Commit
·
3aa449a
1
Parent(s):
3d203c4
Add ability to passadditional parameters to ollama library like host and timeout
Browse files- .gitignore +121 -0
- examples/lightrag_ollama_demo.py +22 -9
- lightrag/lightrag.py +2 -1
- lightrag/llm.py +6 -3
.gitignore
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Byte-compiled / optimized / DLL files
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
|
6 |
+
# C extensions
|
7 |
+
*.so
|
8 |
+
|
9 |
+
# Distribution / packaging
|
10 |
+
.Python
|
11 |
+
env/
|
12 |
+
venv/
|
13 |
+
ENV/
|
14 |
+
env.bak/
|
15 |
+
venv.bak/
|
16 |
+
*.egg
|
17 |
+
*.egg-info/
|
18 |
+
dist/
|
19 |
+
build/
|
20 |
+
*.whl
|
21 |
+
|
22 |
+
# PyInstaller
|
23 |
+
# Usually these files are written by a python script from a template
|
24 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
25 |
+
*.manifest
|
26 |
+
*.spec
|
27 |
+
|
28 |
+
# Installer logs
|
29 |
+
pip-log.txt
|
30 |
+
pip-delete-this-directory.txt
|
31 |
+
|
32 |
+
# Unit test / coverage reports
|
33 |
+
htmlcov/
|
34 |
+
.tox/
|
35 |
+
.nox/
|
36 |
+
.coverage
|
37 |
+
.coverage.*
|
38 |
+
.cache
|
39 |
+
nosetests.xml
|
40 |
+
coverage.xml
|
41 |
+
*.cover
|
42 |
+
*.py,cover
|
43 |
+
.hypothesis/
|
44 |
+
|
45 |
+
# Translations
|
46 |
+
*.mo
|
47 |
+
*.pot
|
48 |
+
|
49 |
+
# Django stuff:
|
50 |
+
*.log
|
51 |
+
local_settings.py
|
52 |
+
db.sqlite3
|
53 |
+
db.sqlite3-journal
|
54 |
+
|
55 |
+
# Flask stuff:
|
56 |
+
instance/
|
57 |
+
.webassets-cache
|
58 |
+
|
59 |
+
# Scrapy stuff:
|
60 |
+
.scrapy
|
61 |
+
|
62 |
+
# Sphinx documentation
|
63 |
+
docs/_build/
|
64 |
+
|
65 |
+
# PyBuilder
|
66 |
+
target/
|
67 |
+
|
68 |
+
# Jupyter Notebook
|
69 |
+
.ipynb_checkpoints
|
70 |
+
|
71 |
+
# IPython
|
72 |
+
profile_default/
|
73 |
+
ipython_config.py
|
74 |
+
|
75 |
+
# pyenv
|
76 |
+
.python-version
|
77 |
+
|
78 |
+
# celery beat schedule file
|
79 |
+
celerybeat-schedule
|
80 |
+
|
81 |
+
# SageMath parsed files
|
82 |
+
*.sage.py
|
83 |
+
|
84 |
+
# Environments
|
85 |
+
.env
|
86 |
+
.env.*
|
87 |
+
.venv
|
88 |
+
.venv.*
|
89 |
+
env/
|
90 |
+
venv/
|
91 |
+
ENV/
|
92 |
+
env.bak/
|
93 |
+
venv.bak/
|
94 |
+
|
95 |
+
# Spyder project settings
|
96 |
+
.spyderproject
|
97 |
+
.spyderworkspace
|
98 |
+
|
99 |
+
# Rope project settings
|
100 |
+
.ropeproject
|
101 |
+
|
102 |
+
# mkdocs documentation
|
103 |
+
/site
|
104 |
+
|
105 |
+
# mypy
|
106 |
+
.mypy_cache/
|
107 |
+
.dmypy.json
|
108 |
+
dmypy.json
|
109 |
+
|
110 |
+
# Pyre type checker
|
111 |
+
.pyre/
|
112 |
+
|
113 |
+
# pytype static type analyzer
|
114 |
+
.pytype/
|
115 |
+
|
116 |
+
# Cython debug symbols
|
117 |
+
cython_debug/
|
118 |
+
|
119 |
