Commit
·
359e407
1
Parent(s):
3c5ab1e
With a draft for progres_impl
Browse files- examples/lightrag_zhipu_postgres_demo.py +133 -0
- lightrag/kg/postgres_impl.py +1162 -0
- lightrag/lightrag.py +8 -0
examples/lightrag_zhipu_postgres_demo.py
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import asyncio
|
2 |
+
import inspect
|
3 |
+
import logging
|
4 |
+
import os
|
5 |
+
import time
|
6 |
+
from dotenv import load_dotenv
|
7 |
+
|
8 |
+
from lightrag import LightRAG, QueryParam
|
9 |
+
from lightrag.kg.postgres_impl import PostgreSQLDB, PGGraphStorage
|
10 |
+
from lightrag.llm import ollama_embedding, zhipu_complete
|
11 |
+
from lightrag.utils import EmbeddingFunc
|
12 |
+
|
13 |
+
load_dotenv()
|
14 |
+
ROOT_DIR = os.environ.get("ROOT_DIR")
|
15 |
+
WORKING_DIR = f"{ROOT_DIR}/dickens-pg"
|
16 |
+
|
17 |
+
logging.basicConfig(format="%(levelname)s:%(message)s", level=logging.INFO)
|
18 |
+
|
19 |
+
if not os.path.exists(WORKING_DIR):
|
20 |
+
os.mkdir(WORKING_DIR)
|
21 |
+
|
22 |
+
# AGE
|
23 |
+
os.environ["AGE_GRAPH_NAME"] = "dickens"
|
24 |
+
|
25 |
+
postgres_db = PostgreSQLDB(
|
26 |
+
config={
|
27 |
+
"host": "localhost",
|
28 |
+
"port": 15432,
|
29 |
+
"user": "rag",
|
30 |
+
"password": "rag",
|
31 |
+
"database": "rag",
|
32 |
+
}
|
33 |
+
)
|
34 |
+
|
35 |
+
|
36 |
+
async def main():
|
37 |
+
await postgres_db.initdb()
|
38 |
+
# Check if PostgreSQL DB tables exist, if not, tables will be created
|
39 |
+
await postgres_db.check_tables()
|
40 |
+
|
41 |
+
rag = LightRAG(
|
42 |
+
working_dir=WORKING_DIR,
|
43 |
+
llm_model_func=zhipu_complete,
|
44 |
+
llm_model_name="glm-4-flashx",
|
45 |
+
llm_model_max_async=4,
|
46 |
+
llm_model_max_token_size=32768,
|
47 |
+
embedding_func=EmbeddingFunc(
|
48 |
+
embedding_dim=768,
|
49 |
+
max_token_size=8192,
|
50 |
+
func=lambda texts: ollama_embedding(
|
51 |
+
texts, embed_model="nomic-embed-text", host="http://localhost:11434"
|
52 |
+
),
|
53 |
+
),
|
54 |
+
kv_storage="PGKVStorage",
|
55 |
+
doc_status_storage="PGDocStatusStorage",
|
56 |
+
graph_storage="PGGraphStorage",
|
57 |
+
vector_storage="PGVectorStorage"
|
58 |
+
)
|
59 |
+
# Set the KV/vector/graph storage's `db` property, so all operation will use same connection pool
|
60 |
+
rag.doc_status.db = postgres_db
|
61 |
+
rag.full_docs.db = postgres_db
|
62 |
+
rag.text_chunks.db = postgres_db
|
63 |
+
rag.llm_response_cache.db = postgres_db
|
64 |
+
rag.key_string_value_json_storage_cls.db = postgres_db
|
65 |
+
rag.chunks_vdb.db = postgres_db
|
66 |
+
rag.relationships_vdb.db = postgres_db
|
67 |
+
rag.entities_vdb.db = postgres_db
|
68 |
+
rag.graph_storage_cls.db = postgres_db
|
69 |
+
rag.chunk_entity_relation_graph.db = postgres_db
|
70 |
+
await rag.chunk_entity_relation_graph.check_graph_exists()
|
71 |
+
# add embedding_func for graph database, it's deleted in commit 5661d76860436f7bf5aef2e50d9ee4a59660146c
|
72 |
+
rag.chunk_entity_relation_graph.embedding_func = rag.embedding_func
|
73 |
+
|
74 |
+
with open(f"{ROOT_DIR}/book.txt", "r", encoding="utf-8") as f:
|
75 |
+
await rag.ainsert(f.read())
|
76 |
+
|
77 |
+
print("==== Trying to test the rag queries ====")
|
78 |
+
print("**** Start Naive Query ****")
|
79 |
+
start_time = time.time()
|
80 |
+
# Perform naive search
|
81 |
+
print(
|
82 |
+
await rag.aquery("What are the top themes in this story?", param=QueryParam(mode="naive"))
|
83 |
+
)
|
84 |
+
print(f"Naive Query Time: {time.time() - start_time} seconds")
|
85 |
+
# Perform local search
|
86 |
+
print("**** Start Local Query ****")
|
87 |
+
start_time = time.time()
|
88 |
+
print(
|
89 |
+
await rag.aquery("What are the top themes in this story?", param=QueryParam(mode="local"))
|
90 |
+
)
|
91 |
+
print(f"Local Query Time: {time.time() - start_time} seconds")
|
92 |
+
# Perform global search
|
93 |
+
print("**** Start Global Query ****")
|
94 |
+
start_time = time.time()
|
95 |
+
print(
|
96 |
+
await rag.aquery("What are the top themes in this story?", param=QueryParam(mode="global"))
|
97 |
+
)
|
98 |
+
print(f"Global Query Time: {time.time() - start_time}")
|
99 |
+
# Perform hybrid search
|
100 |
+
print("**** Start Hybrid Query ****")
|
101 |
+
print(
|
102 |
+
await rag.aquery("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
|
103 |
+
)
|
104 |
+
print(f"Hybrid Query Time: {time.time() - start_time} seconds")
|
105 |
+
|
106 |
+
print("**** Start Stream Query ****")
|
107 |
+
start_time = time.time()
|
108 |
+
# stream response
|
109 |
+
resp = await rag.aquery(
|
110 |
+
"What are the top themes in this story?",
|
111 |
+
param=QueryParam(mode="hybrid", stream=True),
|
112 |
+
)
|
113 |
+
print(f"Stream Query Time: {time.time() - start_time} seconds")
|
114 |
+
print("**** Done Stream Query ****")
|
115 |
+
|
116 |
+
if inspect.isasyncgen(resp):
|
117 |
+
asyncio.run(print_stream(resp))
|
118 |
+
else:
|
119 |
+
print(resp)
|
120 |
+
|
121 |
+
|
122 |
+
if __name__ == "__main__":
|
123 |
+
asyncio.run(main())
|
124 |
+
|
125 |
+
|
126 |
+
async def print_stream(stream):
|
127 |
+
async for chunk in stream:
|
128 |
+
print(chunk, end="", flush=True)
|
129 |
+
|
130 |
+
|
131 |
+
|
132 |
+
|
133 |
+
|
lightrag/kg/postgres_impl.py
ADDED
@@ -0,0 +1,1162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import asyncio
|
2 |
+
import inspect
|
3 |
+
import json
|
4 |
+
import os
|
5 |
+
import time
|
6 |
+
from dataclasses import dataclass
|
7 |
+
from typing import Union, List, Dict, Set, Any, Tuple
|
8 |
+
import numpy as np
|
9 |
+
import asyncpg
|
10 |
+
import sys
|
11 |
+
from tqdm.asyncio import tqdm as tqdm_async
|
12 |
+
from tenacity import (
|
13 |
+
retry,
|
14 |
+
retry_if_exception_type,
|
15 |
+
stop_after_attempt,
|
16 |
+
wait_exponential,
|
17 |
+
)
|
18 |
+
|
19 |
+
from ..utils import logger
|
20 |
+
from ..base import (
|
21 |
+
BaseKVStorage,
|
22 |
+
BaseVectorStorage, DocStatusStorage, DocStatus, DocProcessingStatus, BaseGraphStorage,
|
23 |
+
)
|
24 |
+
|
25 |
+
if sys.platform.startswith("win"):
|
26 |
+
import asyncio.windows_events
|
27 |
+
|
28 |
+
asyncio.set_event_loop_policy(asyncio.WindowsSelectorEventLoopPolicy())
|
29 |
+
|
30 |
+
|
31 |
+
class PostgreSQLDB:
|
32 |
+
def __init__(self, config, **kwargs):
|
33 |
+
self.pool = None
|
34 |
+
self.host = config.get("host", "localhost")
|
35 |
+
self.port = config.get("port", 5432)
|
36 |
+
self.user = config.get("user", "postgres")
|
37 |
+
self.password = config.get("password", None)
|
38 |
+
self.database = config.get("database", "postgres")
|
39 |
+
self.workspace = config.get("workspace", 'default')
|
40 |
+
self.max = 12
|
41 |
+
self.increment = 1
|
42 |
+
logger.info(f"Using the label {self.workspace} for PostgreSQL as identifier")
|
43 |
+
|
44 |
+
if self.user is None or self.password is None or self.database is None:
|
45 |
+
raise ValueError("Missing database user, password, or database in addon_params")
|
46 |
+
|
47 |
+
|
48 |
+
async def initdb(self):
|
49 |
+
try:
|
50 |
+
