Merge branch 'main' into yangdx
Browse files- .gitignore +1 -1
- README.md +21 -0
- examples/copy_llm_cache_to_another_storage.py +97 -0
- get_all_edges_nx.py → examples/get_all_edges_nx.py +0 -0
- examples/lightrag_oracle_demo.py +28 -11
- examples/query_keyword_separation_example.py +116 -0
- test.py → examples/test.py +0 -0
- test_chromadb.py → examples/test_chromadb.py +0 -0
- test_neo4j.py → examples/test_neo4j.py +0 -0
- lightrag/__init__.py +1 -1
- lightrag/base.py +2 -0
- lightrag/kg/oracle_impl.py +156 -69
- lightrag/kg/postgres_impl.py +14 -1
- lightrag/lightrag.py +391 -92
- lightrag/operate.py +240 -10
- lightrag/utils.py +11 -3
.gitignore
CHANGED
@@ -21,4 +21,4 @@ rag_storage
|
|
21 |
venv/
|
22 |
examples/input/
|
23 |
examples/output/
|
24 |
-
|
|
|
21 |
venv/
|
22 |
examples/input/
|
23 |
examples/output/
|
24 |
+
.DS_Store
|
README.md
CHANGED
@@ -330,6 +330,26 @@ rag = LightRAG(
|
|
330 |
with open("./newText.txt") as f:
|
331 |
rag.insert(f.read())
|
332 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
333 |
|
334 |
### Using Neo4J for Storage
|
335 |
|
@@ -361,6 +381,7 @@ see test_neo4j.py for a working example.
|
|
361 |
### Using PostgreSQL for Storage
|
362 |
For production level scenarios you will most likely want to leverage an enterprise solution. PostgreSQL can provide a one-stop solution for you as KV store, VectorDB (pgvector) and GraphDB (apache AGE).
|
363 |
* PostgreSQL is lightweight,the whole binary distribution including all necessary plugins can be zipped to 40MB: Ref to [Windows Release](https://github.com/ShanGor/apache-age-windows/releases/tag/PG17%2Fv1.5.0-rc0) as it is easy to install for Linux/Mac.
|
|
|
364 |
* How to start? Ref to: [examples/lightrag_zhipu_postgres_demo.py](https://github.com/HKUDS/LightRAG/blob/main/examples/lightrag_zhipu_postgres_demo.py)
|
365 |
* Create index for AGE example: (Change below `dickens` to your graph name if necessary)
|
366 |
```
|
|
|
330 |
with open("./newText.txt") as f:
|
331 |
rag.insert(f.read())
|
332 |
```
|
333 |
+
### Separate Keyword Extraction
|
334 |
+
We've introduced a new function `query_with_separate_keyword_extraction` to enhance the keyword extraction capabilities. This function separates the keyword extraction process from the user's prompt, focusing solely on the query to improve the relevance of extracted keywords.
|
335 |
+
|
336 |
+
##### How It Works?
|
337 |
+
The function operates by dividing the input into two parts:
|
338 |
+
- `User Query`
|
339 |
+
- `Prompt`
|
340 |
+
|
341 |
+
It then performs keyword extraction exclusively on the `user query`. This separation ensures that the extraction process is focused and relevant, unaffected by any additional language in the `prompt`. It also allows the `prompt` to serve purely for response formatting, maintaining the intent and clarity of the user's original question.
|
342 |
+
|
343 |
+
##### Usage Example
|
344 |
+
This `example` shows how to tailor the function for educational content, focusing on detailed explanations for older students.
|
345 |
+
|
346 |
+
```python
|
347 |
+
rag.query_with_separate_keyword_extraction(
|
348 |
+
query="Explain the law of gravity",
|
349 |
+
prompt="Provide a detailed explanation suitable for high school students studying physics.",
|
350 |
+
param=QueryParam(mode="hybrid")
|
351 |
+
)
|
352 |
+
```
|
353 |
|
354 |
### Using Neo4J for Storage
|
355 |
|
|
|
381 |
### Using PostgreSQL for Storage
|
382 |
For production level scenarios you will most likely want to leverage an enterprise solution. PostgreSQL can provide a one-stop solution for you as KV store, VectorDB (pgvector) and GraphDB (apache AGE).
|
383 |
* PostgreSQL is lightweight,the whole binary distribution including all necessary plugins can be zipped to 40MB: Ref to [Windows Release](https://github.com/ShanGor/apache-age-windows/releases/tag/PG17%2Fv1.5.0-rc0) as it is easy to install for Linux/Mac.
|
384 |
+
* If you prefer docker, please start with this image if you are a beginner to avoid hiccups (DO read the overview): https://hub.docker.com/r/shangor/postgres-for-rag
|
385 |
* How to start? Ref to: [examples/lightrag_zhipu_postgres_demo.py](https://github.com/HKUDS/LightRAG/blob/main/examples/lightrag_zhipu_postgres_demo.py)
|
386 |
* Create index for AGE example: (Change below `dickens` to your graph name if necessary)
|
387 |
```
|
examples/copy_llm_cache_to_another_storage.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Sometimes you need to switch a storage solution, but you want to save LLM token and time.
|
3 |
+
This handy script helps you to copy the LLM caches from one storage solution to another.
|
4 |
+
(Not all the storage impl are supported)
|
5 |
+
"""
|
6 |
+
|
7 |
+
import asyncio
|
8 |
+
import logging
|
9 |
+
import os
|
10 |
+
from dotenv import load_dotenv
|
11 |
+
|
12 |
+
from lightrag.kg.postgres_impl import PostgreSQLDB, PGKVStorage
|
13 |
+
from lightrag.storage import JsonKVStorage
|
14 |
+
|
15 |
+
load_dotenv()
|
16 |
+
ROOT_DIR = os.environ.get("ROOT_DIR")
|
17 |
+
WORKING_DIR = f"{ROOT_DIR}/dickens"
|
18 |
+
|
19 |
+
logging.basicConfig(format="%(levelname)s:%(message)s", level=logging.INFO)
|
20 |
+
|
21 |
+
if not os.path.exists(WORKING_DIR):
|
22 |
+
os.mkdir(WORKING_DIR)
|
23 |
+
|
24 |
+
# AGE
|
25 |
+
os.environ["AGE_GRAPH_NAME"] = "chinese"
|
26 |
+
|
27 |
+
postgres_db = PostgreSQLDB(
|
28 |
+
config={
|
29 |
+
"host": "localhost",
|
30 |
+
"port": 15432,
|
31 |
+
"user": "rag",
|
32 |
+
"password": "rag",
|
33 |
+
"database": "r2",
|
34 |
+
}
|
35 |
+
)
|
36 |
+
|
37 |
+
|
38 |
+
async def copy_from_postgres_to_json():
|
39 |
+
await postgres_db.initdb()
|
40 |
+
|
41 |
+
from_llm_response_cache = PGKVStorage(
|
42 |
+
namespace="llm_response_cache",
|
43 |
+
global_config={"embedding_batch_num": 6},
|
44 |
+
embedding_func=None,
|
45 |
+
db=postgres_db,
|
46 |
+
)
|
47 |
+
|
48 |
+
to_llm_response_cache = JsonKVStorage(
|
49 |
+
namespace="llm_response_cache",
|
50 |
+
global_config={"working_dir": WORKING_DIR},
|
51 |
+
embedding_func=None,
|
52 |
+
)
|
53 |
+
|
54 |
+
kv = {}
|
55 |
+
for c_id in await from_llm_response_cache.all_keys():
|
56 |
+
print(f"Copying {c_id}")
|
57 |
+
workspace = c_id["workspace"]
|
58 |
+
mode = c_id["mode"]
|
59 |
+
_id = c_id["id"]
|
60 |
+
postgres_db.workspace = workspace
|
61 |
+
obj = await from_llm_response_cache.get_by_mode_and_id(mode, _id)
|
62 |
+
if mode not in kv:
|
63 |
+
kv[mode] = {}
|
64 |
+
kv[mode][_id] = obj[_id]
|
65 |
+
print(f"Object {obj}")
|
66 |
+
await to_llm_response_cache.upsert(kv)
|
67 |
+
await to_llm_response_cache.index_done_callback()
|
68 |
+
print("Mission accomplished!")
