
|
372 |
def __post_init__(self):
|
373 |
self._max_batch_size = self.global_config.get("embedding_batch_num", 10)
|
374 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
375 |
#################### insert method ################
|
376 |
|
377 |
async def upsert_node(self, node_id: str, node_data: dict[str, str]) -> None:
|
|
|
2 |
import asyncio
|
3 |
|
4 |
# import html
|
5 |
+
import os
|
6 |
+
from dataclasses import dataclass, field
|
7 |
from typing import Any, Union, final
|
|
|
8 |
import numpy as np
|
9 |
+
import configparser
|
10 |
|
11 |
from lightrag.types import KnowledgeGraph
|
12 |
|
|
|
177 |
raise
|
178 |
|
179 |
|
180 |
+
class ClientManager:
|
181 |
+
_instances = {"db": None, "ref_count": 0}
|
182 |
+
_lock = asyncio.Lock()
|
183 |
+
|
184 |
+
@staticmethod
|
185 |
+
def get_config():
|
186 |
+
config = configparser.ConfigParser()
|
187 |
+
config.read("config.ini", "utf-8")
|
188 |
+
|
189 |
+
return {
|
190 |
+
"user": os.environ.get(
|
191 |
+
"ORACLE_USER",
|
192 |
+
config.get("oracle", "user", fallback=None),
|
193 |
+
),
|
194 |
+
"password": os.environ.get(
|
195 |
+
"ORACLE_PASSWORD",
|
196 |
+
config.get("oracle", "password", fallback=None),
|
197 |
+
),
|
198 |
+
"dsn": os.environ.get(
|
199 |
+
"ORACLE_DSN",
|
200 |
+
config.get("oracle", "dsn", fallback=None),
|
201 |
+
),
|
202 |
+
"config_dir": os.environ.get(
|
203 |
+
"ORACLE_CONFIG_DIR",
|
204 |
+
config.get("oracle", "config_dir", fallback=None),
|
205 |
+
),
|
206 |
+
"wallet_location": os.environ.get(
|
207 |
+
"ORACLE_WALLET_LOCATION",
|
208 |
+
config.get("oracle", "wallet_location", fallback=None),
|
209 |
+
),
|
210 |
+
"wallet_password": os.environ.get(
|
211 |
+
"ORACLE_WALLET_PASSWORD",
|
212 |
+
config.get("oracle", "wallet_password", fallback=None),
|
213 |
+
),
|
214 |
+
"workspace": os.environ.get(
|
215 |
+
"ORACLE_WORKSPACE",
|
216 |
+
config.get("oracle", "workspace", fallback="default"),
|
217 |
+
),
|
218 |
+
}
|
219 |
+
|
220 |
+
@classmethod
|
221 |
+
async def get_client(cls) -> OracleDB:
|
222 |
+
async with cls._lock:
|
223 |
+
if cls._instances["db"] is None:
|
224 |
+
config = ClientManager.get_config()
|
225 |
+
db = OracleDB(config)
|
226 |
+
await db.check_tables()
|
227 |
+
cls._instances["db"] = db
|
228 |
+
cls._instances["ref_count"] = 0
|
229 |
+
cls._instances["ref_count"] += 1
|
230 |
+
return cls._instances["db"]
|
231 |
+
|
232 |
+
@classmethod
|
233 |
+
async def release_client(cls, db: OracleDB):
|
234 |
+
async with cls._lock:
|
235 |
+
if db is not None:
|
236 |
+
if db is cls._instances["db"]:
|
237 |
+
cls._instances["ref_count"] -= 1
|
238 |
+
if cls._instances["ref_count"] == 0:
|
239 |
+
await db.pool.close()
|
240 |
+
logger.info("Closed OracleDB database connection pool")
|
241 |
+
cls._instances["db"] = None
|
242 |
+
else:
|
243 |
+
await db.pool.close()
|
244 |
+
|
245 |
+
|
246 |
@final
|
247 |
@dataclass
|
248 |
class OracleKVStorage(BaseKVStorage):
|
249 |
+
db: OracleDB = field(default=None)
|
|
|
250 |
meta_fields = None
|
251 |
|
252 |
def __post_init__(self):
|
253 |
self._data = {}
|
254 |
self._max_batch_size = self.global_config.get("embedding_batch_num", 10)
|
255 |
|
256 |
+
async def initialize(self):
|
257 |
+
if self.db is None:
|
258 |
+
self.db = await ClientManager.get_client()