self.pool = await asyncpg.create_pool(
|
51 |
+
user=self.user,
|
52 |
+
password=self.password,
|
53 |
+
database=self.database,
|
54 |
+
host=self.host,
|
55 |
+
port=self.port,
|
56 |
+
min_size=1,
|
57 |
+
max_size=self.max
|
58 |
+
)
|
59 |
+
|
60 |
+
logger.info(f"Connected to PostgreSQL database at {self.host}:{self.port}/{self.database}")
|
61 |
+
except Exception as e:
|
62 |
+
logger.error(f"Failed to connect to PostgreSQL database at {self.host}:{self.port}/{self.database}")
|
63 |
+
logger.error(f"PostgreSQL database error: {e}")
|
64 |
+
raise
|
65 |
+
|
66 |
+
async def check_tables(self):
|
67 |
+
for k, v in TABLES.items():
|
68 |
+
try:
|
69 |
+
await self.query("SELECT 1 FROM {k} LIMIT 1".format(k=k))
|
70 |
+
except Exception as e:
|
71 |
+
logger.error(f"Failed to check table {k} in PostgreSQL database")
|
72 |
+
logger.error(f"PostgreSQL database error: {e}")
|
73 |
+
try:
|
74 |
+
await self.execute(v["ddl"])
|
75 |
+
logger.info(f"Created table {k} in PostgreSQL database")
|
76 |
+
except Exception as e:
|
77 |
+
logger.error(f"Failed to create table {k} in PostgreSQL database")
|
78 |
+
logger.error(f"PostgreSQL database error: {e}")
|
79 |
+
|
80 |
+
logger.info("Finished checking all tables in PostgreSQL database")
|
81 |
+
|
82 |
+
|
83 |
+
async def query(
|
84 |
+
self, sql: str, params: dict = None, multirows: bool = False, for_age: bool = False
|
85 |
+
) -> Union[dict, None, list[dict]]:
|
86 |
+
async with self.pool.acquire() as connection:
|
87 |
+
try:
|
88 |
+
if for_age:
|
89 |
+
await connection.execute('SET search_path = ag_catalog, "$user", public')
|
90 |
+
if params:
|
91 |
+
rows = await connection.fetch(sql, *params.values())
|
92 |
+
else:
|
93 |
+
rows = await connection.fetch(sql)
|
94 |
+
|
95 |
+
if multirows:
|
96 |
+
if rows:
|
97 |
+
columns = [col for col in rows[0].keys()]
|
98 |
+
# print("columns", columns.__class__, columns)
|
99 |
+
# print("rows", rows)
|
100 |
+
data = [dict(zip(columns, row)) for row in rows]
|
101 |
+
# print("data", data)
|
102 |
+
else:
|
103 |
+
data = []
|
104 |
+
else:
|
105 |
+
if rows:
|
106 |
+
columns = rows[0].keys()
|
107 |
+
data = dict(zip(columns, rows[0]))
|
108 |
+
else:
|
109 |
+
data = None
|
110 |
+
return data
|
111 |
+
except Exception as e:
|
112 |
+
logger.error(f"PostgreSQL database error: {e}")
|
113 |
+
print(sql)
|
114 |
+
print(params)
|
115 |
+
raise
|
116 |
+
|
117 |
+
async def execute(self, sql: str, data: Union[list, dict] = None, for_age: bool = False):
|
118 |
+
try:
|
119 |
+
async with self.pool.acquire() as connection:
|
120 |
+
if for_age:
|
121 |
+
await connection.execute('SET search_path = ag_catalog, "$user", public')
|
122 |
+
|
123 |
+
if data is None:
|
124 |
+
await connection.execute(sql)
|
125 |
+
else:
|
126 |
+
await connection.execute(sql, *data.values())
|
127 |
+
except Exception as e:
|
128 |
+
logger.error(f"PostgreSQL database error: {e}")
|
129 |
+
print(sql)
|
130 |
+
print(data)
|
131 |
+
raise
|
132 |
+
|
133 |
+
|
134 |
+
@dataclass
|
135 |
+
class PGKVStorage(BaseKVStorage):
|
136 |
+
db:PostgreSQLDB = None
|
137 |
+
|
138 |
+
def __post_init__(self):
|
139 |
+
self._data = {}
|
140 |
+
self._max_batch_size = self.global_config["embedding_batch_num"]
|
141 |
+
|
142 |
+
################ QUERY METHODS ################
|
143 |
+
|
144 |
+
async def get_by_id(self, id: str) -> Union[dict, None]:
|
145 |
+
"""Get doc_full data by id."""
|
146 |
+
sql = SQL_TEMPLATES["get_by_id_" + self.namespace]
|
147 |
+
params = {"workspace": self.db.workspace, "id": id}
|
148 |
+
if "llm_response_cache" == self.namespace:
|
149 |
+
array_res = await self.db.query(sql, params, multirows=True)
|
150 |
+
res = {}
|
151 |
+
for row in array_res:
|
152 |
+
res[row["id"]] = row
|
153 |
+
else:
|
154 |
+
res = await self.db.query(sql, params)
|
155 |
+
if res:
|
156 |
+
return res
|
157 |
+
else:
|
158 |
+
return None
|
159 |
+
|
160 |
+
# Query by id
|
161 |
+
async def get_by_ids(self, ids: List[str], fields=None) -> Union[List[dict], None]:
|
162 |
+
"""Get doc_chunks data by id"""
|
163 |
+
sql = SQL_TEMPLATES["get_by_ids_" + self.namespace].format(
|
164 |
+
ids=",".join([f"'{id}'" for id in ids])
|
165 |
+
)
|
166 |
+
params = {"workspace": self.db.workspace}
|
167 |
+
if "llm_response_cache" == self.namespace:
|
168 |
+
array_res = await self.db.query(sql, params, multirows=True)
|
169 |
+
modes = set()
|
170 |
+
dict_res: dict[str, dict] = {}
|
171 |
+
for row in array_res:
|
172 |
+
modes.add(row["mode"])
|
173 |
+
for mode in modes:
|
174 |
+
if mode not in dict_res:
|
175 |
+
dict_res[mode] = {}
|
176 |
+
for row in array_res:
|
177 |
+
dict_res[row["mode"]][row["id"]] = row
|
178 |
+
res = [{k:v} for k,v in dict_res.items()]
|
179 |
+
else:
|
180 |
+
res = await self.db.query(sql, params, multirows=True)
|
181 |
+
if res:
|
182 |
+
return res
|
183 |
+
else:
|
184 |
+
return None
|
185 |
+
|
186 |
+
async def filter_keys(self, keys: List[str]) -> Set[str]:
|
187 |
+
"""Filter out duplicated content"""
|
188 |
+
sql = SQL_TEMPLATES["filter_keys"].format(
|
189 |
+
table_name=NAMESPACE_TABLE_MAP[self.namespace], ids=",".join([f"'{id}'" for id in keys])
|
190 |
+
)
|
191 |
+
params = {"workspace": self.db.workspace}
|
192 |
+
try:
|
193 |
+
res = await self.db.query(sql, params, multirows=True)
|
194 |
+
if res:
|
195 |
+
exist_keys = [key["id"] for key in res]
|
196 |
+
else:
|
197 |
+
exist_keys = []
|
198 |
+
data = set([s for s in keys if s not in exist_keys])
|
199 |
+
return data
|
200 |
+
except Exception as e:
|
201 |
+
logger.error(f"PostgreSQL database error: {e}")
|
202 |
+
print(sql)
|
203 |
+
print(params)
|
204 |
+
|
205 |
+
|
206 |
+
################ INSERT METHODS ################
|
207 |
+
async def upsert(self, data: Dict[str, dict]):
|
208 |
+
left_data = {k: v for k, v in data.items() if k not in self._data}
|
209 |
+
self._data.update(left_data)
|
210 |
+
if self.namespace == "text_chunks":
|
211 |
+
pass
|
212 |
+
elif self.namespace == "full_docs":
|
213 |
+
for k, v in self._data.items():
|
214 |
+
upsert_sql = SQL_TEMPLATES["upsert_doc_full"]
|
215 |
+
data = {
|
216 |
+
"id": k,
|
217 |
+
"content": v["content"],
|
218 |
+
"workspace": self.db.workspace,
|
219 |
+
}
|
220 |
+
await self.db.execute(upsert_sql, data)
|
221 |
+
elif self.namespace == "llm_response_cache":
|
222 |
+
for mode, items in self._data.items():
|
223 |
+
for k, v in items.items():
|
224 |
+
upsert_sql = SQL_TEMPLATES["upsert_llm_response_cache"]
|
225 |
+
data = {
|
226 |
+
"workspace": self.db.workspace,
|
227 |
+
"id": k,
|
228 |
+
"original_prompt": v["original_prompt"],
|
229 |
+
"return": v["return"],
|
230 |
+
"mode": mode,
|
231 |
+
}
|
232 |
+
await self.db.execute(upsert_sql, data)
|
233 |
+
|
234 |
+
return left_data
|
235 |
+
|
236 |
+
async def index_done_callback(self):
|
237 |
+
if self.namespace in ["full_docs", "text_chunks"]:
|
238 |
+
logger.info("full doc and chunk data had been saved into postgresql db!")