|
69 |
+
|
70 |
+
|
71 |
+
async def copy_from_json_to_postgres():
|
72 |
+
await postgres_db.initdb()
|
73 |
+
|
74 |
+
from_llm_response_cache = JsonKVStorage(
|
75 |
+
namespace="llm_response_cache",
|
76 |
+
global_config={"working_dir": WORKING_DIR},
|
77 |
+
embedding_func=None,
|
78 |
+
)
|
79 |
+
|
80 |
+
to_llm_response_cache = PGKVStorage(
|
81 |
+
namespace="llm_response_cache",
|
82 |
+
global_config={"embedding_batch_num": 6},
|
83 |
+
embedding_func=None,
|
84 |
+
db=postgres_db,
|
85 |
+
)
|
86 |
+
|
87 |
+
for mode in await from_llm_response_cache.all_keys():
|
88 |
+
print(f"Copying {mode}")
|
89 |
+
caches = await from_llm_response_cache.get_by_id(mode)
|
90 |
+
for k, v in caches.items():
|
91 |
+
item = {mode: {k: v}}
|
92 |
+
print(f"\tCopying {item}")
|
93 |
+
await to_llm_response_cache.upsert(item)
|
94 |
+
|
95 |
+
|
96 |
+
if __name__ == "__main__":
|
97 |
+
asyncio.run(copy_from_json_to_postgres())
|
get_all_edges_nx.py → examples/get_all_edges_nx.py
RENAMED
File without changes
|
examples/lightrag_oracle_demo.py
CHANGED
@@ -20,7 +20,8 @@ BASE_URL = "http://xxx.xxx.xxx.xxx:8088/v1/"
|
|
20 |
APIKEY = "ocigenerativeai"
|
21 |
CHATMODEL = "cohere.command-r-plus"
|
22 |
EMBEDMODEL = "cohere.embed-multilingual-v3.0"
|
23 |
-
|
|
|
24 |
|
25 |
if not os.path.exists(WORKING_DIR):
|
26 |
os.mkdir(WORKING_DIR)
|
@@ -86,30 +87,46 @@ async def main():
|
|
86 |
# We use Oracle DB as the KV/vector/graph storage
|
87 |
# You can add `addon_params={"example_number": 1, "language": "Simplfied Chinese"}` to control the prompt
|
88 |
rag = LightRAG(
|
89 |
-
|
90 |
working_dir=WORKING_DIR,
|
91 |
-
|
|
|
|
|
|
|
|
|
|
|
92 |
llm_model_func=llm_model_func,
|
93 |
embedding_func=EmbeddingFunc(
|
94 |
embedding_dim=embedding_dimension,
|
95 |
-
max_token_size=
|
96 |
func=embedding_func,
|
97 |
),
|
98 |
graph_storage="OracleGraphStorage",
|
99 |
kv_storage="OracleKVStorage",
|
100 |
vector_storage="OracleVectorDBStorage",
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
)
|
102 |
|
103 |
# Setthe KV/vector/graph storage's `db` property, so all operation will use same connection pool
|
104 |
-
rag.
|
105 |
-
rag.key_string_value_json_storage_cls.db = oracle_db
|
106 |
-
rag.vector_db_storage_cls.db = oracle_db
|
107 |
-
# add embedding_func for graph database, it's deleted in commit 5661d76860436f7bf5aef2e50d9ee4a59660146c
|
108 |
-
rag.chunk_entity_relation_graph.embedding_func = rag.embedding_func
|
109 |
|
110 |
# Extract and Insert into LightRAG storage
|
111 |
-
with open("
|
112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
|
114 |
# Perform search in different modes
|
115 |
modes = ["naive", "local", "global", "hybrid"]
|
|
|
20 |
APIKEY = "ocigenerativeai"
|
21 |
CHATMODEL = "cohere.command-r-plus"
|
22 |
EMBEDMODEL = "cohere.embed-multilingual-v3.0"
|
23 |
+
CHUNK_TOKEN_SIZE = 1024
|
24 |
+
MAX_TOKENS = 4000
|
25 |
|
26 |
if not os.path.exists(WORKING_DIR):
|
27 |
os.mkdir(WORKING_DIR)
|
|
|
87 |
# We use Oracle DB as the KV/vector/graph storage
|
88 |
# You can add `addon_params={"example_number": 1, "language": "Simplfied Chinese"}` to control the prompt
|
89 |
rag = LightRAG(
|
90 |
+
# log_level="DEBUG",
|
91 |
working_dir=WORKING_DIR,
|
92 |
+
entity_extract_max_gleaning=1,
|
93 |
+
enable_llm_cache=True,
|
94 |
+
enable_llm_cache_for_entity_extract=True,
|
95 |
+
embedding_cache_config=None, # {"enabled": True,"similarity_threshold": 0.90},
|
96 |
+
chunk_token_size=CHUNK_TOKEN_SIZE,
|
97 |
+
llm_model_max_token_size=MAX_TOKENS,
|
98 |
llm_model_func=llm_model_func,
|
99 |
embedding_func=EmbeddingFunc(
|
100 |
embedding_dim=embedding_dimension,
|
101 |
+
max_token_size=500,
|
102 |
func=embedding_func,
|
103 |
),
|
104 |
graph_storage="OracleGraphStorage",
|
105 |
kv_storage="OracleKVStorage",
|
106 |
vector_storage="OracleVectorDBStorage",
|
107 |
+
addon_params={
|
108 |
+
"example_number": 1,
|
109 |
+
"language": "Simplfied Chinese",
|
110 |
+
"entity_types": ["organization", "person", "geo", "event"],
|
111 |
+
"insert_batch_size": 2,
|
112 |
+
},
|
113 |
)
|
114 |
|
115 |
# Setthe KV/vector/graph storage's `db` property, so all operation will use same connection pool
|
116 |
+
rag.set_storage_client(db_client=oracle_db)
|
|
|
|
|
|
|
|
|
117 |
|
118 |
# Extract and Insert into LightRAG storage
|
119 |
+
with open(WORKING_DIR + "/docs.txt", "r", encoding="utf-8") as f:
|
120 |
+
all_text = f.read()
|
121 |
+
texts = [x for x in all_text.split("\n") if x]
|
122 |
+
|
123 |
+
# New mode use pipeline
|