|
259 |
+
|
260 |
+
async def finalize(self):
|
261 |
+
if self.db is not None:
|
262 |
+
await ClientManager.release_client(self.db)
|
263 |
+
self.db = None
|
264 |
+
|
265 |
################ QUERY METHODS ################
|
266 |
|
267 |
async def get_by_id(self, id: str) -> dict[str, Any] | None:
|
|
|
398 |
@final
|
399 |
@dataclass
|
400 |
class OracleVectorDBStorage(BaseVectorStorage):
|
401 |
+
db: OracleDB = field(default=None)
|
402 |
+
|
403 |
def __post_init__(self):
|
404 |
config = self.global_config.get("vector_db_storage_cls_kwargs", {})
|
405 |
cosine_threshold = config.get("cosine_better_than_threshold")
|
|
|
409 |
)
|
410 |
self.cosine_better_than_threshold = cosine_threshold
|
411 |
|
412 |
+
async def initialize(self):
|
413 |
+
if self.db is None:
|
414 |
+
self.db = await ClientManager.get_client()
|
415 |
+
|
416 |
+
async def finalize(self):
|
417 |
+
if self.db is not None:
|
418 |
+
await ClientManager.release_client(self.db)
|
419 |
+
self.db = None
|
420 |
+
|
421 |
#################### query method ###############
|
422 |
async def query(self, query: str, top_k: int) -> list[dict[str, Any]]:
|
423 |
embeddings = await self.embedding_func([query])
|
|
|
454 |
@final
|
455 |
@dataclass
|
456 |
class OracleGraphStorage(BaseGraphStorage):
|
457 |
+
db: OracleDB = field(default=None)
|
458 |
+
|
459 |
def __post_init__(self):
|
460 |
self._max_batch_size = self.global_config.get("embedding_batch_num", 10)
|
461 |
|
462 |
+
async def initialize(self):
|
463 |
+
if self.db is None:
|
464 |
+
self.db = await ClientManager.get_client()
|
465 |
+
|
466 |
+
async def finalize(self):
|
467 |
+
if self.db is not None:
|
468 |
+
await ClientManager.release_client(self.db)
|
469 |
+
self.db = None
|
470 |
+
|
471 |
#################### insert method ################
|
472 |
|
473 |
async def upsert_node(self, node_id: str, node_data: dict[str, str]) -> None:
|
lightrag/kg/postgres_impl.py
CHANGED
@@ -3,10 +3,10 @@ import inspect
|
|
3 |
import json
|
4 |
import os
|
5 |
import time
|
6 |
-
from dataclasses import dataclass
|
7 |
from typing import Any, Dict, List, Union, final
|
8 |
-
|
9 |
import numpy as np
|
|
|
10 |
|
11 |
from lightrag.types import KnowledgeGraph
|
12 |
|
@@ -181,15 +181,84 @@ class PostgreSQLDB:
|
|
181 |
pass
|
182 |
|
183 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
@final
|
185 |
@dataclass
|
186 |
class PGKVStorage(BaseKVStorage):
|
187 |
-
|
188 |
-
# db: PostgreSQLDB
|
189 |
|
190 |
def __post_init__(self):
|
191 |
self._max_batch_size = self.global_config["embedding_batch_num"]
|
192 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
193 |
################ QUERY METHODS ################
|
194 |
|
195 |
async def get_by_id(self, id: str) -> dict[str, Any] | None:
|
@@ -308,6 +377,8 @@ class PGKVStorage(BaseKVStorage):
|
|
308 |
@final
|
309 |
@dataclass
|
310 |
class PGVectorStorage(BaseVectorStorage):
|
|
|
|
|
311 |
def __post_init__(self):
|
312 |
self._max_batch_size = self.global_config["embedding_batch_num"]
|
313 |
config = self.global_config.get("vector_db_storage_cls_kwargs", {})
|
@@ -318,6 +389,15 @@ class PGVectorStorage(BaseVectorStorage):
|
|
318 |
)
|
319 |
self.cosine_better_than_threshold = cosine_threshold
|
320 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