|
239 |
+
|
240 |
+
|
241 |
+
@dataclass
|
242 |
+
class PGVectorStorage(BaseVectorStorage):
|
243 |
+
cosine_better_than_threshold: float = 0.2
|
244 |
+
db:PostgreSQLDB = None
|
245 |
+
|
246 |
+
def __post_init__(self):
|
247 |
+
self._max_batch_size = self.global_config["embedding_batch_num"]
|
248 |
+
self.cosine_better_than_threshold = self.global_config.get(
|
249 |
+
"cosine_better_than_threshold", self.cosine_better_than_threshold
|
250 |
+
)
|
251 |
+
|
252 |
+
def _upsert_chunks(self, item: dict):
|
253 |
+
try:
|
254 |
+
upsert_sql = SQL_TEMPLATES["upsert_chunk"]
|
255 |
+
data = {
|
256 |
+
"workspace": self.db.workspace,
|
257 |
+
"id": item["__id__"],
|
258 |
+
"tokens": item["tokens"],
|
259 |
+
"chunk_order_index": item["chunk_order_index"],
|
260 |
+
"full_doc_id": item["full_doc_id"],
|
261 |
+
"content": item["content"],
|
262 |
+
"content_vector": json.dumps(item["__vector__"].tolist()),
|
263 |
+
}
|
264 |
+
except Exception as e:
|
265 |
+
logger.error(f"Error to prepare upsert sql: {e}")
|
266 |
+
print(item)
|
267 |
+
raise e
|
268 |
+
return upsert_sql, data
|
269 |
+
|
270 |
+
def _upsert_entities(self, item: dict):
|
271 |
+
upsert_sql = SQL_TEMPLATES["upsert_entity"]
|
272 |
+
data = {
|
273 |
+
"workspace": self.db.workspace,
|
274 |
+
"id": item["__id__"],
|
275 |
+
"entity_name": item["entity_name"],
|
276 |
+
"content": item["content"],
|
277 |
+
"content_vector": json.dumps(item["__vector__"].tolist()),
|
278 |
+
}
|
279 |
+
return upsert_sql, data
|
280 |
+
def _upsert_relationships(self, item: dict):
|
281 |
+
upsert_sql = SQL_TEMPLATES["upsert_relationship"]
|
282 |
+
data = {
|
283 |
+
"workspace": self.db.workspace,
|
284 |
+
"id": item["__id__"],
|
285 |
+
"source_id": item["src_id"],
|
286 |
+
"target_id": item["tgt_id"],
|
287 |
+
"content": item["content"],
|
288 |
+
"content_vector": json.dumps(item["__vector__"].tolist()),
|
289 |
+
}
|
290 |
+
return upsert_sql, data
|
291 |
+
|
292 |
+
async def upsert(self, data: Dict[str, dict]):
|
293 |
+
logger.info(f"Inserting {len(data)} vectors to {self.namespace}")
|
294 |
+
if not len(data):
|
295 |
+
logger.warning("You insert an empty data to vector DB")
|
296 |
+
return []
|
297 |
+
current_time = time.time()
|
298 |
+
list_data = [
|
299 |
+
{
|
300 |
+
"__id__": k,
|
301 |
+
"__created_at__": current_time,
|
302 |
+
**{k1: v1 for k1, v1 in v.items()},
|
303 |
+
}
|
304 |
+
for k, v in data.items()
|
305 |
+
]
|
306 |
+
contents = [v["content"] for v in data.values()]
|
307 |
+
batches = [
|
308 |
+
contents[i : i + self._max_batch_size]
|
309 |
+
for i in range(0, len(contents), self._max_batch_size)
|
310 |
+
]
|
311 |
+
|
312 |
+
async def wrapped_task(batch):
|
313 |
+
result = await self.embedding_func(batch)
|
314 |
+
pbar.update(1)
|
315 |
+
return result
|
316 |
+
|
317 |
+
embedding_tasks = [wrapped_task(batch) for batch in batches]
|
318 |
+
pbar = tqdm_async(
|
319 |
+
total=len(embedding_tasks), desc="Generating embeddings", unit="batch"
|
320 |
+
)
|
321 |
+
embeddings_list = await asyncio.gather(*embedding_tasks)
|
322 |
+
|
323 |
+
embeddings = np.concatenate(embeddings_list)
|
324 |
+
for i, d in enumerate(list_data):
|
325 |
+
d["__vector__"] = embeddings[i]
|
326 |
+
for item in list_data:
|
327 |
+
if self.namespace == "chunks":
|
328 |
+
upsert_sql, data = self._upsert_chunks(item)
|
329 |
+
elif self.namespace == "entities":
|
330 |
+
upsert_sql, data = self._upsert_entities(item)
|
331 |
+
elif self.namespace == "relationships":
|
332 |
+
upsert_sql, data = self._upsert_relationships(item)
|
333 |
+
else:
|
334 |
+
raise ValueError(f"{self.namespace} is not supported")
|
335 |
+
|
336 |
+
await self.db.execute(upsert_sql, data)
|
337 |
+
|
338 |
+
|
339 |
+
|
340 |
+
async def index_done_callback(self):
|
341 |
+
logger.info("vector data had been saved into postgresql db!")
|
342 |
+
|
343 |
+
#################### query method ###############
|
344 |
+
async def query(self, query: str, top_k=5) -> Union[dict, list[dict]]:
|
345 |
+
"""从向量数据库中查询数据"""
|
346 |
+
embeddings = await self.embedding_func([query])
|
347 |
+
embedding = embeddings[0]
|
348 |
+
embedding_string = ",".join(map(str, embedding))
|
349 |
+
# print("Namespace", self.namespace)
|
350 |
+
|
351 |
+
sql = SQL_TEMPLATES[self.namespace].format(embedding_string=embedding_string)
|
352 |
+
# print("sql is: ", sql)
|
353 |
+
params = {
|
354 |
+
"workspace": self.db.workspace,
|
355 |
+
"better_than_threshold": self.cosine_better_than_threshold,
|
356 |
+
"top_k": top_k,
|
357 |
+
}
|
358 |
+
# print("params is: ", params)
|
359 |
+
results = await self.db.query(sql, params=params, multirows=True)
|
360 |
+
print("vector search result:", results)
|
361 |
+
return results
|
362 |
+
|
363 |
+
@dataclass
|
364 |
+
class PGDocStatusStorage(DocStatusStorage):
|
365 |
+
"""PostgreSQL implementation of document status storage"""
|
366 |
+
db:PostgreSQLDB = None
|
367 |
+
|
368 |
+
def __post_init__(self):
|
369 |
+
pass
|
370 |
+
|
371 |
+
async def filter_keys(self, data: list[str]) -> set[str]:
|
372 |
+
"""Return keys that don't exist in storage"""
|
373 |
+
sql = f"SELECT id FROM LIGHTRAG_DOC_STATUS WHERE workspace=$1 AND id IN ({",".join([f"'{_id}'" for _id in data])})"
|
374 |
+
result = await self.db.query(sql, {'workspace': self.db.workspace}, True)
|
375 |
+
# The result is like [{'id': 'id1'}, {'id': 'id2'}, ...].
|
376 |
+
if result is None:
|
377 |
+
return set(data)
|
378 |
+
else:
|
379 |
+
existed = set([element['id'] for element in result])
|
380 |
+
return set(data) - existed
|
381 |
+
|
382 |
+
async def get_status_counts(self) -> Dict[str, int]:
|
383 |
+
"""Get counts of documents in each status"""
|
384 |
+
sql = '''SELECT status as "status", COUNT(1) as "count"
|
385 |
+
FROM LIGHTRAG_DOC_STATUS
|
386 |
+
where workspace=$1 GROUP BY STATUS
|
387 |
+
'''
|
388 |
+
result = await self.db.query(sql, {'workspace': self.db.workspace}, True)
|
389 |
+
# Result is like [{'status': 'PENDING', 'count': 1}, {'status': 'PROCESSING', 'count': 2}, ...]
|
390 |
+
counts = {}
|
391 |
+
for doc in result:
|
392 |
+
counts[doc["status"]] = doc["count"]
|
393 |
+
return counts
|
394 |
+
|
395 |
+
async def get_docs_by_status(self, status: DocStatus) -> Dict[str, DocProcessingStatus]:
|
396 |
+
"""Get all documents by status"""
|
397 |
+
sql = 'select * from LIGHTRAG_DOC_STATUS where workspace=$1 and status=$1'
|
398 |
+
params = {'workspace': self.db.workspace, 'status': status}
|
399 |
+
result = await self.db.query(sql, params, True)
|
400 |
+
# Result is like [{'id': 'id1', 'status': 'PENDING', 'updated_at': '2023-07-01 00:00:00'}, {'id': 'id2', 'status': 'PENDING', 'updated_at': '2023-07-01 00:00:00'}, ...]