124 |
+
await rag.apipeline_process_documents(texts)
|
125 |
+
await rag.apipeline_process_chunks()
|
126 |
+
await rag.apipeline_process_extract_graph()
|
127 |
+
|
128 |
+
# Old method use ainsert
|
129 |
+
# await rag.ainsert(texts)
|
130 |
|
131 |
# Perform search in different modes
|
132 |
modes = ["naive", "local", "global", "hybrid"]
|
examples/query_keyword_separation_example.py
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import asyncio
|
3 |
+
from lightrag import LightRAG, QueryParam
|
4 |
+
from lightrag.utils import EmbeddingFunc
|
5 |
+
import numpy as np
|
6 |
+
from dotenv import load_dotenv
|
7 |
+
import logging
|
8 |
+
from openai import AzureOpenAI
|
9 |
+
|
10 |
+
logging.basicConfig(level=logging.INFO)
|
11 |
+
|
12 |
+
load_dotenv()
|
13 |
+
|
14 |
+
AZURE_OPENAI_API_VERSION = os.getenv("AZURE_OPENAI_API_VERSION")
|
15 |
+
AZURE_OPENAI_DEPLOYMENT = os.getenv("AZURE_OPENAI_DEPLOYMENT")
|
16 |
+
AZURE_OPENAI_API_KEY = os.getenv("AZURE_OPENAI_API_KEY")
|
17 |
+
AZURE_OPENAI_ENDPOINT = os.getenv("AZURE_OPENAI_ENDPOINT")
|
18 |
+
|
19 |
+
AZURE_EMBEDDING_DEPLOYMENT = os.getenv("AZURE_EMBEDDING_DEPLOYMENT")
|
20 |
+
AZURE_EMBEDDING_API_VERSION = os.getenv("AZURE_EMBEDDING_API_VERSION")
|
21 |
+
|
22 |
+
WORKING_DIR = "./dickens"
|
23 |
+
|
24 |
+
if os.path.exists(WORKING_DIR):
|
25 |
+
import shutil
|
26 |
+
|
27 |
+
shutil.rmtree(WORKING_DIR)
|
28 |
+
|
29 |
+
os.mkdir(WORKING_DIR)
|
30 |
+
|
31 |
+
|
32 |
+
async def llm_model_func(
|
33 |
+
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
|
34 |
+
) -> str:
|
35 |
+
client = AzureOpenAI(
|
36 |
+
api_key=AZURE_OPENAI_API_KEY,
|
37 |
+
api_version=AZURE_OPENAI_API_VERSION,
|
38 |
+
azure_endpoint=AZURE_OPENAI_ENDPOINT,
|
39 |
+
)
|
40 |
+
|
41 |
+
messages = []
|
42 |
+
if system_prompt:
|
43 |
+
messages.append({"role": "system", "content": system_prompt})
|
44 |
+
if history_messages:
|
45 |
+
messages.extend(history_messages)
|
46 |
+
messages.append({"role": "user", "content": prompt})
|
47 |
+
|
48 |
+
chat_completion = client.chat.completions.create(
|
49 |
+
model=AZURE_OPENAI_DEPLOYMENT, # model = "deployment_name".
|
50 |
+
messages=messages,
|
51 |
+
temperature=kwargs.get("temperature", 0),
|
52 |
+
top_p=kwargs.get("top_p", 1),
|
53 |
+
n=kwargs.get("n", 1),
|
54 |
+
)
|
55 |
+
return chat_completion.choices[0].message.content
|
56 |
+
|
57 |
+
|
58 |
+
async def embedding_func(texts: list[str]) -> np.ndarray:
|
59 |
+
client = AzureOpenAI(
|
60 |
+
api_key=AZURE_OPENAI_API_KEY,
|
61 |
+
api_version=AZURE_EMBEDDING_API_VERSION,
|
62 |
+
azure_endpoint=AZURE_OPENAI_ENDPOINT,
|
63 |
+
)
|
64 |
+
embedding = client.embeddings.create(model=AZURE_EMBEDDING_DEPLOYMENT, input=texts)
|
65 |
+
|
66 |
+
embeddings = [item.embedding for item in embedding.data]
|
67 |
+
return np.array(embeddings)
|
68 |
+
|
69 |
+
|
70 |
+
async def test_funcs():
|
71 |
+
result = await llm_model_func("How are you?")
|
72 |
+
print("Resposta do llm_model_func: ", result)
|
73 |
+
|
74 |
+
result = await embedding_func(["How are you?"])
|
75 |
+
print("Resultado do embedding_func: ", result.shape)
|
76 |
+
print("Dimensão da embedding: ", result.shape[1])
|
77 |
+
|
78 |
+
|
79 |
+
asyncio.run(test_funcs())
|
80 |
+
|
81 |
+
embedding_dimension = 3072
|
82 |
+
|
83 |
+
rag = LightRAG(
|
84 |
+
working_dir=WORKING_DIR,
|
85 |
+
llm_model_func=llm_model_func,
|
86 |
+
embedding_func=EmbeddingFunc(
|
87 |
+
embedding_dim=embedding_dimension,
|
88 |
+
max_token_size=8192,
|
89 |
+
func=embedding_func,
|
90 |
+
),
|
91 |
+
)
|
92 |
+
|
93 |
+
book1 = open("./book_1.txt", encoding="utf-8")
|
94 |
+
book2 = open("./book_2.txt", encoding="utf-8")
|
95 |
+
|
96 |
+
rag.insert([book1.read(), book2.read()])
|
97 |
+
|
98 |
+
|
99 |
+
# Example function demonstrating the new query_with_separate_keyword_extraction usage
|
100 |
+
async def run_example():
|
101 |
+
query = "What are the top themes in this story?"
|
102 |
+
prompt = "Please simplify the response for a young audience."
|
103 |
+
|
104 |
+
# Using the new method to ensure the keyword extraction is only applied to the query
|
105 |
+
response = rag.query_with_separate_keyword_extraction(
|
106 |
+
query=query,
|
107 |
+
prompt=prompt,
|
108 |
+
param=QueryParam(mode="hybrid"), # Adjust QueryParam mode as necessary
|
109 |
+
)
|
110 |
+
|
111 |
+
print("Extracted Response:", response)
|
112 |
+
|
113 |
+
|
114 |
+
# Run the example asynchronously
|
115 |
+
if __name__ == "__main__":
|
116 |
+
asyncio.run(run_example())