321 |
def _upsert_chunks(self, item: dict):
|
322 |
try:
|
323 |
upsert_sql = SQL_TEMPLATES["upsert_chunk"]
|
@@ -426,6 +506,17 @@ class PGVectorStorage(BaseVectorStorage):
|
|
426 |
@final
|
427 |
@dataclass
|
428 |
class PGDocStatusStorage(DocStatusStorage):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
429 |
async def filter_keys(self, keys: set[str]) -> set[str]:
|
430 |
"""Filter out duplicated content"""
|
431 |
sql = SQL_TEMPLATES["filter_keys"].format(
|
@@ -565,6 +656,8 @@ class PGGraphQueryException(Exception):
|
|
565 |
@final
|
566 |
@dataclass
|
567 |
class PGGraphStorage(BaseGraphStorage):
|
|
|
|
|
568 |
@staticmethod
|
569 |
def load_nx_graph(file_name):
|
570 |
print("no preloading of graph with AGE in production")
|
@@ -575,6 +668,15 @@ class PGGraphStorage(BaseGraphStorage):
|
|
575 |
"node2vec": self._node2vec_embed,
|
576 |
}
|
577 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
578 |
async def index_done_callback(self) -> None:
|
579 |
# PG handles persistence automatically
|
580 |
pass
|
|
|
3 |
import json
|
4 |
import os
|
5 |
import time
|
6 |
+
from dataclasses import dataclass, field
|
7 |
from typing import Any, Dict, List, Union, final
|
|
|
8 |
import numpy as np
|
9 |
+
import configparser
|
10 |
|
11 |
from lightrag.types import KnowledgeGraph
|
12 |
|
|
|
181 |
pass
|
182 |
|
183 |
|
184 |
+
class ClientManager:
|
185 |
+
_instances = {"db": None, "ref_count": 0}
|
186 |
+
_lock = asyncio.Lock()
|
187 |
+
|
188 |
+
@staticmethod
|
189 |
+
def get_config():
|
190 |
+
config = configparser.ConfigParser()
|
191 |
+
config.read("config.ini", "utf-8")
|
192 |
+
|
193 |
+
return {
|
194 |
+
"host": os.environ.get(
|
195 |
+
"POSTGRES_HOST",
|
196 |
+
config.get("postgres", "host", fallback="localhost"),
|
197 |
+
),
|
198 |
+
"port": os.environ.get(
|
199 |
+
"POSTGRES_PORT", config.get("postgres", "port", fallback=5432)
|
200 |
+
),
|
201 |
+
"user": os.environ.get(
|
202 |
+
"POSTGRES_USER", config.get("postgres", "user", fallback=None)
|
203 |
+
),
|
204 |
+
"password": os.environ.get(
|
205 |
+
"POSTGRES_PASSWORD",
|
206 |
+
config.get("postgres", "password", fallback=None),
|
207 |
+
),
|
208 |
+
"database": os.environ.get(
|
209 |
+
"POSTGRES_DATABASE",
|
210 |
+
config.get("postgres", "database", fallback=None),
|
211 |
+
),
|
212 |
+
"workspace": os.environ.get(
|
213 |
+
"POSTGRES_WORKSPACE",
|
214 |
+
config.get("postgres", "workspace", fallback="default"),
|
215 |
+
),
|
216 |
+
}
|
217 |
+
|
218 |
+
@classmethod
|
219 |
+
async def get_client(cls) -> PostgreSQLDB:
|
220 |
+
async with cls._lock:
|
221 |
+
if cls._instances["db"] is None:
|
222 |
+
config = ClientManager.get_config()
|
223 |
+
db = PostgreSQLDB(config)
|
224 |
+
await db.initdb()
|
225 |
+
await db.check_tables()
|
226 |
+
cls._instances["db"] = db
|
227 |
+
cls._instances["ref_count"] = 0
|
228 |
+
cls._instances["ref_count"] += 1
|
229 |
+
return cls._instances["db"]
|
230 |
+
|
231 |
+
@classmethod
|
232 |
+
async def release_client(cls, db: PostgreSQLDB):
|
233 |
+
async with cls._lock:
|
234 |
+
if db is not None:
|
235 |
+
if db is cls._instances["db"]:
|
236 |
+
cls._instances["ref_count"] -= 1
|
237 |
+
if cls._instances["ref_count"] == 0:
|
238 |
+
await db.pool.close()
|
