Merge branch 'main' into main
Browse files- examples/graph_visual_with_html.py +1 -0
- examples/lightrag_api_ollama_demo.py +164 -0
- lightrag/llm.py +1 -1
- lightrag/operate.py +47 -15
examples/graph_visual_with_html.py
CHANGED
@@ -11,6 +11,7 @@ net = Network(height="100vh", notebook=True)
|
|
11 |
# Convert NetworkX graph to Pyvis network
|
12 |
net.from_nx(G)
|
13 |
|
|
|
14 |
# Add colors and title to nodes
|
15 |
for node in net.nodes:
|
16 |
node["color"] = "#{:06x}".format(random.randint(0, 0xFFFFFF))
|
|
|
11 |
# Convert NetworkX graph to Pyvis network
|
12 |
net.from_nx(G)
|
13 |
|
14 |
+
|
15 |
# Add colors and title to nodes
|
16 |
for node in net.nodes:
|
17 |
node["color"] = "#{:06x}".format(random.randint(0, 0xFFFFFF))
|
examples/lightrag_api_ollama_demo.py
ADDED
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, HTTPException, File, UploadFile
|
2 |
+
from pydantic import BaseModel
|
3 |
+
import os
|
4 |
+
from lightrag import LightRAG, QueryParam
|
5 |
+
from lightrag.llm import ollama_embedding, ollama_model_complete
|
6 |
+
from lightrag.utils import EmbeddingFunc
|
7 |
+
from typing import Optional
|
8 |
+
import asyncio
|
9 |
+
import nest_asyncio
|
10 |
+
import aiofiles
|
11 |
+
|
12 |
+
# Apply nest_asyncio to solve event loop issues
|
13 |
+
nest_asyncio.apply()
|
14 |
+
|
15 |
+
DEFAULT_RAG_DIR = "index_default"
|
16 |
+
app = FastAPI(title="LightRAG API", description="API for RAG operations")
|
17 |
+
|
18 |
+
DEFAULT_INPUT_FILE = "book.txt"
|
19 |
+
INPUT_FILE = os.environ.get("INPUT_FILE", f"{DEFAULT_INPUT_FILE}")
|
20 |
+
print(f"INPUT_FILE: {INPUT_FILE}")
|
21 |
+
|
22 |
+
# Configure working directory
|
23 |
+
WORKING_DIR = os.environ.get("RAG_DIR", f"{DEFAULT_RAG_DIR}")
|
24 |
+
print(f"WORKING_DIR: {WORKING_DIR}")
|
25 |
+
|
26 |
+
|
27 |
+
if not os.path.exists(WORKING_DIR):
|
28 |
+
os.mkdir(WORKING_DIR)
|
29 |
+
|
30 |
+
|
31 |
+
rag = LightRAG(
|
32 |
+
working_dir=WORKING_DIR,
|
33 |
+
llm_model_func=ollama_model_complete,
|
34 |
+
llm_model_name="gemma2:9b",
|
35 |
+
llm_model_max_async=4,
|
36 |
+
llm_model_max_token_size=8192,
|
37 |
+
llm_model_kwargs={"host": "http://localhost:11434", "options": {"num_ctx": 8192}},
|
38 |
+
embedding_func=EmbeddingFunc(
|
39 |
+
embedding_dim=768,
|
40 |
+
max_token_size=8192,
|
41 |
+
func=lambda texts: ollama_embedding(
|
42 |
+
texts, embed_model="nomic-embed-text", host="http://localhost:11434"
|
43 |
+
),
|
44 |
+
),
|
45 |
+
)
|
46 |
+
|
47 |
+
|
48 |
+
# Data models
|
49 |
+
class QueryRequest(BaseModel):
|
50 |
+
query: str
|
51 |
+
mode: str = "hybrid"
|
52 |
+
only_need_context: bool = False
|
53 |
+
|
54 |
+
|
55 |
+
class InsertRequest(BaseModel):
|
56 |
+
text: str
|
57 |
+
|
58 |
+
|
59 |
+
class Response(BaseModel):
|
60 |
+
status: str
|
61 |
+
data: Optional[str] = None
|
62 |
+
message: Optional[str] = None
|
63 |
+
|
64 |
+
|
65 |
+
# API routes
|
66 |
+
@app.post("/query", response_model=Response)
|
67 |
+
async def query_endpoint(request: QueryRequest):
|
68 |
+
try:
|
69 |
+
loop = asyncio.get_event_loop()
|
70 |
+
result = await loop.run_in_executor(
|
71 |
+
None,
|
72 |
+
lambda: rag.query(
|
73 |
+
request.query,
|
74 |
+
param=QueryParam(
|
75 |
+
mode=request.mode, only_need_context=request.only_need_context
|
76 |