+
# Example files
|
120 |
+
book.txt
|
121 |
+
dickens/
|
examples/lightrag_ollama_demo.py
CHANGED
@@ -1,4 +1,7 @@
|
|
1 |
import os
|
|
|
|
|
|
|
2 |
|
3 |
from lightrag import LightRAG, QueryParam
|
4 |
from lightrag.llm import ollama_model_complete, ollama_embedding
|
@@ -11,15 +14,17 @@ if not os.path.exists(WORKING_DIR):
|
|
11 |
|
12 |
rag = LightRAG(
|
13 |
working_dir=WORKING_DIR,
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
16 |
embedding_func=EmbeddingFunc(
|
17 |
embedding_dim=768,
|
18 |
max_token_size=8192,
|
19 |
func=lambda texts: ollama_embedding(
|
20 |
-
texts,
|
21 |
-
|
22 |
-
)
|
23 |
),
|
24 |
)
|
25 |
|
@@ -28,13 +33,21 @@ with open("./book.txt") as f:
|
|
28 |
rag.insert(f.read())
|
29 |
|
30 |
# Perform naive search
|
31 |
-
print(
|
|
|
|
|
32 |
|
33 |
# Perform local search
|
34 |
-
print(
|
|
|
|
|
35 |
|
36 |
# Perform global search
|
37 |
-
print(
|
|
|
|
|
38 |
|
39 |
# Perform hybrid search
|
40 |
-
print(
|
|
|
|
|
|
1 |
import os
|
2 |
+
import logging
|
3 |
+
|
4 |
+
logging.basicConfig(format="%(levelname)s:%(message)s", level=logging.DEBUG)
|
5 |
|
6 |
from lightrag import LightRAG, QueryParam
|
7 |
from lightrag.llm import ollama_model_complete, ollama_embedding
|
|
|
14 |
|
15 |
rag = LightRAG(
|
16 |
working_dir=WORKING_DIR,
|
17 |
+
tiktoken_model_name="mistral:7b",
|
18 |
+
llm_model_func=ollama_model_complete,
|
19 |
+
llm_model_name="mistral:7b",
|
20 |
+
llm_model_max_async=2,
|
21 |
+
llm_model_kwargs={"host": "http://localhost:11434"},
|
22 |
embedding_func=EmbeddingFunc(
|
23 |
embedding_dim=768,
|
24 |
max_token_size=8192,
|
25 |
func=lambda texts: ollama_embedding(
|
26 |
+
texts, embed_model="nomic-embed-text", host="http://localhost:11434"
|
27 |
+
),
|
|
|
28 |
),
|
29 |
)
|
30 |
|
|
|
33 |
rag.insert(f.read())
|
34 |
|
35 |
# Perform naive search
|
36 |
+
print(
|
37 |
+
rag.query("What are the top themes in this story?", param=QueryParam(mode="naive"))
|
38 |
+
)
|
39 |
|
40 |
# Perform local search
|
41 |
+
print(
|
42 |
+
rag.query("What are the top themes in this story?", param=QueryParam(mode="local"))
|
43 |
+
)
|
44 |
|
45 |
# Perform global search
|
46 |
+
print(
|
47 |
+
rag.query("What are the top themes in this story?", param=QueryParam(mode="global"))
|
48 |
+
)
|
49 |
|
50 |
# Perform hybrid search
|
51 |
+
print(
|
52 |
+
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid"))
|
53 |
+
)
|
lightrag/lightrag.py
CHANGED
@@ -86,6 +86,7 @@ class LightRAG:
|
|
86 |
llm_model_name: str = 'meta-llama/Llama-3.2-1B-Instruct'#'meta-llama/Llama-3.2-1B'#'google/gemma-2-2b-it'
|
87 |
llm_model_max_token_size: int = 32768
|
88 |
llm_model_max_async: int = 16