239 |
+
logger.info("Closed PostgreSQL database connection pool")
|
240 |
+
cls._instances["db"] = None
|
241 |
+
else:
|
242 |
+
await db.pool.close()
|
243 |
+
|
244 |
+
|
245 |
@final
|
246 |
@dataclass
|
247 |
class PGKVStorage(BaseKVStorage):
|
248 |
+
db: PostgreSQLDB = field(default=None)
|
|
|
249 |
|
250 |
def __post_init__(self):
|
251 |
self._max_batch_size = self.global_config["embedding_batch_num"]
|
252 |
|
253 |
+
async def initialize(self):
|
254 |
+
if self.db is None:
|
255 |
+
self.db = await ClientManager.get_client()
|
256 |
+
|
257 |
+
async def finalize(self):
|
258 |
+
if self.db is not None:
|
259 |
+
await ClientManager.release_client(self.db)
|
260 |
+
self.db = None
|
261 |
+
|
262 |
################ QUERY METHODS ################
|
263 |
|
264 |
async def get_by_id(self, id: str) -> dict[str, Any] | None:
|
|
|
377 |
@final
|
378 |
@dataclass
|
379 |
class PGVectorStorage(BaseVectorStorage):
|
380 |
+
db: PostgreSQLDB = field(default=None)
|
381 |
+
|
382 |
def __post_init__(self):
|
383 |
self._max_batch_size = self.global_config["embedding_batch_num"]
|
384 |
config = self.global_config.get("vector_db_storage_cls_kwargs", {})
|
|
|
389 |
)
|
390 |
self.cosine_better_than_threshold = cosine_threshold
|
391 |
|
392 |
+
async def initialize(self):
|
393 |
+
if self.db is None:
|
394 |
+
self.db = await ClientManager.get_client()
|
395 |
+
|
396 |
+
async def finalize(self):
|
397 |
+
if self.db is not None:
|
398 |
+
await ClientManager.release_client(self.db)
|
399 |
+
self.db = None
|
400 |
+
|
401 |
def _upsert_chunks(self, item: dict):
|
402 |
try:
|
403 |
upsert_sql = SQL_TEMPLATES["upsert_chunk"]
|
|
|
506 |
@final
|
507 |
@dataclass
|
508 |
class PGDocStatusStorage(DocStatusStorage):
|
509 |
+
db: PostgreSQLDB = field(default=None)
|
510 |
+
|
511 |
+
async def initialize(self):
|
512 |
+
if self.db is None:
|
513 |
+
self.db = await ClientManager.get_client()
|
514 |
+
|
515 |
+
async def finalize(self):
|
516 |
+
if self.db is not None:
|
517 |
+
await ClientManager.release_client(self.db)
|
518 |
+
self.db = None
|
519 |
+
|
520 |
async def filter_keys(self, keys: set[str]) -> set[str]:
|
521 |
"""Filter out duplicated content"""
|
522 |
sql = SQL_TEMPLATES["filter_keys"].format(
|
|
|
656 |
@final
|
657 |
@dataclass
|
658 |
class PGGraphStorage(BaseGraphStorage):
|
659 |
+
db: PostgreSQLDB = field(default=None)
|
660 |
+
|
661 |
@staticmethod
|
662 |
def load_nx_graph(file_name):
|
663 |
print("no preloading of graph with AGE in production")
|
|
|
668 |
"node2vec": self._node2vec_embed,
|
669 |
}
|
670 |
|
671 |
+
async def initialize(self):
|
672 |
+
if self.db is None:
|
673 |
+
self.db = await ClientManager.get_client()
|
674 |
+
|
675 |
+
async def finalize(self):
|
676 |
+
if self.db is not None:
|
677 |
+
await ClientManager.release_client(self.db)
|
678 |
+
self.db = None
|
679 |
+
|
680 |
async def index_done_callback(self) -> None:
|
681 |
# PG handles persistence automatically
|
682 |
pass
|
lightrag/kg/tidb_impl.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import asyncio
|
2 |
import os
|
3 |
-
from dataclasses import dataclass
|
4 |
from typing import Any, Union, final
|
5 |
|
6 |
import numpy as np
|
@@ -13,6 +13,7 @@ from ..namespace import NameSpace, is_namespace
|