+
),
|
77 |
+
),
|
78 |
+
)
|
79 |
+
return Response(status="success", data=result)
|
80 |
+
except Exception as e:
|
81 |
+
raise HTTPException(status_code=500, detail=str(e))
|
82 |
+
|
83 |
+
|
84 |
+
# insert by text
|
85 |
+
@app.post("/insert", response_model=Response)
|
86 |
+
async def insert_endpoint(request: InsertRequest):
|
87 |
+
try:
|
88 |
+
loop = asyncio.get_event_loop()
|
89 |
+
await loop.run_in_executor(None, lambda: rag.insert(request.text))
|
90 |
+
return Response(status="success", message="Text inserted successfully")
|
91 |
+
except Exception as e:
|
92 |
+
raise HTTPException(status_code=500, detail=str(e))
|
93 |
+
|
94 |
+
|
95 |
+
# insert by file in payload
|
96 |
+
@app.post("/insert_file", response_model=Response)
|
97 |
+
async def insert_file(file: UploadFile = File(...)):
|
98 |
+
try:
|
99 |
+
file_content = await file.read()
|
100 |
+
# Read file content
|
101 |
+
try:
|
102 |
+
content = file_content.decode("utf-8")
|
103 |
+
except UnicodeDecodeError:
|
104 |
+
# If UTF-8 decoding fails, try other encodings
|
105 |
+
content = file_content.decode("gbk")
|
106 |
+
# Insert file content
|
107 |
+
loop = asyncio.get_event_loop()
|
108 |
+
await loop.run_in_executor(None, lambda: rag.insert(content))
|
109 |
+
|
110 |
+
return Response(
|
111 |
+
status="success",
|
112 |
+
message=f"File content from {file.filename} inserted successfully",
|
113 |
+
)
|
114 |
+
except Exception as e:
|
115 |
+
raise HTTPException(status_code=500, detail=str(e))
|
116 |
+
|
117 |
+
|
118 |
+
# insert by local default file
|
119 |
+
@app.post("/insert_default_file", response_model=Response)
|
120 |
+
@app.get("/insert_default_file", response_model=Response)
|
121 |
+
async def insert_default_file():
|
122 |
+
try:
|
123 |
+
# Read file content from book.txt
|
124 |
+
async with aiofiles.open(INPUT_FILE, "r", encoding="utf-8") as file:
|
125 |
+
content = await file.read()
|
126 |
+
print(f"read input file {INPUT_FILE} successfully")
|
127 |
+
# Insert file content
|
128 |
+
loop = asyncio.get_event_loop()
|
129 |
+
await loop.run_in_executor(None, lambda: rag.insert(content))
|
130 |
+
|
131 |
+
return Response(
|
132 |
+
status="success",
|
133 |
+
message=f"File content from {INPUT_FILE} inserted successfully",
|
134 |
+
)
|
135 |
+
except Exception as e:
|
136 |
+
raise HTTPException(status_code=500, detail=str(e))
|
137 |
+
|
138 |
+
|
139 |
+
@app.get("/health")
|
140 |
+
async def health_check():
|
141 |
+
return {"status": "healthy"}
|
142 |
+
|
143 |
+
|
144 |
+
if __name__ == "__main__":
|
145 |
+
import uvicorn
|
146 |
+
|
147 |
+
uvicorn.run(app, host="0.0.0.0", port=8020)
|
148 |
+
|
149 |
+
# Usage example
|
150 |
+
# To run the server, use the following command in your terminal:
|
151 |
+
# python lightrag_api_openai_compatible_demo.py
|
152 |
+
|
153 |
+
# Example requests:
|
154 |
+
# 1. Query:
|
155 |
+
# curl -X POST "http://127.0.0.1:8020/query" -H "Content-Type: application/json" -d '{"query": "your query here", "mode": "hybrid"}'
|
156 |
+
|
157 |
+
# 2. Insert text:
|
158 |
+
# curl -X POST "http://127.0.0.1:8020/insert" -H "Content-Type: application/json" -d '{"text": "your text here"}'
|
159 |
+
|
160 |
+
# 3. Insert file:
|
161 |
+