|
401 |
+
# Converting to be a dict
|
402 |
+
return {element["id"]:
|
403 |
+
DocProcessingStatus(content_summary=element["content_summary"],
|
404 |
+
content_length=element["content_length"],
|
405 |
+
status=element["status"],
|
406 |
+
created_at=element["created_at"],
|
407 |
+
updated_at=element["updated_at"],
|
408 |
+
chunks_count=element["chunks_count"]) for element in result}
|
409 |
+
|
410 |
+
async def get_failed_docs(self) -> Dict[str, DocProcessingStatus]:
|
411 |
+
"""Get all failed documents"""
|
412 |
+
return await self.get_docs_by_status(DocStatus.FAILED)
|
413 |
+
|
414 |
+
async def get_pending_docs(self) -> Dict[str, DocProcessingStatus]:
|
415 |
+
"""Get all pending documents"""
|
416 |
+
return await self.get_docs_by_status(DocStatus.PENDING)
|
417 |
+
|
418 |
+
async def index_done_callback(self):
|
419 |
+
"""Save data after indexing, but for PostgreSQL, we already saved them during the upsert stage, so no action to take here"""
|
420 |
+
logger.info("Doc status had been saved into postgresql db!")
|
421 |
+
|
422 |
+
async def upsert(self, data: dict[str, dict]):
|
423 |
+
"""Update or insert document status
|
424 |
+
|
425 |
+
Args:
|
426 |
+
data: Dictionary of document IDs and their status data
|
427 |
+
"""
|
428 |
+
sql = """insert into LIGHTRAG_DOC_STATUS(workspace,id,content_summary,content_length,chunks_count,status)
|
429 |
+
values($1,$2,$3,$4,$5,$6)
|
430 |
+
on conflict(id,workspace) do update set
|
431 |
+
content_summary = EXCLUDED.content_summary,
|
432 |
+
content_length = EXCLUDED.content_length,
|
433 |
+
chunks_count = EXCLUDED.chunks_count,
|
434 |
+
status = EXCLUDED.status,
|
435 |
+
updated_at = CURRENT_TIMESTAMP"""
|
436 |
+
for k, v in data.items():
|
437 |
+
# chunks_count is optional
|
438 |
+
await self.db.execute(sql, {
|
439 |
+
"workspace": self.db.workspace,
|
440 |
+
"id": k,
|
441 |
+
"content_summary": v["content_summary"],
|
442 |
+
"content_length": v["content_length"],
|
443 |
+
"chunks_count": v["chunks_count"] if "chunks_count" in v else -1,
|
444 |
+
"status": v["status"],
|
445 |
+
})
|
446 |
+
return data
|
447 |
+
|
448 |
+
|
449 |
+
class PGGraphQueryException(Exception):
|
450 |
+
"""Exception for the AGE queries."""
|
451 |
+
|
452 |
+
def __init__(self, exception: Union[str, Dict]) -> None:
|
453 |
+
if isinstance(exception, dict):
|
454 |
+
self.message = exception["message"] if "message" in exception else "unknown"
|
455 |
+
self.details = exception["details"] if "details" in exception else "unknown"
|
456 |
+
else:
|
457 |
+
self.message = exception
|
458 |
+
self.details = "unknown"
|
459 |
+
|
460 |
+
def get_message(self) -> str:
|
461 |
+
return self.message
|
462 |
+
|
463 |
+
def get_details(self) -> Any:
|
464 |
+
return self.details
|
465 |
+
|
466 |
+
|
467 |
+
@dataclass
|
468 |
+
class PGGraphStorage(BaseGraphStorage):
|
469 |
+
db:PostgreSQLDB = None
|
470 |
+
|
471 |
+
@staticmethod
|
472 |
+
def load_nx_graph(file_name):
|
473 |
+
print("no preloading of graph with AGE in production")
|
474 |
+
|
475 |
+
def __init__(self, namespace, global_config, embedding_func):
|
476 |
+
super().__init__(
|
477 |
+
namespace=namespace,
|
478 |
+
global_config=global_config,
|
479 |
+
embedding_func=embedding_func,
|
480 |
+
)
|
481 |
+
self.graph_name = os.environ["AGE_GRAPH_NAME"]
|
482 |
+
self._node_embed_algorithms = {
|
483 |
+
"node2vec": self._node2vec_embed,
|
484 |
+
}
|
485 |
+
|
486 |
+
|
487 |
+
async def index_done_callback(self):
|
488 |
+
print("KG successfully indexed.")
|
489 |
+
|
490 |
+
async def check_graph_exists(self):
|
491 |
+
try:
|
492 |
+
res = await self.db.query(f"SELECT * FROM ag_catalog.ag_graph WHERE name = '{self.graph_name}'")
|
493 |
+
if res:
|
494 |
+
logger.info(f"Graph {self.graph_name} exists.")
|
495 |
+
else:
|
496 |
+
logger.info(f"Graph {self.graph_name} does not exist. Creating...")
|
497 |
+
await self.db.execute(f"SELECT create_graph('{self.graph_name}')", for_age=True)
|
498 |
+
logger.info(f"Graph {self.graph_name} created.")
|
499 |
+
except Exception as e:
|
500 |
+
logger.info(f"Failed to check/create graph {self.graph_name}:", e)
|
501 |
+
raise e
|
502 |
+
|
503 |
+
@staticmethod
|
504 |
+
def _record_to_dict(record: asyncpg.Record) -> Dict[str, Any]:
|
505 |
+
"""
|
506 |
+
Convert a record returned from an age query to a dictionary
|
507 |
+
|
508 |
+
Args:
|
509 |
+
record (): a record from an age query result
|
510 |
+
|
511 |
+
Returns:
|
512 |
+
Dict[str, Any]: a dictionary representation of the record where
|
513 |
+
the dictionary key is the field name and the value is the
|
514 |
+
value converted to a python type
|
515 |
+
"""
|
516 |
+
# result holder
|
517 |
+
d = {}
|
518 |
+
|
519 |
+
# prebuild a mapping of vertex_id to vertex mappings to be used
|
520 |
+
# later to build edges
|
521 |
+
vertices = {}
|
522 |
+
for k in record.keys():
|
523 |
+
v = record[k]
|
524 |
+
# agtype comes back '{key: value}::type' which must be parsed
|
525 |
+
if isinstance(v, str) and "::" in v:
|
526 |
+
dtype = v.split("::")[-1]
|
527 |
+
v = v.split("::")[0]
|
528 |
+
if dtype == "vertex":
|
529 |
+
vertex = json.loads(v)
|
530 |
+
vertices[vertex["id"]] = vertex.get("properties")
|
531 |
+
|
532 |
+
# iterate returned fields and parse appropriately
|
533 |
+
for k in record.keys():
|
534 |
+
v = record[k]
|
535 |
+
if isinstance(v, str) and "::" in v:
|
536 |
+
dtype = v.split("::")[-1]
|
537 |
+
v = v.split("::")[0]
|
538 |
+
else:
|
539 |
+
dtype = ""
|
540 |
+
|
541 |
+
if dtype == "vertex":
|
542 |
+
vertex = json.loads(v)
|
543 |
+
field = json.loads(v).get("properties")
|
544 |
+
if not field:
|
545 |
+
field = {}
|
546 |
+
field["label"] = PGGraphStorage._decode_graph_label(vertex["label"])
|
547 |
+
d[k] = field
|
548 |
+
# convert edge from id-label->id by replacing id with node information
|
549 |
+
# we only do this if the vertex was also returned in the query
|
550 |
+
# this is an attempt to be consistent with neo4j implementation
|
551 |
+
elif dtype == "edge":
|
552 |
+
edge = json.loads(v)
|
553 |
+
d[k] = (
|
554 |
+
vertices.get(edge["start_id"], {}),
|
555 |
+
edge[
|
556 |
+
"label"
|
557 |
+
], # we don't use decode_graph_label(), since edge label is always "DIRECTED"
|
558 |
+
vertices.get(edge["end_id"], {}),
|
559 |
+
)
|
560 |
+
else:
|
561 |
+
d[k] = json.loads(v) if isinstance(v, str) else v
|
562 |
+
|
563 |
+
return d
|
564 |
+
|
565 |
+
@staticmethod
|
566 |
+
def _format_properties(
|
567 |
+
properties: Dict[str, Any], _id: Union[str, None] = None
|
568 |
+
) -> str:
|
569 |
+
"""
|
570 |
+
Convert a dictionary of properties to a string representation that
|
571 |
+
can be used in a cypher query insert/merge statement.