|
13 |
from ..utils import logger
|
14 |
|
15 |
import pipmaster as pm
|
|
|
16 |
|
17 |
if not pm.is_installed("pymysql"):
|
18 |
pm.install("pymysql")
|
@@ -104,16 +105,81 @@ class TiDB:
|
|
104 |
raise
|
105 |
|
106 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
@final
|
108 |
@dataclass
|
109 |
class TiDBKVStorage(BaseKVStorage):
|
110 |
-
|
111 |
-
# db: TiDB
|
112 |
|
113 |
def __post_init__(self):
|
114 |
self._data = {}
|
115 |
self._max_batch_size = self.global_config["embedding_batch_num"]
|
116 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
################ QUERY METHODS ################
|
118 |
|
119 |
async def get_by_id(self, id: str) -> dict[str, Any] | None:
|
@@ -184,7 +250,7 @@ class TiDBKVStorage(BaseKVStorage):
|
|
184 |
"tokens": item["tokens"],
|
185 |
"chunk_order_index": item["chunk_order_index"],
|
186 |
"full_doc_id": item["full_doc_id"],
|
187 |
-
"content_vector": f
|
188 |
"workspace": self.db.workspace,
|
189 |
}
|
190 |
)
|
@@ -212,6 +278,8 @@ class TiDBKVStorage(BaseKVStorage):
|
|
212 |
@final
|
213 |
@dataclass
|
214 |
class TiDBVectorDBStorage(BaseVectorStorage):
|
|
|
|
|
215 |
def __post_init__(self):
|
216 |
self._client_file_name = os.path.join(
|
217 |
self.global_config["working_dir"], f"vdb_{self.namespace}.json"
|
@@ -225,6 +293,15 @@ class TiDBVectorDBStorage(BaseVectorStorage):
|
|
225 |
)
|
226 |
self.cosine_better_than_threshold = cosine_threshold
|
227 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
228 |
async def query(self, query: str, top_k: int) -> list[dict[str, Any]]:
|
229 |
"""Search from tidb vector"""
|
230 |
embeddings = await self.embedding_func([query])
|
@@ -282,7 +359,7 @@ class TiDBVectorDBStorage(BaseVectorStorage):
|
|
282 |
"id": item["id"],
|
283 |
"name": item["entity_name"],
|
284 |
"content": item["content"],
|
285 |
-
"content_vector": f
|
286 |
"workspace": self.db.workspace,
|
287 |
}
|
288 |
# update entity_id if node inserted by graph_storage_instance before
|
@@ -304,7 +381,7 @@ class TiDBVectorDBStorage(BaseVectorStorage):
|
|
304 |
"source_name": item["src_id"],
|
305 |
"target_name": item["tgt_id"],
|
306 |
"content": item["content"],
|
307 |
-
"content_vector": f
|
308 |
"workspace": self.db.workspace,
|
309 |
}
|
310 |
# update relation_id if node inserted by graph_storage_instance before
|
@@ -337,12 +414,20 @@ class TiDBVectorDBStorage(BaseVectorStorage):
|
|
337 |
@final
|
338 |
@dataclass
|
339 |
class TiDBGraphStorage(BaseGraphStorage):
|
340 |
-
|
341 |
-
# db: TiDB
|
342 |
|
343 |
def __post_init__(self):
|
344 |
self._max_batch_size = self.global_config["embedding_batch_num"]
|
345 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
346 |
#################### upsert method ################
|
347 |
async def upsert_node(self, node_id: str, node_data: dict[str, str]) -> None:
|
348 |
entity_name = node_id
|
|
|
1 |
import asyncio
|
2 |
import os
|
3 |
+
from dataclasses import dataclass, field
|
4 |
from typing import Any, Union, final
|
5 |
|
6 |
import numpy as np
|
|
|
13 |
from ..utils import logger
|
14 |
|
15 |
import pipmaster as pm
|
16 |
+
import configparser
|
17 |
|
18 |
if not pm.is_installed("pymysql"):
|
19 |
pm.install("pymysql")
|
|
|
105 |
raise
|
106 |
|
107 |
|
108 |
+
class ClientManager:
|
109 |