# curl -X POST "http://127.0.0.1:8020/insert_file" -H "Content-Type: application/json" -d '{"file_path": "path/to/your/file.txt"}'
|
162 |
+
|
163 |
+
# 4. Health check:
|
164 |
+
# curl -X GET "http://127.0.0.1:8020/health"
|
lightrag/llm.py
CHANGED
@@ -632,7 +632,7 @@ async def jina_embedding(
|
|
632 |
url = "https://api.jina.ai/v1/embeddings" if not base_url else base_url
|
633 |
headers = {
|
634 |
"Content-Type": "application/json",
|
635 |
-
"Authorization": f"
|
636 |
}
|
637 |
data = {
|
638 |
"model": "jina-embeddings-v3",
|
|
|
632 |
url = "https://api.jina.ai/v1/embeddings" if not base_url else base_url
|
633 |
headers = {
|
634 |
"Content-Type": "application/json",
|
635 |
+
"Authorization": f"Bearer {os.environ['JINA_API_KEY']}",
|
636 |
}
|
637 |
data = {
|
638 |
"model": "jina-embeddings-v3",
|
lightrag/operate.py
CHANGED
@@ -222,7 +222,7 @@ async def _merge_edges_then_upsert(
|
|
222 |
},
|
223 |
)
|
224 |
description = await _handle_entity_relation_summary(
|
225 |
-
(src_id, tgt_id), description, global_config
|
226 |
)
|
227 |
await knowledge_graph_inst.upsert_edge(
|
228 |
src_id,
|
@@ -572,7 +572,6 @@ async def kg_query(
|
|
572 |
mode=query_param.mode,
|
573 |
),
|
574 |
)
|
575 |
-
|
576 |
return response
|
577 |
|
578 |
|
@@ -990,23 +989,37 @@ async def _find_related_text_unit_from_relationships(
|
|
990 |
for index, unit_list in enumerate(text_units):
|
991 |
for c_id in unit_list:
|
992 |
if c_id not in all_text_units_lookup:
|
993 |
-
|
994 |
-
|
995 |
-
|
996 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
997 |
|
998 |
-
|
999 |
-
logger.warning("Text chunks are missing, maybe the storage is damaged")
|
1000 |
-
all_text_units = [
|
1001 |
-
{"id": k, **v} for k, v in all_text_units_lookup.items() if v is not None
|
1002 |
-
]
|
1003 |
all_text_units = sorted(all_text_units, key=lambda x: x["order"])
|
1004 |
-
|
1005 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1006 |
key=lambda x: x["data"]["content"],
|
1007 |
max_token_size=query_param.max_token_for_text_unit,
|
1008 |
)
|
1009 |
-
|
|
|
1010 |
|
1011 |
return all_text_units
|
1012 |
|
@@ -1050,24 +1063,43 @@ async def naive_query(
|
|
1050 |
results = await chunks_vdb.query(query, top_k=query_param.top_k)
|
1051 |
if not len(results):
|
1052 |
return PROMPTS["fail_response"]
|
|
|
1053 |
chunks_ids = [r["id"] for r in results]
|
1054 |
chunks = await text_chunks_db.get_by_ids(chunks_ids)
|
1055 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1056 |
maybe_trun_chunks = truncate_list_by_token_size(
|
1057 |
-
|
1058 |
key=lambda x: x["content"],
|
1059 |
max_token_size=query_param.max_token_for_text_unit,
|
1060 |
)
|
|
|
|
|
|
|
|
|
|
|
1061 |
logger.info(f"Truncate {len(chunks)} to {len(maybe_trun_chunks)} chunks")
|
1062 |
section = "\n--New Chunk--\n".join([c["content"] for c in maybe_trun_chunks])
|
|
|
1063 |
if query_param.only_need_context:
|
1064 |
return section
|
|
|
1065 |
sys_prompt_temp = PROMPTS["naive_rag_response"]
|
1066 |
sys_prompt = sys_prompt_temp.format(
|
1067 |
content_data=section, response_type=query_param.response_type
|
1068 |
)
|
|
|
1069 |
if query_param.only_need_prompt:
|
1070 |
return sys_prompt
|
|
|
1071 |
response = await use_model_func(
|
1072 |
query,
|
1073 |
system_prompt=sys_prompt,
|
|
|
222 |
},
|
223 |
)
|
224 |