|
|
|
89 |
|
90 |
# storage
|
91 |
key_string_value_json_storage_cls: Type[BaseKVStorage] = JsonKVStorage
|
@@ -158,7 +159,7 @@ class LightRAG:
|
|
158 |
)
|
159 |
|
160 |
self.llm_model_func = limit_async_func_call(self.llm_model_max_async)(
|
161 |
-
partial(self.llm_model_func, hashing_kv=self.llm_response_cache)
|
162 |
)
|
163 |
|
164 |
def insert(self, string_or_strings):
|
|
|
86 |
llm_model_name: str = 'meta-llama/Llama-3.2-1B-Instruct'#'meta-llama/Llama-3.2-1B'#'google/gemma-2-2b-it'
|
87 |
llm_model_max_token_size: int = 32768
|
88 |
llm_model_max_async: int = 16
|
89 |
+
llm_model_kwargs: dict = field(default_factory=dict)
|
90 |
|
91 |
# storage
|
92 |
key_string_value_json_storage_cls: Type[BaseKVStorage] = JsonKVStorage
|
|
|
159 |
)
|
160 |
|
161 |
self.llm_model_func = limit_async_func_call(self.llm_model_max_async)(
|
162 |
+
partial(self.llm_model_func, hashing_kv=self.llm_response_cache, **self.llm_model_kwargs)
|
163 |
)
|
164 |
|
165 |
def insert(self, string_or_strings):
|
lightrag/llm.py
CHANGED
@@ -98,8 +98,10 @@ async def ollama_model_if_cache(
|
|
98 |
) -> str:
|
99 |
kwargs.pop("max_tokens", None)
|
100 |
kwargs.pop("response_format", None)
|
|
|
|
|
101 |
|
102 |
-
ollama_client = ollama.AsyncClient()
|
103 |
messages = []
|
104 |
if system_prompt:
|
105 |
messages.append({"role": "system", "content": system_prompt})
|
@@ -193,10 +195,11 @@ async def hf_embedding(texts: list[str], tokenizer, embed_model) -> np.ndarray:
|
|
193 |
embeddings = outputs.last_hidden_state.mean(dim=1)
|
194 |
return embeddings.detach().numpy()
|
195 |
|
196 |
-
async def ollama_embedding(texts: list[str], embed_model) -> np.ndarray:
|
197 |
embed_text = []
|
|
|
198 |
for text in texts:
|
199 |
-
data =
|
200 |
embed_text.append(data["embedding"])
|
201 |
|
202 |
return embed_text
|
|
|
98 |
) -> str:
|
99 |
kwargs.pop("max_tokens", None)
|
100 |
kwargs.pop("response_format", None)
|
101 |
+
host = kwargs.pop("host", None)
|
102 |
+
timeout = kwargs.pop("timeout", None)
|
103 |
|
104 |
+
ollama_client = ollama.AsyncClient(host=host, timeout=timeout)
|
105 |
messages = []
|
106 |
if system_prompt:
|
107 |
messages.append({"role": "system", "content": system_prompt})
|
|
|
195 |
embeddings = outputs.last_hidden_state.mean(dim=1)
|
196 |
return embeddings.detach().numpy()
|
197 |
|
198 |
+
async def ollama_embedding(texts: list[str], embed_model, **kwargs) -> np.ndarray:
|
199 |
embed_text = []
|
200 |
+
ollama_client = ollama.Client(**kwargs)
|
201 |
for text in texts:
|
202 |
+
data = ollama_client.embeddings(model=embed_model, prompt=text)
|
203 |
embed_text.append(data["embedding"])
|
204 |
|
205 |
return embed_text
|