+
_instances = {"db": None, "ref_count": 0}
|
110 |
+
_lock = asyncio.Lock()
|
111 |
+
|
112 |
+
@staticmethod
|
113 |
+
def get_config():
|
114 |
+
config = configparser.ConfigParser()
|
115 |
+
config.read("config.ini", "utf-8")
|
116 |
+
|
117 |
+
return {
|
118 |
+
"host": os.environ.get(
|
119 |
+
"TIDB_HOST",
|
120 |
+
config.get("tidb", "host", fallback="localhost"),
|
121 |
+
),
|
122 |
+
"port": os.environ.get(
|
123 |
+
"TIDB_PORT", config.get("tidb", "port", fallback=4000)
|
124 |
+
),
|
125 |
+
"user": os.environ.get(
|
126 |
+
"TIDB_USER",
|
127 |
+
config.get("tidb", "user", fallback=None),
|
128 |
+
),
|
129 |
+
"password": os.environ.get(
|
130 |
+
"TIDB_PASSWORD",
|
131 |
+
config.get("tidb", "password", fallback=None),
|
132 |
+
),
|
133 |
+
"database": os.environ.get(
|
134 |
+
"TIDB_DATABASE",
|
135 |
+
config.get("tidb", "database", fallback=None),
|
136 |
+
),
|
137 |
+
"workspace": os.environ.get(
|
138 |
+
"TIDB_WORKSPACE",
|
139 |
+
config.get("tidb", "workspace", fallback="default"),
|
140 |
+
),
|
141 |
+
}
|
142 |
+
|
143 |
+
@classmethod
|
144 |
+
async def get_client(cls) -> TiDB:
|
145 |
+
async with cls._lock:
|
146 |
+
if cls._instances["db"] is None:
|
147 |
+
config = ClientManager.get_config()
|
148 |
+
db = TiDB(config)
|
149 |
+
await db.check_tables()
|
150 |
+
cls._instances["db"] = db
|
151 |
+
cls._instances["ref_count"] = 0
|
152 |
+
cls._instances["ref_count"] += 1
|
153 |
+
return cls._instances["db"]
|
154 |
+
|
155 |
+
@classmethod
|
156 |
+
async def release_client(cls, db: TiDB):
|
157 |
+
async with cls._lock:
|
158 |
+
if db is not None:
|
159 |
+
if db is cls._instances["db"]:
|
160 |
+
cls._instances["ref_count"] -= 1
|
161 |
+
if cls._instances["ref_count"] == 0:
|
162 |
+
cls._instances["db"] = None
|
163 |
+
|
164 |
+
|
165 |
@final
|
166 |
@dataclass
|
167 |
class TiDBKVStorage(BaseKVStorage):
|
168 |
+
db: TiDB = field(default=None)
|
|
|
169 |
|
170 |
def __post_init__(self):
|
171 |
self._data = {}
|
172 |
self._max_batch_size = self.global_config["embedding_batch_num"]
|
173 |
|
174 |
+
async def initialize(self):
|
175 |
+
if self.db is None:
|
176 |
+
self.db = await ClientManager.get_client()
|
177 |
+
|
178 |
+
async def finalize(self):
|
179 |
+
if self.db is not None:
|
180 |
+
await ClientManager.release_client(self.db)
|
181 |
+
self.db = None
|
182 |
+
|
183 |
################ QUERY METHODS ################
|
184 |
|
185 |
async def get_by_id(self, id: str) -> dict[str, Any] | None:
|
|
|
250 |
"tokens": item["tokens"],
|
251 |
"chunk_order_index": item["chunk_order_index"],
|
252 |
"full_doc_id": item["full_doc_id"],
|
253 |
+
"content_vector": f"{item['__vector__'].tolist()}",
|
254 |
"workspace": self.db.workspace,
|
255 |
}
|
256 |
)
|
|
|
278 |
@final
|
279 |
@dataclass
|
280 |
class TiDBVectorDBStorage(BaseVectorStorage):
|
281 |
+
db: TiDB = field(default=None)
|
282 |
+
|
283 |
def __post_init__(self):
|
284 |
self._client_file_name = os.path.join(
|
285 |
self.global_config["working_dir"], f"vdb_{self.namespace}.json"
|
|
|
293 |
)
|
294 |
self.cosine_better_than_threshold = cosine_threshold
|
295 |
|
296 |
+
async def initialize(self):
|
297 |
+
if self.db is None:
|
298 |
+
self.db = await ClientManager.get_client()
|
299 |
+
|
300 |
+