description = await _handle_entity_relation_summary(
|
225 |
+
f"({src_id}, {tgt_id})", description, global_config
|
226 |
)
|
227 |
await knowledge_graph_inst.upsert_edge(
|
228 |
src_id,
|
|
|
572 |
mode=query_param.mode,
|
573 |
),
|
574 |
)
|
|
|
575 |
return response
|
576 |
|
577 |
|
|
|
989 |
for index, unit_list in enumerate(text_units):
|
990 |
for c_id in unit_list:
|
991 |
if c_id not in all_text_units_lookup:
|
992 |
+
chunk_data = await text_chunks_db.get_by_id(c_id)
|
993 |
+
# Only store valid data
|
994 |
+
if chunk_data is not None and "content" in chunk_data:
|
995 |
+
all_text_units_lookup[c_id] = {
|
996 |
+
"data": chunk_data,
|
997 |
+
"order": index,
|
998 |
+
}
|
999 |
+
|
1000 |
+
if not all_text_units_lookup:
|
1001 |
+
logger.warning("No valid text chunks found")
|
1002 |
+
return []
|
1003 |
|
1004 |
+
all_text_units = [{"id": k, **v} for k, v in all_text_units_lookup.items()]
|
|
|
|
|
|
|
|
|
1005 |
all_text_units = sorted(all_text_units, key=lambda x: x["order"])
|
1006 |
+
|
1007 |
+
# Ensure all text chunks have content
|
1008 |
+
valid_text_units = [
|
1009 |
+
t for t in all_text_units if t["data"] is not None and "content" in t["data"]
|
1010 |
+
]
|
1011 |
+
|
1012 |
+
if not valid_text_units:
|
1013 |
+
logger.warning("No valid text chunks after filtering")
|
1014 |
+
return []
|
1015 |
+
|
1016 |
+
truncated_text_units = truncate_list_by_token_size(
|
1017 |
+
valid_text_units,
|
1018 |
key=lambda x: x["data"]["content"],
|
1019 |
max_token_size=query_param.max_token_for_text_unit,
|
1020 |
)
|
1021 |
+
|
1022 |
+
all_text_units: list[TextChunkSchema] = [t["data"] for t in truncated_text_units]
|
1023 |
|
1024 |
return all_text_units
|
1025 |
|
|
|
1063 |
results = await chunks_vdb.query(query, top_k=query_param.top_k)
|
1064 |
if not len(results):
|
1065 |
return PROMPTS["fail_response"]
|
1066 |
+
|
1067 |
chunks_ids = [r["id"] for r in results]
|
1068 |
chunks = await text_chunks_db.get_by_ids(chunks_ids)
|
1069 |
|
1070 |
+
# Filter out invalid chunks
|
1071 |
+
valid_chunks = [
|
1072 |
+
chunk for chunk in chunks if chunk is not None and "content" in chunk
|
1073 |
+
]
|
1074 |
+
|
1075 |
+
if not valid_chunks:
|
1076 |
+
logger.warning("No valid chunks found after filtering")
|
1077 |
+
return PROMPTS["fail_response"]
|
1078 |
+
|
1079 |
maybe_trun_chunks = truncate_list_by_token_size(
|
1080 |
+
valid_chunks,
|
1081 |
key=lambda x: x["content"],
|
1082 |
max_token_size=query_param.max_token_for_text_unit,
|
1083 |
)
|
1084 |
+
|
1085 |
+
if not maybe_trun_chunks:
|
1086 |
+
logger.warning("No chunks left after truncation")
|
1087 |
+
return PROMPTS["fail_response"]
|
1088 |
+
|
1089 |
logger.info(f"Truncate {len(chunks)} to {len(maybe_trun_chunks)} chunks")
|
1090 |
section = "\n--New Chunk--\n".join([c["content"] for c in maybe_trun_chunks])
|
1091 |
+
|
1092 |
if query_param.only_need_context:
|
1093 |
return section
|
1094 |
+
|
1095 |
sys_prompt_temp = PROMPTS["naive_rag_response"]
|
1096 |
sys_prompt = sys_prompt_temp.format(
|
1097 |
content_data=section, response_type=query_param.response_type
|
1098 |
)
|
1099 |
+
|
1100 |
if query_param.only_need_prompt:
|
1101 |
return sys_prompt
|
1102 |
+
|
1103 |
response = await use_model_func(
|
1104 |
query,
|
1105 |
system_prompt=sys_prompt,
|