|
572 |
+
|
573 |
+
Args:
|
574 |
+
properties (Dict[str,str]): a dictionary containing node/edge properties
|
575 |
+
id (Union[str, None]): the id of the node or None if none exists
|
576 |
+
|
577 |
+
Returns:
|
578 |
+
str: the properties dictionary as a properly formatted string
|
579 |
+
"""
|
580 |
+
props = []
|
581 |
+
# wrap property key in backticks to escape
|
582 |
+
for k, v in properties.items():
|
583 |
+
prop = f"`{k}`: {json.dumps(v)}"
|
584 |
+
props.append(prop)
|
585 |
+
if _id is not None and "id" not in properties:
|
586 |
+
props.append(
|
587 |
+
f"id: {json.dumps(_id)}" if isinstance(_id, str) else f"id: {_id}"
|
588 |
+
)
|
589 |
+
return "{" + ", ".join(props) + "}"
|
590 |
+
|
591 |
+
@staticmethod
|
592 |
+
def _encode_graph_label(label: str) -> str:
|
593 |
+
"""
|
594 |
+
Since AGE suports only alphanumerical labels, we will encode generic label as HEX string
|
595 |
+
|
596 |
+
Args:
|
597 |
+
label (str): the original label
|
598 |
+
|
599 |
+
Returns:
|
600 |
+
str: the encoded label
|
601 |
+
"""
|
602 |
+
return "x" + label.encode().hex()
|
603 |
+
|
604 |
+
@staticmethod
|
605 |
+
def _decode_graph_label(encoded_label: str) -> str:
|
606 |
+
"""
|
607 |
+
Since AGE suports only alphanumerical labels, we will encode generic label as HEX string
|
608 |
+
|
609 |
+
Args:
|
610 |
+
encoded_label (str): the encoded label
|
611 |
+
|
612 |
+
Returns:
|
613 |
+
str: the decoded label
|
614 |
+
"""
|
615 |
+
return bytes.fromhex(encoded_label.removeprefix("x")).decode()
|
616 |
+
|
617 |
+
@staticmethod
|
618 |
+
def _get_col_name(field: str, idx: int) -> str:
|
619 |
+
"""
|
620 |
+
Convert a cypher return field to a pgsql select field
|
621 |
+
If possible keep the cypher column name, but create a generic name if necessary
|
622 |
+
|
623 |
+
Args:
|
624 |
+
field (str): a return field from a cypher query to be formatted for pgsql
|
625 |
+
idx (int): the position of the field in the return statement
|
626 |
+
|
627 |
+
Returns:
|
628 |
+
str: the field to be used in the pgsql select statement
|
629 |
+
"""
|
630 |
+
# remove white space
|
631 |
+
field = field.strip()
|
632 |
+
# if an alias is provided for the field, use it
|
633 |
+
if " as " in field:
|
634 |
+
return field.split(" as ")[-1].strip()
|
635 |
+
# if the return value is an unnamed primitive, give it a generic name
|
636 |
+
if field.isnumeric() or field in ("true", "false", "null"):
|
637 |
+
return f"column_{idx}"
|
638 |
+
# otherwise return the value stripping out some common special chars
|
639 |
+
return field.replace("(", "_").replace(")", "")
|
640 |
+
|
641 |
+
@staticmethod
|
642 |
+
def _wrap_query(query: str, graph_name: str, **params: str) -> str:
|
643 |
+
"""
|
644 |
+
Convert a cypher query to an Apache Age compatible
|
645 |
+
sql query by wrapping the cypher query in ag_catalog.cypher,
|
646 |
+
casting results to agtype and building a select statement
|
647 |
+
|
648 |
+
Args:
|
649 |
+
query (str): a valid cypher query
|
650 |
+
graph_name (str): the name of the graph to query
|
651 |
+
params (dict): parameters for the query
|
652 |
+
|
653 |
+
Returns:
|
654 |
+
str: an equivalent pgsql query
|
655 |
+
"""
|
656 |
+
|
657 |
+
# pgsql template
|
658 |
+
template = """SELECT {projection} FROM ag_catalog.cypher('{graph_name}', $$
|
659 |
+
{query}
|
660 |
+
$$) AS ({fields});"""
|
661 |
+
|
662 |
+
# if there are any returned fields they must be added to the pgsql query
|
663 |
+
if "return" in query.lower():
|
664 |
+
# parse return statement to identify returned fields
|
665 |
+
fields = (
|
666 |
+
query.lower()
|
667 |
+
.split("return")[-1]
|
668 |
+
.split("distinct")[-1]
|
669 |
+
.split("order by")[0]
|
670 |
+
.split("skip")[0]
|
671 |
+
.split("limit")[0]
|
672 |
+
.split(",")
|
673 |
+
)
|
674 |
+
|
675 |
+
# raise exception if RETURN * is found as we can't resolve the fields
|
676 |
+
if "*" in [x.strip() for x in fields]:
|
677 |
+
raise ValueError(
|
678 |
+
"AGE graph does not support 'RETURN *'"
|
679 |
+
+ " statements in Cypher queries"
|
680 |
+
)
|
681 |
+
|
682 |
+
# get pgsql formatted field names
|
683 |
+
fields = [
|
684 |
+
PGGraphStorage._get_col_name(field, idx) for idx, field in enumerate(fields)
|
685 |
+
]
|
686 |
+
|
687 |
+
# build resulting pgsql relation
|
688 |
+
fields_str = ", ".join(
|
689 |
+
[field.split(".")[-1] + " agtype" for field in fields]
|
690 |
+
)
|
691 |
+
|
692 |
+
# if no return statement we still need to return a single field of type agtype
|
693 |
+
else:
|
694 |
+
fields_str = "a agtype"
|
695 |
+
|
696 |
+
select_str = "*"
|
697 |
+
|
698 |
+
return template.format(
|
699 |
+
graph_name=graph_name,
|
700 |
+
query=query.format(**params),
|
701 |
+
fields=fields_str,
|
702 |
+
projection=select_str,
|
703 |
+
)
|
704 |
+
|
705 |
+
async def _query(self, query: str, readonly=True, **params: str) -> List[Dict[str, Any]]:
|
706 |
+
"""
|
707 |
+
Query the graph by taking a cypher query, converting it to an
|
708 |
+
age compatible query, executing it and converting the result
|
709 |
+
|
710 |
+
Args:
|
711 |
+
query (str): a cypher query to be executed
|
712 |
+
params (dict): parameters for the query
|
713 |
+
|
714 |
+
Returns:
|
715 |
+
List[Dict[str, Any]]: a list of dictionaries containing the result set
|
716 |
+
"""
|
717 |
+
# convert cypher query to pgsql/age query
|
718 |
+
wrapped_query = self._wrap_query(query, self.graph_name, **params)
|
719 |
+
|
720 |
+
# execute the query, rolling back on an error
|
721 |
+
try:
|
722 |
+
if readonly:
|
723 |
+
data = await self.db.query(wrapped_query, multirows=True, for_age=True)
|
724 |
+
else:
|
725 |
+
data = await self.db.execute(wrapped_query, for_age=True)
|
726 |
+
except Exception as e:
|
727 |
+
raise PGGraphQueryException(
|
728 |
+
{
|
729 |
+
"message": f"Error executing graph query: {query.format(**params)}",
|
730 |
+
"wrapped": wrapped_query,
|
731 |
+
"detail": str(e),
|
732 |
+
}
|
733 |
+
) from e
|
734 |
+
|
735 |
+
if data is None:
|
736 |
+
result = []
|
737 |
+
# decode records
|
738 |
+
else:
|
739 |
+
result = [PGGraphStorage._record_to_dict(d) for d in data]
|
740 |
+
|
741 |
+
return result
|
742 |
+
|
743 |
+
async def has_node(self, node_id: str) -> bool:
|
744 |
+
entity_name_label = node_id.strip('"')
|
745 |
+
|
746 |
+
query = """
|
747 |
+
MATCH (n:`{label}`) RETURN count(n) > 0 AS node_exists
|
748 |
+
"""
|
749 |
+
params = {"label": PGGraphStorage._encode_graph_label(entity_name_label)}
|
750 |
+
single_result = (await self._query(query, **params))[0]
|
751 |
+
logger.debug(
|
752 |
+
"{%s}:query:{%s}:result:{%s}",
|
753 |
+
inspect.currentframe().f_code.co_name,
|
754 |
+
query.format(**params),
|
755 |
+
single_result["node_exists"],
|
756 |
+
)
|
757 |
+
|
758 |
+
return single_result["node_exists"]
|
759 |
+
|
760 |
+
async def has_edge(self, source_node_id: str, target_node_id: str) -> bool:
|
761 |
+
entity_name_label_source = source_node_id.strip('"')
|
762 |
+