|
test.py → examples/test.py
RENAMED
File without changes
|
test_chromadb.py → examples/test_chromadb.py
RENAMED
File without changes
|
test_neo4j.py → examples/test_neo4j.py
RENAMED
File without changes
|
lightrag/__init__.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
from .lightrag import LightRAG as LightRAG, QueryParam as QueryParam
|
2 |
|
3 |
-
__version__ = "1.1.
|
4 |
__author__ = "Zirui Guo"
|
5 |
__url__ = "https://github.com/HKUDS/LightRAG"
|
|
|
1 |
from .lightrag import LightRAG as LightRAG, QueryParam as QueryParam
|
2 |
|
3 |
+
__version__ = "1.1.2"
|
4 |
__author__ = "Zirui Guo"
|
5 |
__url__ = "https://github.com/HKUDS/LightRAG"
|
lightrag/base.py
CHANGED
@@ -31,6 +31,8 @@ class QueryParam:
|
|
31 |
max_token_for_global_context: int = 4000
|
32 |
# Number of tokens for the entity descriptions
|
33 |
max_token_for_local_context: int = 4000
|
|
|
|
|
34 |
|
35 |
|
36 |
@dataclass
|
|
|
31 |
max_token_for_global_context: int = 4000
|
32 |
# Number of tokens for the entity descriptions
|
33 |
max_token_for_local_context: int = 4000
|
34 |
+
hl_keywords: list[str] = field(default_factory=list)
|
35 |
+
ll_keywords: list[str] = field(default_factory=list)
|
36 |
|
37 |
|
38 |
@dataclass
|
lightrag/kg/oracle_impl.py
CHANGED
@@ -153,8 +153,6 @@ class OracleDB:
|
|
153 |
if data is None:
|
154 |
await cursor.execute(sql)
|
155 |
else:
|
156 |
-
# print(data)
|
157 |
-
# print(sql)
|
158 |
await cursor.execute(sql, data)
|
159 |
await connection.commit()
|
160 |
except Exception as e:
|
@@ -167,35 +165,64 @@ class OracleDB:
|
|
167 |
@dataclass
|
168 |
class OracleKVStorage(BaseKVStorage):
|
169 |
# should pass db object to self.db
|
|
|
|
|
|
|
170 |
def __post_init__(self):
|
171 |
self._data = {}
|
172 |
-
self._max_batch_size = self.global_config
|
173 |
|
174 |
################ QUERY METHODS ################
|
175 |
|
176 |
async def get_by_id(self, id: str) -> Union[dict, None]:
|
177 |
-
"""
|
178 |
SQL = SQL_TEMPLATES["get_by_id_" + self.namespace]
|
179 |
params = {"workspace": self.db.workspace, "id": id}
|
180 |
# print("get_by_id:"+SQL)
|
181 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
182 |
if res:
|
183 |
-
|
184 |
-
|
185 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
186 |
else:
|
187 |
return None
|
188 |
|
189 |
-
# Query by id
|
190 |
async def get_by_ids(self, ids: list[str], fields=None) -> Union[list[dict], None]:
|
191 |
-
"""
|
192 |
SQL = SQL_TEMPLATES["get_by_ids_" + self.namespace].format(
|
193 |
ids=",".join([f"'{id}'" for id in ids])
|
194 |
)
|
195 |
params = {"workspace": self.db.workspace}
|
196 |
# print("get_by_ids:"+SQL)
|
197 |
-
# print(params)
|
198 |
res = await self.db.query(SQL, params, multirows=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
199 |
if res:
|
200 |
data = res # [{"data":i} for i in res]
|
201 |
# print(data)
|
@@ -203,38 +230,43 @@ class OracleKVStorage(BaseKVStorage):
|
|
203 |
else:
|
204 |
return None
|
205 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
206 |
async def filter_keys(self, keys: list[str]) -> set[str]:
|
207 |
-
"""
|
208 |
SQL = SQL_TEMPLATES["filter_keys"].format(
|
209 |
table_name=N_T[self.namespace], ids=",".join([f"'{id}'" for id in keys])
|
210 |
)
|
211 |
params = {"workspace": self.db.workspace}
|
212 |
-
try:
|
213 |
-
await self.db.query(SQL, params)
|
214 |
-
except Exception as e:
|
215 |
-
logger.error(f"Oracle database error: {e}")
|
216 |
-
print(SQL)
|
217 |
-
print(params)
|
218 |
res = await self.db.query(SQL, params, multirows=True)
|
219 |
-
data = None
|
220 |
if res:
|
221 |
exist_keys = [key["id"] for key in res]
|
222 |
data = set([s for s in keys if s not in exist_keys])
|
|
|
223 |
else:
|
224 |
-
|
225 |
-
data = set([s for s in keys if s not in exist_keys])
|
226 |
-
return data
|
227 |
|
228 |
################ INSERT METHODS ################
|
229 |
async def upsert(self, data: dict[str, dict]):
|
230 |
-
left_data = {k: v for k, v in data.items() if k not in self._data}
|
231 |
-
self._data.update(left_data)
|
232 |
-
# print(self._data)
|
233 |
-
# values = []
|
234 |
if self.namespace == "text_chunks":
|
235 |
list_data = [
|
236 |
{
|
237 |
-
"
|
238 |
**{k1: v1 for k1, v1 in v.items()},
|
239 |
}
|
240 |
for k, v in data.items()
|
@@ -250,35 +282,50 @@ class OracleKVStorage(BaseKVStorage):
|
|
250 |
embeddings = np.concatenate(embeddings_list)
|
251 |
for i, d in enumerate(list_data):
|
252 |
d["__vector__"] = embeddings[i]
|
253 |
-
|
|
|
254 |
for item in list_data:
|
255 |
-
|
256 |
-
|
257 |
-
"check_id": item["__id__"],
|
258 |
-
"id": item["__id__"],
|
259 |
"content": item["content"],
|
260 |
"workspace": self.db.workspace,
|
261 |
"tokens": item["tokens"],
|
262 |
"chunk_order_index": item["chunk_order_index"],
|
263 |
"full_doc_id": item["full_doc_id"],
|
264 |
"content_vector": item["__vector__"],
|
|
|
265 |
}
|
266 |
-
|
267 |
-
await self.db.execute(merge_sql, data)
|
268 |
-
|
269 |
if self.namespace == "full_docs":
|
270 |
-
for k, v in
|
271 |
# values.clear()
|
272 |
merge_sql = SQL_TEMPLATES["merge_doc_full"]
|
273 |
-
|
274 |
-
"check_id": k,
|
275 |
"id": k,
|
276 |
"content": v["content"],
|
277 |
"workspace": self.db.workspace,
|
278 |
}
|
279 |
-
|
280 |
-
|
281 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
282 |
|
283 |
async def index_done_callback(self):
|
284 |
if self.namespace in ["full_docs", "text_chunks"]:
|
@@ -287,6 +334,8 @@ class OracleKVStorage(BaseKVStorage):
|
|
287 |
|
288 |
@dataclass
|
289 |
class OracleVectorDBStorage(BaseVectorStorage):
|
|
|
|
|
290 |
cosine_better_than_threshold: float = 0.2
|
291 |
|
292 |
def __post_init__(self):
|
@@ -328,7 +377,7 @@ class OracleGraphStorage(BaseGraphStorage):
|
|
328 |
|
329 |
def __post_init__(self):
|
330 |
"""从graphml文件加载图"""
|
331 |
-
self._max_batch_size = self.global_config
|
332 |
|
333 |
#################### insert method ################
|
334 |
|
@@ -362,7 +411,6 @@ class OracleGraphStorage(BaseGraphStorage):
|
|
362 |