async def finalize(self):
|
301 |
+
if self.db is not None:
|
302 |
+
await ClientManager.release_client(self.db)
|
303 |
+
self.db = None
|
304 |
+
|
305 |
async def query(self, query: str, top_k: int) -> list[dict[str, Any]]:
|
306 |
"""Search from tidb vector"""
|
307 |
embeddings = await self.embedding_func([query])
|
|
|
359 |
"id": item["id"],
|
360 |
"name": item["entity_name"],
|
361 |
"content": item["content"],
|
362 |
+
"content_vector": f"{item['content_vector'].tolist()}",
|
363 |
"workspace": self.db.workspace,
|
364 |
}
|
365 |
# update entity_id if node inserted by graph_storage_instance before
|
|
|
381 |
"source_name": item["src_id"],
|
382 |
"target_name": item["tgt_id"],
|
383 |
"content": item["content"],
|
384 |
+
"content_vector": f"{item['content_vector'].tolist()}",
|
385 |
"workspace": self.db.workspace,
|
386 |
}
|
387 |
# update relation_id if node inserted by graph_storage_instance before
|
|
|
414 |
@final
|
415 |
@dataclass
|
416 |
class TiDBGraphStorage(BaseGraphStorage):
|
417 |
+
db: TiDB = field(default=None)
|
|
|
418 |
|
419 |
def __post_init__(self):
|
420 |
self._max_batch_size = self.global_config["embedding_batch_num"]
|
421 |
|
422 |
+
async def initialize(self):
|
423 |
+
if self.db is None:
|
424 |
+
self.db = await ClientManager.get_client()
|
425 |
+
|
426 |
+
async def finalize(self):
|
427 |
+
if self.db is not None:
|
428 |
+
await ClientManager.release_client(self.db)
|
429 |
+
self.db = None
|
430 |
+
|
431 |
#################### upsert method ################
|
432 |
async def upsert_node(self, node_id: str, node_data: dict[str, str]) -> None:
|
433 |
entity_name = node_id
|
lightrag/lightrag.py
CHANGED
@@ -17,6 +17,7 @@ from .base import (
|
|
17 |
DocStatusStorage,
|
18 |
QueryParam,
|
19 |
StorageNameSpace,
|
|
|
20 |
)
|
21 |
from .namespace import NameSpace, make_namespace
|
22 |
from .operate import (
|
@@ -348,6 +349,10 @@ class LightRAG:
|
|
348 |
# Extensions
|
349 |
addon_params: dict[str, Any] = field(default_factory=dict)
|
350 |
|
|
|
|
|
|
|
|
|
351 |
"""Dictionary for additional parameters and extensions."""
|
352 |
convert_response_to_json_func: Callable[[str], dict[str, Any]] = (
|
353 |
convert_response_to_json
|
@@ -440,7 +445,10 @@ class LightRAG:
|
|
440 |
**self.vector_db_storage_cls_kwargs,
|
441 |
}
|
442 |
|
443 |
-
#
|
|
|
|
|
|
|
444 |
global_config = asdict(self)
|
445 |
_print_config = ",\n ".join([f"{k} = {v}" for k, v in global_config.items()])
|
446 |
logger.debug(f"LightRAG init with param:\n {_print_config}\n")
|
@@ -547,6 +555,65 @@ class LightRAG:
|
|
547 |
)
|
548 |
)
|
549 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
550 |
async def get_graph_labels(self):
|
551 |
text = await self.chunk_entity_relation_graph.get_all_labels()
|
552 |
return text
|
|
|
17 |
DocStatusStorage,
|
18 |
QueryParam,
|
19 |
StorageNameSpace,
|
20 |
+
StoragesStatus,
|
21 |
)
|
22 |
from .namespace import NameSpace, make_namespace
|
23 |
from .operate import (
|
|
|
349 |
# Extensions
|
350 |
addon_params: dict[str, Any] = field(default_factory=dict)
|
351 |
|
352 |
+
# Storages Management
|
353 |
+
auto_manage_storages_states: bool = True
|
354 |
+
"""If True, lightrag will automatically calls initialize_storages and finalize_storages at the appropriate times."""