entity_name_label_target = target_node_id.strip('"')
|
763 |
+
|
764 |
+
query = """
|
765 |
+
MATCH (a:`{src_label}`)-[r]-(b:`{tgt_label}`)
|
766 |
+
RETURN COUNT(r) > 0 AS edge_exists
|
767 |
+
"""
|
768 |
+
params = {
|
769 |
+
"src_label": PGGraphStorage._encode_graph_label(entity_name_label_source),
|
770 |
+
"tgt_label": PGGraphStorage._encode_graph_label(entity_name_label_target),
|
771 |
+
}
|
772 |
+
single_result = (await self._query(query, **params))[0]
|
773 |
+
logger.debug(
|
774 |
+
"{%s}:query:{%s}:result:{%s}",
|
775 |
+
inspect.currentframe().f_code.co_name,
|
776 |
+
query.format(**params),
|
777 |
+
single_result["edge_exists"],
|
778 |
+
)
|
779 |
+
return single_result["edge_exists"]
|
780 |
+
|
781 |
+
async def get_node(self, node_id: str) -> Union[dict, None]:
|
782 |
+
entity_name_label = node_id.strip('"')
|
783 |
+
query = """
|
784 |
+
MATCH (n:`{label}`) RETURN n
|
785 |
+
"""
|
786 |
+
params = {"label": PGGraphStorage._encode_graph_label(entity_name_label)}
|
787 |
+
record = await self._query(query, **params)
|
788 |
+
if record:
|
789 |
+
node = record[0]
|
790 |
+
node_dict = node["n"]
|
791 |
+
logger.debug(
|
792 |
+
"{%s}: query: {%s}, result: {%s}",
|
793 |
+
inspect.currentframe().f_code.co_name,
|
794 |
+
query.format(**params),
|
795 |
+
node_dict,
|
796 |
+
)
|
797 |
+
return node_dict
|
798 |
+
return None
|
799 |
+
|
800 |
+
async def node_degree(self, node_id: str) -> int:
|
801 |
+
entity_name_label = node_id.strip('"')
|
802 |
+
|
803 |
+
query = """
|
804 |
+
MATCH (n:`{label}`)-[]->(x)
|
805 |
+
RETURN count(x) AS total_edge_count
|
806 |
+
"""
|
807 |
+
params = {"label": PGGraphStorage._encode_graph_label(entity_name_label)}
|
808 |
+
record = (await self._query(query, **params))[0]
|
809 |
+
if record:
|
810 |
+
edge_count = int(record["total_edge_count"])
|
811 |
+
logger.debug(
|
812 |
+
"{%s}:query:{%s}:result:{%s}",
|
813 |
+
inspect.currentframe().f_code.co_name,
|
814 |
+
query.format(**params),
|
815 |
+
edge_count,
|
816 |
+
)
|
817 |
+
return edge_count
|
818 |
+
|
819 |
+
async def edge_degree(self, src_id: str, tgt_id: str) -> int:
|
820 |
+
entity_name_label_source = src_id.strip('"')
|
821 |
+
entity_name_label_target = tgt_id.strip('"')
|
822 |
+
src_degree = await self.node_degree(entity_name_label_source)
|
823 |
+
trg_degree = await self.node_degree(entity_name_label_target)
|
824 |
+
|
825 |
+
# Convert None to 0 for addition
|
826 |
+
src_degree = 0 if src_degree is None else src_degree
|
827 |
+
trg_degree = 0 if trg_degree is None else trg_degree
|
828 |
+
|
829 |
+
degrees = int(src_degree) + int(trg_degree)
|
830 |
+
logger.debug(
|
831 |
+
"{%s}:query:src_Degree+trg_degree:result:{%s}",
|
832 |
+
inspect.currentframe().f_code.co_name,
|
833 |
+
degrees,
|
834 |
+
)
|
835 |
+
return degrees
|
836 |
+
|
837 |
+
async def get_edge(
|
838 |
+
self, source_node_id: str, target_node_id: str
|
839 |
+
) -> Union[dict, None]:
|
840 |
+
"""
|
841 |
+
Find all edges between nodes of two given labels
|
842 |
+
|
843 |
+
Args:
|
844 |
+
source_node_label (str): Label of the source nodes
|
845 |
+
target_node_label (str): Label of the target nodes
|
846 |
+
|
847 |
+
Returns:
|
848 |
+
list: List of all relationships/edges found
|
849 |
+
"""
|
850 |
+
entity_name_label_source = source_node_id.strip('"')
|
851 |
+
entity_name_label_target = target_node_id.strip('"')
|
852 |
+
|
853 |
+
query = """
|
854 |
+
MATCH (a:`{src_label}`)-[r]->(b:`{tgt_label}`)
|
855 |
+
RETURN properties(r) as edge_properties
|
856 |
+
LIMIT 1
|
857 |
+
"""
|
858 |
+
params = {
|
859 |
+
"src_label": PGGraphStorage._encode_graph_label(entity_name_label_source),
|
860 |
+
"tgt_label": PGGraphStorage._encode_graph_label(entity_name_label_target),
|
861 |
+
}
|
862 |
+
record = await self._query(query, **params)
|
863 |
+
if record and record[0] and record[0]["edge_properties"]:
|
864 |
+
result = record[0]["edge_properties"]
|
865 |
+
logger.debug(
|
866 |
+
"{%s}:query:{%s}:result:{%s}",
|
867 |
+
inspect.currentframe().f_code.co_name,
|
868 |
+
query.format(**params),
|
869 |
+
result,
|
870 |
+
)
|
871 |
+
return result
|
872 |
+
|
873 |
+
async def get_node_edges(self, source_node_id: str) -> List[Tuple[str, str]]:
|
874 |
+
"""
|
875 |
+
Retrieves all edges (relationships) for a particular node identified by its label.
|
876 |
+
:return: List of dictionaries containing edge information
|
877 |
+
"""
|
878 |
+
node_label = source_node_id.strip('"')
|
879 |
+
|
880 |
+
query = """
|
881 |
+
MATCH (n:`{label}`)
|
882 |
+
OPTIONAL MATCH (n)-[r]-(connected)
|
883 |
+
RETURN n, r, connected
|
884 |
+
"""
|
885 |
+
params = {"label": PGGraphStorage._encode_graph_label(node_label)}
|
886 |
+
results = await self._query(query, **params)
|
887 |
+
edges = []
|
888 |
+
for record in results:
|
889 |
+
source_node = record["n"] if record["n"] else None
|
890 |
+
connected_node = record["connected"] if record["connected"] else None
|
891 |
+
|
892 |
+
source_label = (
|
893 |
+
source_node["label"] if source_node and source_node["label"] else None
|
894 |
+
)
|
895 |
+
target_label = (
|
896 |
+
connected_node["label"]
|
897 |
+
if connected_node and connected_node["label"]
|
898 |
+
else None
|
899 |
+
)
|
900 |
+
|
901 |
+
if source_label and target_label:
|
902 |
+
edges.append((source_label, target_label))
|
903 |
+
|
904 |
+
return edges
|
905 |
+
|
906 |
+
@retry(
|
907 |
+
stop=stop_after_attempt(3),
|
908 |
+
wait=wait_exponential(multiplier=1, min=4, max=10),
|
909 |
+
retry=retry_if_exception_type((PGGraphQueryException,)),
|
910 |
+
)
|
911 |
+
async def upsert_node(self, node_id: str, node_data: Dict[str, Any]):
|
912 |
+
"""
|
913 |
+
Upsert a node in the AGE database.
|
914 |
+
|
915 |
+
Args:
|
916 |
+
node_id: The unique identifier for the node (used as label)
|
917 |
+
node_data: Dictionary of node properties
|
918 |
+
"""
|
919 |
+
label = node_id.strip('"')
|
920 |
+
properties = node_data
|
921 |
+
|
922 |
+
query = """
|
923 |
+
MERGE (n:`{label}`)
|
924 |
+
SET n += {properties}
|
925 |
+
"""
|
926 |
+
params = {
|
927 |
+
"label": PGGraphStorage._encode_graph_label(label),
|
928 |
+
"properties": PGGraphStorage._format_properties(properties),
|
929 |
+
}
|
930 |
+
try:
|
931 |
+
await self._query(query, readonly=False, **params)
|
932 |
+
logger.debug(
|
933 |
+
"Upserted node with label '{%s}' and properties: {%s}",
|
934 |
+
label,
|
935 |
+
properties,
|
936 |
+
)
|
937 |
+
except Exception as e:
|
938 |
+
logger.error("Error during upsert: {%s}", e)
|
939 |
+
raise
|
940 |
+
|
941 |
+
@retry(
|
942 |
+
stop=stop_after_attempt(3),
|
943 |
+
wait=wait_exponential(multiplier=1, min=4, max=10),
|
944 |
+
retry=retry_if_exception_type((PGGraphQueryException,)),
|
945 |
+
)
|
946 |
+
async def upsert_edge(
|
947 |
+
self, source_node_id: str, target_node_id: str, edge_data: Dict[str, Any]
|
948 |
+
):
|
949 |
+
"""
|
950 |
+
Upsert an edge and its properties between two nodes identified by their labels.