"content": content,
|
363 |
"content_vector": content_vector,
|
364 |
}
|
365 |
-
# print(merge_sql)
|
366 |
await self.db.execute(merge_sql, data)
|
367 |
# self._graph.add_node(node_id, **node_data)
|
368 |
|
@@ -564,20 +612,26 @@ N_T = {
|
|
564 |
TABLES = {
|
565 |
"LIGHTRAG_DOC_FULL": {
|
566 |
"ddl": """CREATE TABLE LIGHTRAG_DOC_FULL (
|
567 |
-
id varchar(256)
|
568 |
workspace varchar(1024),
|
569 |
doc_name varchar(1024),
|
570 |
content CLOB,
|
571 |
meta JSON,
|
|
|
|
|
|
|
|
|
572 |
createtime TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
|
573 |
-
updatetime TIMESTAMP DEFAULT NULL
|
|
|
574 |
)"""
|
575 |
},
|
576 |
"LIGHTRAG_DOC_CHUNKS": {
|
577 |
"ddl": """CREATE TABLE LIGHTRAG_DOC_CHUNKS (
|
578 |
-
id varchar(256)
|
579 |
workspace varchar(1024),
|
580 |
full_doc_id varchar(256),
|
|
|
581 |
chunk_order_index NUMBER,
|
582 |
tokens NUMBER,
|
583 |
content CLOB,
|
@@ -619,9 +673,15 @@ TABLES = {
|
|
619 |
"LIGHTRAG_LLM_CACHE": {
|
620 |
"ddl": """CREATE TABLE LIGHTRAG_LLM_CACHE (
|
621 |
id varchar(256) PRIMARY KEY,
|
622 |
-
|
623 |
-
|
624 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
625 |
createtime TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
|
626 |
updatetime TIMESTAMP DEFAULT NULL
|
627 |
)"""
|
@@ -646,23 +706,44 @@ TABLES = {
|
|
646 |
|
647 |
SQL_TEMPLATES = {
|
648 |
# SQL for KVStorage
|
649 |
-
"get_by_id_full_docs": "select ID,
|
650 |
-
"get_by_id_text_chunks": "select ID,TOKENS,
|
651 |
-
"
|
652 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
653 |
"filter_keys": "select id from {table_name} where workspace=:workspace and id in ({ids})",
|
654 |
-
"
|
655 |
-
|
656 |
-
|
657 |
-
|
658 |
-
|
659 |
-
|
660 |
-
"merge_chunk": """MERGE INTO LIGHTRAG_DOC_CHUNKS
|
661 |
-
|
662 |
-
|
663 |
-
|
664 |
-
|
665 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
666 |
# SQL for VectorStorage
|
667 |
"entities": """SELECT name as entity_name FROM
|
668 |
(SELECT id,name,VECTOR_DISTANCE(content_vector,vector(:embedding_string,{dimension},{dtype}),COSINE) as distance
|
@@ -714,16 +795,22 @@ SQL_TEMPLATES = {
|
|
714 |
COLUMNS (a.name as source_name,b.name as target_name))""",
|
715 |
"merge_node": """MERGE INTO LIGHTRAG_GRAPH_NODES a
|
716 |
USING DUAL
|
717 |
-
ON (a.workspace
|
718 |
WHEN NOT MATCHED THEN
|
719 |
INSERT(workspace,name,entity_type,description,source_chunk_id,content,content_vector)
|
720 |
-
values (:workspace,:name,:entity_type,:description,:source_chunk_id,:content,:content_vector)
|
|
|
|
|
|
|
721 |
"merge_edge": """MERGE INTO LIGHTRAG_GRAPH_EDGES a
|
722 |
USING DUAL
|
723 |
-
ON (a.workspace
|
724 |
WHEN NOT MATCHED THEN
|
725 |
INSERT(workspace,source_name,target_name,weight,keywords,description,source_chunk_id,content,content_vector)
|
726 |
-
values (:workspace,:source_name,:target_name,:weight,:keywords,:description,:source_chunk_id,:content,:content_vector)
|
|
|
|
|
|
|
727 |
"get_all_nodes": """WITH t0 AS (
|
728 |
SELECT name AS id, entity_type AS label, entity_type, description,
|
729 |
'["' || replace(source_chunk_id, '<SEP>', '","') || '"]' source_chunk_ids
|
|
|
153 |
if data is None:
|
154 |
await cursor.execute(sql)
|
155 |
else:
|
|
|
|
|
156 |
await cursor.execute(sql, data)
|
157 |
await connection.commit()
|
158 |
except Exception as e:
|
|
|
165 |
@dataclass
|
166 |
class OracleKVStorage(BaseKVStorage):
|
167 |
# should pass db object to self.db
|
168 |
+
db: OracleDB = None
|
169 |
+
meta_fields = None
|
170 |
+
|
171 |
def __post_init__(self):
|
172 |
self._data = {}
|
173 |
+
self._max_batch_size = self.global_config.get("embedding_batch_num", 10)
|
174 |
|
175 |
################ QUERY METHODS ################
|
176 |
|
177 |
async def get_by_id(self, id: str) -> Union[dict, None]:
|
178 |
+
"""get doc_full data based on id."""
|
179 |
SQL = SQL_TEMPLATES["get_by_id_" + self.namespace]
|
180 |
params = {"workspace": self.db.workspace, "id": id}
|
181 |
# print("get_by_id:"+SQL)
|
182 |
+
if "llm_response_cache" == self.namespace:
|
183 |
+
array_res = await self.db.query(SQL, params, multirows=True)
|
184 |
+
res = {}
|
185 |
+
for row in array_res:
|
186 |
+
res[row["id"]] = row
|
187 |
+
else:
|
188 |
+
res = await self.db.query(SQL, params)
|
189 |
if res:
|
190 |
+
return res
|
191 |
+
else:
|
192 |
+
return None
|
193 |
+
|
194 |
+
async def get_by_mode_and_id(self, mode: str, id: str) -> Union[dict, None]:
|
195 |
+
"""Specifically for llm_response_cache."""
|
196 |
+
SQL = SQL_TEMPLATES["get_by_mode_id_" + self.namespace]
|
197 |
+
params = {"workspace": self.db.workspace, "cache_mode": mode, "id": id}
|
198 |
+
if "llm_response_cache" == self.namespace:
|
199 |
+
array_res = await self.db.query(SQL, params, multirows=True)
|
200 |
+
res = {}
|
201 |
+
for row in array_res:
|
202 |
+
res[row["id"]] = row
|
203 |
+
return res
|
204 |
else:
|
205 |
return None
|
206 |
|
|
|
207 |
async def get_by_ids(self, ids: list[str], fields=None) -> Union[list[dict], None]:
|
208 |
+
"""get doc_chunks data based on id"""
|
209 |
SQL = SQL_TEMPLATES["get_by_ids_" + self.namespace].format(
|
210 |
ids=",".join([f"'{id}'" for id in ids])
|
211 |
)
|
212 |
params = {"workspace": self.db.workspace}
|
213 |
# print("get_by_ids:"+SQL)
|
|
|
214 |
res = await self.db.query(SQL, params, multirows=True)
|
215 |
+
if "llm_response_cache" == self.namespace:
|
216 |
+
modes = set()
|
217 |
+
dict_res: dict[str, dict] = {}
|
218 |
+
for row in res:
|
219 |
+
modes.add(row["mode"])
|
220 |
+
for mode in modes:
|
221 |
+
if mode not in dict_res:
|
222 |
+
dict_res[mode] = {}
|
223 |
+
for row in res:
|
224 |
+
dict_res[row["mode"]][row["id"]] = row
|
225 |
+
res = [{k: v} for k, v in dict_res.items()]
|
226 |
if res:
|
227 |
data = res # [{"data":i} for i in res]
|
228 |
# print(data)
|
|
|
230 |
else:
|
231 |
return None
|
232 |
|
233 |
+
async def get_by_status_and_ids(
|
234 |
+
self, status: str, ids: list[str]
|
235 |
+
) -> Union[list[dict], None]:
|
236 |
+
"""Specifically for llm_response_cache."""