|
355 |
+
|
356 |
"""Dictionary for additional parameters and extensions."""
|
357 |
convert_response_to_json_func: Callable[[str], dict[str, Any]] = (
|
358 |
convert_response_to_json
|
|
|
445 |
**self.vector_db_storage_cls_kwargs,
|
446 |
}
|
447 |
|
448 |
+
# Life cycle
|
449 |
+
self.storages_status = StoragesStatus.NOT_CREATED
|
450 |
+
|
451 |
+
# Show config
|
452 |
global_config = asdict(self)
|
453 |
_print_config = ",\n ".join([f"{k} = {v}" for k, v in global_config.items()])
|
454 |
logger.debug(f"LightRAG init with param:\n {_print_config}\n")
|
|
|
555 |
)
|
556 |
)
|
557 |
|
558 |
+
self.storages_status = StoragesStatus.CREATED
|
559 |
+
|
560 |
+
# Initialize storages
|
561 |
+
if self.auto_manage_storages_states:
|
562 |
+
loop = always_get_an_event_loop()
|
563 |
+
loop.run_until_complete(self.initialize_storages())
|
564 |
+
|
565 |
+
def __del__(self):
|
566 |
+
# Finalize storages
|
567 |
+
if self.auto_manage_storages_states:
|
568 |
+
loop = always_get_an_event_loop()
|
569 |
+
loop.run_until_complete(self.finalize_storages())
|
570 |
+
|
571 |
+
async def initialize_storages(self):
|
572 |
+
"""Asynchronously initialize the storages"""
|
573 |
+
if self.storages_status == StoragesStatus.CREATED:
|
574 |
+
tasks = []
|
575 |
+
|
576 |
+
for storage in (
|
577 |
+
self.full_docs,
|
578 |
+
self.text_chunks,
|
579 |
+
self.entities_vdb,
|
580 |
+
self.relationships_vdb,
|
581 |
+
self.chunks_vdb,
|
582 |
+
self.chunk_entity_relation_graph,
|
583 |
+
self.llm_response_cache,
|
584 |
+
self.doc_status,
|
585 |
+
):
|
586 |
+
if storage:
|
587 |
+
tasks.append(storage.initialize())
|
588 |
+
|
589 |
+
await asyncio.gather(*tasks)
|
590 |
+
|
591 |
+
self.storages_status = StoragesStatus.INITIALIZED
|
592 |
+
logger.debug("Initialized Storages")
|
593 |
+
|
594 |
+
async def finalize_storages(self):
|
595 |
+
"""Asynchronously finalize the storages"""
|
596 |
+
if self.storages_status == StoragesStatus.INITIALIZED:
|
597 |
+
tasks = []
|
598 |
+
|
599 |
+
for storage in (
|
600 |
+
self.full_docs,
|
601 |
+
self.text_chunks,
|
602 |
+
self.entities_vdb,
|
603 |
+
self.relationships_vdb,
|
604 |
+
self.chunks_vdb,
|
605 |
+
self.chunk_entity_relation_graph,
|
606 |
+
self.llm_response_cache,
|
607 |
+
self.doc_status,
|
608 |
+
):
|
609 |
+
if storage:
|
610 |
+
tasks.append(storage.finalize())
|
611 |
+
|
612 |
+
await asyncio.gather(*tasks)
|
613 |
+
|
614 |
+
self.storages_status = StoragesStatus.FINALIZED
|
615 |
+
logger.debug("Finalized Storages")
|
616 |
+
|
617 |
async def get_graph_labels(self):
|
618 |
text = await self.chunk_entity_relation_graph.get_all_labels()
|
619 |
return text
|