|
951 |
+
|
952 |
+
Args:
|
953 |
+
source_node_id (str): Label of the source node (used as identifier)
|
954 |
+
target_node_id (str): Label of the target node (used as identifier)
|
955 |
+
edge_data (dict): Dictionary of properties to set on the edge
|
956 |
+
"""
|
957 |
+
source_node_label = source_node_id.strip('"')
|
958 |
+
target_node_label = target_node_id.strip('"')
|
959 |
+
edge_properties = edge_data
|
960 |
+
|
961 |
+
query = """
|
962 |
+
MATCH (source:`{src_label}`)
|
963 |
+
WITH source
|
964 |
+
MATCH (target:`{tgt_label}`)
|
965 |
+
MERGE (source)-[r:DIRECTED]->(target)
|
966 |
+
SET r += {properties}
|
967 |
+
RETURN r
|
968 |
+
"""
|
969 |
+
params = {
|
970 |
+
"src_label": PGGraphStorage._encode_graph_label(source_node_label),
|
971 |
+
"tgt_label": PGGraphStorage._encode_graph_label(target_node_label),
|
972 |
+
"properties": PGGraphStorage._format_properties(edge_properties),
|
973 |
+
}
|
974 |
+
try:
|
975 |
+
await self._query(query, readonly=False, **params)
|
976 |
+
logger.debug(
|
977 |
+
"Upserted edge from '{%s}' to '{%s}' with properties: {%s}",
|
978 |
+
source_node_label,
|
979 |
+
target_node_label,
|
980 |
+
edge_properties,
|
981 |
+
)
|
982 |
+
except Exception as e:
|
983 |
+
logger.error("Error during edge upsert: {%s}", e)
|
984 |
+
raise
|
985 |
+
|
986 |
+
async def _node2vec_embed(self):
|
987 |
+
print("Implemented but never called.")
|
988 |
+
|
989 |
+
|
990 |
+
NAMESPACE_TABLE_MAP = {
|
991 |
+
"full_docs": "LIGHTRAG_DOC_FULL",
|
992 |
+
"text_chunks": "LIGHTRAG_DOC_CHUNKS",
|
993 |
+
"chunks": "LIGHTRAG_DOC_CHUNKS",
|
994 |
+
"entities": "LIGHTRAG_VDB_ENTITY",
|
995 |
+
"relationships": "LIGHTRAG_VDB_RELATION",
|
996 |
+
"doc_status": "LIGHTRAG_DOC_STATUS",
|
997 |
+
"llm_response_cache": "LIGHTRAG_LLM_CACHE",
|
998 |
+
}
|
999 |
+
|
1000 |
+
|
1001 |
+
TABLES = {
|
1002 |
+
"LIGHTRAG_DOC_FULL": {
|
1003 |
+
"ddl": """CREATE TABLE LIGHTRAG_DOC_FULL (
|
1004 |
+
id VARCHAR(255),
|
1005 |
+
workspace VARCHAR(255),
|
1006 |
+
doc_name VARCHAR(1024),
|
1007 |
+
content TEXT,
|
1008 |
+
meta JSONB,
|
1009 |
+
createtime TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
|
1010 |
+
updatetime TIMESTAMP,
|
1011 |
+
CONSTRAINT LIGHTRAG_DOC_FULL_PK PRIMARY KEY (workspace, id)
|
1012 |
+
)"""
|
1013 |
+
},
|
1014 |
+
"LIGHTRAG_DOC_CHUNKS": {
|
1015 |
+
"ddl": """CREATE TABLE LIGHTRAG_DOC_CHUNKS (
|
1016 |
+
id VARCHAR(255),
|
1017 |
+
workspace VARCHAR(255),
|
1018 |
+
full_doc_id VARCHAR(256),
|
1019 |
+
chunk_order_index INTEGER,
|
1020 |
+
tokens INTEGER,
|
1021 |
+
content TEXT,
|
1022 |
+
content_vector VECTOR,
|
1023 |
+
createtime TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
|
1024 |
+
updatetime TIMESTAMP,
|
1025 |
+
CONSTRAINT LIGHTRAG_DOC_CHUNKS_PK PRIMARY KEY (workspace, id)
|
1026 |
+
)"""
|
1027 |
+
},
|
1028 |
+
"LIGHTRAG_VDB_ENTITY": {
|
1029 |
+
"ddl": """CREATE TABLE LIGHTRAG_VDB_ENTITY (
|
1030 |
+
id VARCHAR(255),
|
1031 |
+
workspace VARCHAR(255),
|
1032 |
+
entity_name VARCHAR(255),
|
1033 |
+
content TEXT,
|
1034 |
+
content_vector VECTOR,
|
1035 |
+
createtime TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
|
1036 |
+
updatetime TIMESTAMP,
|
1037 |
+
CONSTRAINT LIGHTRAG_VDB_ENTITY_PK PRIMARY KEY (workspace, id)
|
1038 |
+
)"""
|
1039 |
+
},
|
1040 |
+
"LIGHTRAG_VDB_RELATION": {
|
1041 |
+
"ddl": """CREATE TABLE LIGHTRAG_VDB_RELATION (
|
1042 |
+
id VARCHAR(255),
|
1043 |
+
workspace VARCHAR(255),
|
1044 |
+
source_id VARCHAR(256),
|
1045 |
+
target_id VARCHAR(256),
|
1046 |
+
content TEXT,
|
1047 |
+
content_vector VECTOR,
|
1048 |
+
createtime TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
|
1049 |
+
updatetime TIMESTAMP,
|
1050 |
+
CONSTRAINT LIGHTRAG_VDB_RELATION_PK PRIMARY KEY (workspace, id)
|
1051 |
+
)"""
|
1052 |
+
},
|
1053 |
+
"LIGHTRAG_LLM_CACHE": {
|
1054 |
+
"ddl": """CREATE TABLE LIGHTRAG_LLM_CACHE (
|
1055 |
+
workspace varchar(255) NOT NULL,
|
1056 |
+
id varchar(255) NOT NULL,
|
1057 |
+
mode varchar(32) NOT NULL,
|
1058 |
+
original_prompt TEXT,
|
1059 |
+
return TEXT,
|
1060 |
+
createtime TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
|
1061 |
+
updatetime TIMESTAMP,
|
1062 |
+
CONSTRAINT LIGHTRAG_LLM_CACHE_PK PRIMARY KEY (workspace, id)
|
1063 |
+
)"""
|
1064 |
+
},
|
1065 |
+
"LIGHTRAG_DOC_STATUS": {
|
1066 |
+
"ddl": """CREATE TABLE LIGHTRAG_DOC_STATUS (
|
1067 |
+
workspace varchar(255) NOT NULL,
|
1068 |
+
id varchar(255) NOT NULL,
|
1069 |
+
content_summary varchar(255) NULL,
|
1070 |
+
content_length int4 NULL,
|
1071 |
+
chunks_count int4 NULL,
|
1072 |
+
status varchar(64) NULL,
|
1073 |
+
created_at timestamp DEFAULT CURRENT_TIMESTAMP NULL,
|
1074 |
+
updated_at timestamp DEFAULT CURRENT_TIMESTAMP NULL,
|
1075 |
+
CONSTRAINT LIGHTRAG_DOC_STATUS_PK PRIMARY KEY (workspace, id)
|
1076 |
+
)"""
|
1077 |
+
},
|
1078 |
+
}
|
1079 |
+
|
1080 |
+
|
1081 |
+
|
1082 |
+
SQL_TEMPLATES = {
|
1083 |
+
# SQL for KVStorage
|
1084 |
+
"get_by_id_full_docs": """SELECT id, COALESCE(content, '') as content
|
1085 |
+
FROM LIGHTRAG_DOC_FULL WHERE workspace=$1 AND id=$2
|
1086 |
+
""",
|
1087 |
+
"get_by_id_text_chunks": """SELECT id, tokens, COALESCE(content, '') as content,
|
1088 |
+
chunk_order_index, full_doc_id
|
1089 |
+
FROM LIGHTRAG_DOC_CHUNKS WHERE workspace=$1 AND id=$2
|
1090 |
+
""",
|
1091 |
+
"get_by_id_llm_response_cache": """SELECT id, original_prompt, COALESCE("return", '') as "return", mode
|
1092 |
+
FROM LIGHTRAG_LLM_CACHE WHERE workspace=$1 AND mode=$2
|
1093 |
+
""",
|
1094 |
+
"get_by_ids_full_docs": """SELECT id, COALESCE(content, '') as content
|
1095 |
+
FROM LIGHTRAG_DOC_FULL WHERE workspace=$1 AND id IN ({ids})
|
1096 |
+
""",
|
1097 |
+