|
237 |
+
if ids is not None:
|
238 |
+
SQL = SQL_TEMPLATES["get_by_status_ids_" + self.namespace].format(
|
239 |
+
ids=",".join([f"'{id}'" for id in ids])
|
240 |
+
)
|
241 |
+
else:
|
242 |
+
SQL = SQL_TEMPLATES["get_by_status_" + self.namespace]
|
243 |
+
params = {"workspace": self.db.workspace, "status": status}
|
244 |
+
res = await self.db.query(SQL, params, multirows=True)
|
245 |
+
if res:
|
246 |
+
return res
|
247 |
+
else:
|
248 |
+
return None
|
249 |
+
|
250 |
async def filter_keys(self, keys: list[str]) -> set[str]:
|
251 |
+
"""Return keys that don't exist in storage"""
|
252 |
SQL = SQL_TEMPLATES["filter_keys"].format(
|
253 |
table_name=N_T[self.namespace], ids=",".join([f"'{id}'" for id in keys])
|
254 |
)
|
255 |
params = {"workspace": self.db.workspace}
|
|
|
|
|
|
|
|
|
|
|
|
|
256 |
res = await self.db.query(SQL, params, multirows=True)
|
|
|
257 |
if res:
|
258 |
exist_keys = [key["id"] for key in res]
|
259 |
data = set([s for s in keys if s not in exist_keys])
|
260 |
+
return data
|
261 |
else:
|
262 |
+
return set(keys)
|
|
|
|
|
263 |
|
264 |
################ INSERT METHODS ################
|
265 |
async def upsert(self, data: dict[str, dict]):
|
|
|
|
|
|
|
|
|
266 |
if self.namespace == "text_chunks":
|
267 |
list_data = [
|
268 |
{
|
269 |
+
"id": k,
|
270 |
**{k1: v1 for k1, v1 in v.items()},
|
271 |
}
|
272 |
for k, v in data.items()
|
|
|
282 |
embeddings = np.concatenate(embeddings_list)
|
283 |
for i, d in enumerate(list_data):
|
284 |
d["__vector__"] = embeddings[i]
|
285 |
+
|
286 |
+
merge_sql = SQL_TEMPLATES["merge_chunk"]
|
287 |
for item in list_data:
|
288 |
+
_data = {
|
289 |
+
"id": item["id"],
|
|
|
|
|
290 |
"content": item["content"],
|
291 |
"workspace": self.db.workspace,
|
292 |
"tokens": item["tokens"],
|
293 |
"chunk_order_index": item["chunk_order_index"],
|
294 |
"full_doc_id": item["full_doc_id"],
|
295 |
"content_vector": item["__vector__"],
|
296 |
+
"status": item["status"],
|
297 |
}
|
298 |
+
await self.db.execute(merge_sql, _data)
|
|
|
|
|
299 |
if self.namespace == "full_docs":
|
300 |
+
for k, v in data.items():
|
301 |
# values.clear()
|
302 |
merge_sql = SQL_TEMPLATES["merge_doc_full"]
|
303 |
+
_data = {
|
|
|
304 |
"id": k,
|
305 |
"content": v["content"],
|
306 |
"workspace": self.db.workspace,
|
307 |
}
|
308 |
+
await self.db.execute(merge_sql, _data)
|
309 |
+
|
310 |
+
if self.namespace == "llm_response_cache":
|
311 |
+
for mode, items in data.items():
|
312 |
+
for k, v in items.items():
|
313 |
+
upsert_sql = SQL_TEMPLATES["upsert_llm_response_cache"]
|
314 |
+
_data = {
|
315 |
+
"workspace": self.db.workspace,
|
316 |
+
"id": k,
|
317 |
+
"original_prompt": v["original_prompt"],
|
318 |
+
"return_value": v["return"],
|
319 |
+
"cache_mode": mode,
|
320 |
+
}
|
321 |
+
|
322 |
+
await self.db.execute(upsert_sql, _data)
|
323 |
+
return None
|
324 |
+
|
325 |
+
async def change_status(self, id: str, status: str):
|
326 |
+
SQL = SQL_TEMPLATES["change_status"].format(table_name=N_T[self.namespace])
|
327 |
+
params = {"workspace": self.db.workspace, "id": id, "status": status}
|
328 |
+
await self.db.execute(SQL, params)
|
329 |
|
330 |
async def index_done_callback(self):
|
331 |
if self.namespace in ["full_docs", "text_chunks"]:
|
|
|
334 |
|
335 |
@dataclass
|
336 |
class OracleVectorDBStorage(BaseVectorStorage):
|
337 |
+
# should pass db object to self.db
|
338 |
+
db: OracleDB = None
|
339 |
cosine_better_than_threshold: float = 0.2
|
340 |
|
341 |
def __post_init__(self):
|
|
|
377 |
|
378 |
def __post_init__(self):
|
379 |
"""从graphml文件加载图"""
|
380 |
+
self._max_batch_size = self.global_config.get("embedding_batch_num", 10)
|
381 |
|
382 |
#################### insert method ################
|
383 |
|
|
|
411 |
"content": content,
|
412 |
"content_vector": content_vector,
|
413 |
}
|
|
|
414 |
await self.db.execute(merge_sql, data)
|
415 |
# self._graph.add_node(node_id, **node_data)
|
416 |
|
|
|
612 |
TABLES = {
|
613 |
"LIGHTRAG_DOC_FULL": {
|
614 |
"ddl": """CREATE TABLE LIGHTRAG_DOC_FULL (
|
615 |
+
id varchar(256),
|
616 |
workspace varchar(1024),
|
617 |
doc_name varchar(1024),
|
618 |
content CLOB,
|
619 |
meta JSON,
|
620 |
+
content_summary varchar(1024),
|
621 |
+
content_length NUMBER,
|
622 |
+
status varchar(256),
|
623 |
+
chunks_count NUMBER,
|
624 |
createtime TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
|
625 |
+
updatetime TIMESTAMP DEFAULT NULL,
|
626 |
+
error varchar(4096)
|
627 |
)"""
|
628 |
},
|
629 |
"LIGHTRAG_DOC_CHUNKS": {
|
630 |
"ddl": """CREATE TABLE LIGHTRAG_DOC_CHUNKS (
|
631 |
+
id varchar(256),
|
632 |
workspace varchar(1024),
|
633 |
full_doc_id varchar(256),
|
634 |
+
status varchar(256),
|
635 |
chunk_order_index NUMBER,
|
636 |
tokens NUMBER,
|
637 |
content CLOB,
|
|
|
673 |
"LIGHTRAG_LLM_CACHE": {
|
674 |
"ddl": """CREATE TABLE LIGHTRAG_LLM_CACHE (
|
675 |
id varchar(256) PRIMARY KEY,
|
676 |
+
workspace varchar(1024),
|
677 |
+
cache_mode varchar(256),
|
678 |
+
model_name varchar(256),
|
679 |
+
original_prompt clob,
|
680 |
+
return_value clob,
|
681 |
+
embedding CLOB,
|
682 |
+
embedding_shape NUMBER,
|
683 |
+
embedding_min NUMBER,
|
684 |
+
embedding_max NUMBER,
|
685 |
createtime TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
|
686 |
updatetime TIMESTAMP DEFAULT NULL
|
687 |
)"""
|
|
|
706 |
|
707 |
SQL_TEMPLATES = {
|
708 |
# SQL for KVStorage
|
709 |
+
"get_by_id_full_docs": "select ID,content,status from LIGHTRAG_DOC_FULL where workspace=:workspace and ID=:id",
|
710 |
+
"get_by_id_text_chunks": "select ID,TOKENS,content,CHUNK_ORDER_INDEX,FULL_DOC_ID,status from LIGHTRAG_DOC_CHUNKS where workspace=:workspace and ID=:id",
|
711 |
+
"get_by_id_llm_response_cache": """SELECT id, original_prompt, NVL(return_value, '') as "return", cache_mode as "mode"
|
712 |
+
FROM LIGHTRAG_LLM_CACHE WHERE workspace=:workspace AND id=:id""",
|
713 |
+
"get_by_mode_id_llm_response_cache": """SELECT id, original_prompt, NVL(return_value, '') as "return", cache_mode as "mode"
|
714 |
+
FROM LIGHTRAG_LLM_CACHE WHERE workspace=:workspace AND cache_mode=:cache_mode AND id=:id""",
|
715 |
+
"get_by_ids_llm_response_cache": """SELECT id, original_prompt, NVL(return_value, '') as "return", cache_mode as "mode"
|
716 |
+
FROM LIGHTRAG_LLM_CACHE WHERE workspace=:workspace AND id IN ({ids})""",
|
717 |
+
"get_by_ids_full_docs": "select t.*,createtime as created_at from LIGHTRAG_DOC_FULL t where workspace=:workspace and ID in ({ids})",
|
718 |
+
"get_by_ids_text_chunks": "select ID,TOKENS,content,CHUNK_ORDER_INDEX,FULL_DOC_ID from LIGHTRAG_DOC_CHUNKS where workspace=:workspace and ID in ({ids})",
|
719 |
+
"get_by_status_ids_full_docs": "select id,status from LIGHTRAG_DOC_FULL t where workspace=:workspace AND status=:status and ID in ({ids})",
|
720 |
+
"get_by_status_ids_text_chunks": "select id,status from LIGHTRAG_DOC_CHUNKS where workspace=:workspace and status=:status ID in ({ids})",
|
721 |
+
"get_by_status_full_docs": "select id,status from LIGHTRAG_DOC_FULL t where workspace=:workspace AND status=:status",
|
722 |
+
"get_by_status_text_chunks": "select id,status from LIGHTRAG_DOC_CHUNKS where workspace=:workspace and status=:status",
|
723 |
"filter_keys": "select id from {table_name} where workspace=:workspace and id in ({ids})",
|
724 |
+
"change_status": "update {table_name} set status=:status,updatetime=SYSDATE where workspace=:workspace and id=:id",
|
725 |
+
"merge_doc_full": """MERGE INTO LIGHTRAG_DOC_FULL a
|
726 |
+
USING DUAL
|
727 |
+
ON (a.id = :id and a.workspace = :workspace)
|
728 |
+
WHEN NOT MATCHED THEN
|
729 |
+
INSERT(id,content,workspace) values(:id,:content,:workspace)""",
|
730 |
+
"merge_chunk": """MERGE INTO LIGHTRAG_DOC_CHUNKS
|
731 |
+
USING DUAL
|
732 |
+
ON (id = :id and workspace = :workspace)
|
733 |
+
WHEN NOT MATCHED THEN INSERT
|
734 |
+
(id,content,workspace,tokens,chunk_order_index,full_doc_id,content_vector,status)
|
735 |
+
values (:id,:content,:workspace,:tokens,:chunk_order_index,:full_doc_id,:content_vector,:status) """,
|
736 |
+
"upsert_llm_response_cache": """MERGE INTO LIGHTRAG_LLM_CACHE a
|
737 |
+
USING DUAL
|
738 |
+
ON (a.id = :id)
|
739 |
+
WHEN NOT MATCHED THEN
|
740 |
+
INSERT (workspace,id,original_prompt,return_value,cache_mode)
|
741 |
+
VALUES (:workspace,:id,:original_prompt,:return_value,:cache_mode)
|
742 |
+
WHEN MATCHED THEN UPDATE
|
743 |
+
SET original_prompt = :original_prompt,
|
744 |
+
return_value = :return_value,
|
745 |
+
cache_mode = :cache_mode,
|
746 |
+
updatetime = SYSDATE""",
|
747 |
# SQL for VectorStorage
|
748 |
"entities": """SELECT name as entity_name FROM
|
749 |
(SELECT id,name,VECTOR_DISTANCE(content_vector,vector(:embedding_string,{dimension},{dtype}),COSINE) as distance
|
|
|
795 |
COLUMNS (a.name as source_name,b.name as target_name))""",
|
796 |
"merge_node": """MERGE INTO LIGHTRAG_GRAPH_NODES a
|
797 |
USING DUAL
|
798 |
+
ON (a.workspace=:workspace and a.name=:name)
|
799 |
WHEN NOT MATCHED THEN
|
800 |
INSERT(workspace,name,entity_type,description,source_chunk_id,content,content_vector)
|
801 |
+
values (:workspace,:name,:entity_type,:description,:source_chunk_id,:content,:content_vector)
|
802 |
+
WHEN MATCHED THEN
|
803 |
+
UPDATE SET
|
804 |
+
entity_type=:entity_type,description=:description,source_chunk_id=:source_chunk_id,content=:content,content_vector=:content_vector,updatetime=SYSDATE""",
|
805 |
"merge_edge": """MERGE INTO LIGHTRAG_GRAPH_EDGES a
|
806 |
USING DUAL
|
807 |
+
ON (a.workspace=:workspace and a.source_name=:source_name and a.target_name=:target_name)
|
808 |
WHEN NOT MATCHED THEN
|
809 |
INSERT(workspace,source_name,target_name,weight,keywords,description,source_chunk_id,content,content_vector)
|
810 |
+
values (:workspace,:source_name,:target_name,:weight,:keywords,:description,:source_chunk_id,:content,:content_vector)
|
811 |
+
WHEN MATCHED THEN
|
812 |
+
UPDATE SET
|
813 |
+
weight=:weight,keywords=:keywords,description=:description,source_chunk_id=:source_chunk_id,content=:content,content_vector=:content_vector,updatetime=SYSDATE""",
|
814 |
"get_all_nodes": """WITH t0 AS (
|
815 |
SELECT name AS id, entity_type AS label, entity_type, description,
|
816 |
'["' || replace(source_chunk_id, '<SEP>', '","') || '"]' source_chunk_ids
|
lightrag/kg/postgres_impl.py
CHANGED
@@ -231,6 +231,16 @@ class PGKVStorage(BaseKVStorage):
|
|
231 |
else:
|
232 |
return None
|
233 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
234 |
async def filter_keys(self, keys: List[str]) -> Set[str]:
|
235 |
"""Filter out duplicated content"""
|
236 |
sql = SQL_TEMPLATES["filter_keys"].format(
|
@@ -412,7 +422,10 @@ class PGDocStatusStorage(DocStatusStorage):
|
|
412 |
|
413 |
async def filter_keys(self, data: list[str]) -> set[str]:
|
414 |
"""Return keys that don't exist in storage"""
|
415 |
-
|
|
|
|
|
|
|
416 |
result = await self.db.query(sql, {"workspace": self.db.workspace}, True)