"get_by_ids_text_chunks": """SELECT id, tokens, COALESCE(content, '') as content,
|
1098 |
+
chunk_order_index, full_doc_id
|
1099 |
+
FROM LIGHTRAG_DOC_CHUNKS WHERE workspace=$1 AND id IN ({ids})
|
1100 |
+
""",
|
1101 |
+
"get_by_ids_llm_response_cache": """SELECT id, original_prompt, COALESCE("return", '') as "return", mode
|
1102 |
+
FROM LIGHTRAG_LLM_CACHE WHERE workspace=$1 AND mode= IN ({ids})
|
1103 |
+
""",
|
1104 |
+
"filter_keys": "SELECT id FROM {table_name} WHERE workspace=$1 AND id IN ({ids})",
|
1105 |
+
"upsert_doc_full": """INSERT INTO LIGHTRAG_DOC_FULL (id, content, workspace)
|
1106 |
+
VALUES ($1, $2, $3)
|
1107 |
+
ON CONFLICT (workspace,id) DO UPDATE
|
1108 |
+
SET content = $2, updatetime = CURRENT_TIMESTAMP
|
1109 |
+
""",
|
1110 |
+
"upsert_llm_response_cache": """INSERT INTO LIGHTRAG_LLM_CACHE(workspace,id,original_prompt,"return",mode)
|
1111 |
+
VALUES ($1, $2, $3, $4, $5)
|
1112 |
+
ON CONFLICT (workspace,id) DO UPDATE
|
1113 |
+
SET original_prompt = EXCLUDED.original_prompt,
|
1114 |
+
"return"=EXCLUDED."return",
|
1115 |
+
mode=EXCLUDED.mode,
|
1116 |
+
updatetime = CURRENT_TIMESTAMP
|
1117 |
+
""",
|
1118 |
+
"upsert_chunk": """INSERT INTO LIGHTRAG_DOC_CHUNKS (workspace, id, tokens,
|
1119 |
+
chunk_order_index, full_doc_id, content, content_vector)
|
1120 |
+
VALUES ($1, $2, $3, $4, $5, $6, $7)
|
1121 |
+
ON CONFLICT (workspace,id) DO UPDATE
|
1122 |
+
SET tokens=EXCLUDED.tokens,
|
1123 |
+
chunk_order_index=EXCLUDED.chunk_order_index,
|
1124 |
+
full_doc_id=EXCLUDED.full_doc_id,
|
1125 |
+
content = EXCLUDED.content,
|
1126 |
+
content_vector=EXCLUDED.content_vector,
|
1127 |
+
updatetime = CURRENT_TIMESTAMP
|
1128 |
+
""",
|
1129 |
+
"upsert_entity": """INSERT INTO LIGHTRAG_VDB_ENTITY (workspace, id, entity_name, content, content_vector)
|
1130 |
+
VALUES ($1, $2, $3, $4, $5, $6)
|
1131 |
+
ON CONFLICT (workspace,id) DO UPDATE
|
1132 |
+
SET entity_name=EXCLUDED.entity_name,
|
1133 |
+
content=EXCLUDED.content,
|
1134 |
+
content_vector=EXCLUDED.content_vector,
|
1135 |
+
updatetime=CURRENT_TIMESTAMP
|
1136 |
+
""",
|
1137 |
+
"upsert_relationship": """INSERT INTO LIGHTRAG_VDB_RELATION (workspace, id, source_id,
|
1138 |
+
target_id, content, content_vector)
|
1139 |
+
VALUES ($1, $2, $3, $4, $5, $6)
|
1140 |
+
ON CONFLICT (workspace,id) DO UPDATE
|
1141 |
+
SET source_id=EXCLUDED.source_id,
|
1142 |
+
target_id=EXCLUDED.target_id,
|
1143 |
+
content=EXCLUDED.content,
|
1144 |
+
content_vector=EXCLUDED.content_vector, updatetime = CURRENT_TIMESTAMP
|
1145 |
+
""",
|
1146 |
+
# SQL for VectorStorage
|
1147 |
+
"entities": """SELECT entity_name FROM
|
1148 |
+
(SELECT id, entity_name, 1 - (content_vector <=> '[{embedding_string}]'::vector) as distance
|
1149 |
+
FROM LIGHTRAG_VDB_ENTITY where workspace=$1)
|
1150 |
+
WHERE distance>$2 ORDER BY distance DESC LIMIT $3
|
1151 |
+
""",
|
1152 |
+
"relationships": """SELECT source_id as src_id, target_id as tgt_id FROM
|
1153 |
+
(SELECT id, source_id,target_id, 1 - (content_vector <=> '[{embedding_string}]'::vector) as distance
|
1154 |
+
FROM LIGHTRAG_VDB_RELATION where workspace=$1)
|
1155 |
+
WHERE distance>$2 ORDER BY distance DESC LIMIT $3
|
1156 |
+
""",
|
1157 |
+
"chunks": """SELECT id FROM
|
1158 |
+
(SELECT id, 1 - (content_vector <=> '[{embedding_string}]'::vector) as distance
|
1159 |
+
FROM LIGHTRAG_DOC_CHUNKS where workspace=$1)
|
1160 |
+
WHERE distance>$2 ORDER BY distance DESC LIMIT $3
|
1161 |
+
"""
|
1162 |
+
}
|
lightrag/lightrag.py
CHANGED
@@ -83,8 +83,12 @@ ChromaVectorDBStorage = lazy_external_import(".kg.chroma_impl", "ChromaVectorDBS
|
|
83 |
TiDBKVStorage = lazy_external_import(".kg.tidb_impl", "TiDBKVStorage")
|
84 |
TiDBVectorDBStorage = lazy_external_import(".kg.tidb_impl", "TiDBVectorDBStorage")
|
85 |
TiDBGraphStorage = lazy_external_import(".kg.tidb_impl", "TiDBGraphStorage")
|
|
|
|
|
86 |
AGEStorage = lazy_external_import(".kg.age_impl", "AGEStorage")
|
|
|
87 |
GremlinStorage = lazy_external_import(".kg.gremlin_impl", "GremlinStorage")
|
|
|
88 |
|
89 |
|
90 |
def always_get_an_event_loop() -> asyncio.AbstractEventLoop:
|
@@ -295,6 +299,10 @@ class LightRAG:
|
|
295 |
"Neo4JStorage": Neo4JStorage,
|
296 |
"OracleGraphStorage": OracleGraphStorage,
|
297 |
"AGEStorage": AGEStorage,
|
|
|
|
|
|
|
|
|
298 |
"TiDBGraphStorage": TiDBGraphStorage,
|
299 |
"GremlinStorage": GremlinStorage,
|
300 |
# "ArangoDBStorage": ArangoDBStorage
|
|
|
83 |
TiDBKVStorage = lazy_external_import(".kg.tidb_impl", "TiDBKVStorage")
|
84 |
TiDBVectorDBStorage = lazy_external_import(".kg.tidb_impl", "TiDBVectorDBStorage")
|
85 |
TiDBGraphStorage = lazy_external_import(".kg.tidb_impl", "TiDBGraphStorage")
|
86 |
+
PGKVStorage = lazy_external_import(".kg.postgres_impl", "PGKVStorage")
|
87 |
+
PGVectorStorage = lazy_external_import(".kg.postgres_impl", "PGVectorStorage")
|
88 |
AGEStorage = lazy_external_import(".kg.age_impl", "AGEStorage")
|
89 |
+
PGGraphStorage = lazy_external_import(".kg.postgres_impl", "PGGraphStorage")
|
90 |
GremlinStorage = lazy_external_import(".kg.gremlin_impl", "GremlinStorage")
|
91 |
+
PGDocStatusStorage = lazy_external_import(".kg.postgres_impl", "PGDocStatusStorage")
|
92 |
|
93 |
|
94 |
def always_get_an_event_loop() -> asyncio.AbstractEventLoop:
|
|
|
299 |
"Neo4JStorage": Neo4JStorage,
|
300 |
"OracleGraphStorage": OracleGraphStorage,
|
301 |
"AGEStorage": AGEStorage,
|
302 |
+
"PGGraphStorage": PGGraphStorage,
|
303 |
+
"PGKVStorage": PGKVStorage,
|
304 |
+
"PGDocStatusStorage": PGDocStatusStorage,
|
305 |
+
"PGVectorStorage": PGVectorStorage,
|
306 |
"TiDBGraphStorage": TiDBGraphStorage,
|
307 |
"GremlinStorage": GremlinStorage,
|
308 |
# "ArangoDBStorage": ArangoDBStorage
|