|
417 |
# The result is like [{'id': 'id1'}, {'id': 'id2'}, ...].
|
418 |
if result is None:
|
|
|
231 |
else:
|
232 |
return None
|
233 |
|
234 |
+
async def all_keys(self) -> list[dict]:
|
235 |
+
if "llm_response_cache" == self.namespace:
|
236 |
+
sql = "select workspace,mode,id from lightrag_llm_cache"
|
237 |
+
res = await self.db.query(sql, multirows=True)
|
238 |
+
return res
|
239 |
+
else:
|
240 |
+
logger.error(
|
241 |
+
f"all_keys is only implemented for llm_response_cache, not for {self.namespace}"
|
242 |
+
)
|
243 |
+
|
244 |
async def filter_keys(self, keys: List[str]) -> Set[str]:
|
245 |
"""Filter out duplicated content"""
|
246 |
sql = SQL_TEMPLATES["filter_keys"].format(
|
|
|
422 |
|
423 |
async def filter_keys(self, data: list[str]) -> set[str]:
|
424 |
"""Return keys that don't exist in storage"""
|
425 |
+
keys = ",".join([f"'{_id}'" for _id in data])
|
426 |
+
sql = (
|
427 |
+
f"SELECT id FROM LIGHTRAG_DOC_STATUS WHERE workspace=$1 AND id IN ({keys})"
|
428 |
+
)
|
429 |
result = await self.db.query(sql, {"workspace": self.db.workspace}, True)
|
430 |
# The result is like [{'id': 'id1'}, {'id': 'id2'}, ...].
|
431 |
if result is None:
|
lightrag/lightrag.py
CHANGED
@@ -17,6 +17,8 @@ from .operate import (
|
|
17 |
kg_query,
|
18 |
naive_query,
|
19 |
mix_kg_vector_query,
|
|
|
|
|
20 |
)
|
21 |
|
22 |
from .utils import (
|
@@ -26,6 +28,7 @@ from .utils import (
|
|
26 |
convert_response_to_json,
|
27 |
logger,
|
28 |
set_logger,
|
|
|
29 |
)
|
30 |
from .base import (
|
31 |
BaseGraphStorage,
|
@@ -36,21 +39,30 @@ from .base import (
|
|
36 |
DocStatus,
|
37 |
)
|
38 |
|
39 |
-
from .storage import (
|
40 |
-
JsonKVStorage,
|
41 |
-
NanoVectorDBStorage,
|
42 |
-
NetworkXStorage,
|
43 |
-
JsonDocStatusStorage,
|
44 |
-
)
|
45 |
-
|
46 |
from .prompt import GRAPH_FIELD_SEP
|
47 |
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
|
56 |
def lazy_external_import(module_name: str, class_name: str):
|
@@ -66,34 +78,13 @@ def lazy_external_import(module_name: str, class_name: str):
|
|
66 |
def import_class(*args, **kwargs):
|
67 |
import importlib
|
68 |
|
69 |
-
# Import the module using importlib
|
70 |
module = importlib.import_module(module_name, package=package)
|
71 |
-
|
72 |
-
# Get the class from the module and instantiate it
|
73 |
cls = getattr(module, class_name)
|
74 |
return cls(*args, **kwargs)
|
75 |
|
76 |
return import_class
|
77 |
|
78 |
|
79 |
-
Neo4JStorage = lazy_external_import(".kg.neo4j_impl", "Neo4JStorage")
|
80 |
-
OracleKVStorage = lazy_external_import(".kg.oracle_impl", "OracleKVStorage")
|
81 |
-
OracleGraphStorage = lazy_external_import(".kg.oracle_impl", "OracleGraphStorage")
|
82 |
-
OracleVectorDBStorage = lazy_external_import(".kg.oracle_impl", "OracleVectorDBStorage")
|
83 |
-
MilvusVectorDBStorge = lazy_external_import(".kg.milvus_impl", "MilvusVectorDBStorge")
|
84 |
-
MongoKVStorage = lazy_external_import(".kg.mongo_impl", "MongoKVStorage")
|
85 |
-
ChromaVectorDBStorage = lazy_external_import(".kg.chroma_impl", "ChromaVectorDBStorage")
|
86 |
-
TiDBKVStorage = lazy_external_import(".kg.tidb_impl", "TiDBKVStorage")
|
87 |
-
TiDBVectorDBStorage = lazy_external_import(".kg.tidb_impl", "TiDBVectorDBStorage")
|
88 |
-
TiDBGraphStorage = lazy_external_import(".kg.tidb_impl", "TiDBGraphStorage")
|
89 |
-
PGKVStorage = lazy_external_import(".kg.postgres_impl", "PGKVStorage")
|
90 |
-
PGVectorStorage = lazy_external_import(".kg.postgres_impl", "PGVectorStorage")
|
91 |
-
AGEStorage = lazy_external_import(".kg.age_impl", "AGEStorage")
|
92 |
-
PGGraphStorage = lazy_external_import(".kg.postgres_impl", "PGGraphStorage")
|
93 |
-
GremlinStorage = lazy_external_import(".kg.gremlin_impl", "GremlinStorage")
|
94 |
-
PGDocStatusStorage = lazy_external_import(".kg.postgres_impl", "PGDocStatusStorage")
|
95 |
-
|
96 |
-
|
97 |
def always_get_an_event_loop() -> asyncio.AbstractEventLoop:
|
98 |
"""
|
99 |
Ensure that there is always an event loop available.
|
@@ -197,34 +188,51 @@ class LightRAG:
|
|
197 |
logger.setLevel(self.log_level)
|
198 |
|
199 |
logger.info(f"Logger initialized for working directory: {self.working_dir}")
|
|
|
|
|
|
|
200 |
|
201 |
-
|
|
|
|
|
202 |
logger.debug(f"LightRAG init with param:\n {_print_config}\n")
|
203 |
|
204 |
-
#
|
|
|
|
|
|
|
205 |
|
|
|
206 |
self.key_string_value_json_storage_cls: Type[BaseKVStorage] = (
|
207 |
-
self._get_storage_class(
|
208 |
)
|
209 |
-
self.vector_db_storage_cls: Type[BaseVectorStorage] = self._get_storage_class(
|
210 |
self.vector_storage
|
211 |
-
|
212 |
-
self.graph_storage_cls: Type[BaseGraphStorage] = self._get_storage_class(
|
213 |
self.graph_storage
|
214 |
-
|
215 |
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
|
220 |
-
self.
|
221 |
-
|
222 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
223 |
embedding_func=None,
|
224 |
)
|
225 |
|
226 |
-
self.
|
227 |
-
|
|
|
228 |
)
|
229 |
|
230 |
####
|
@@ -232,17 +240,14 @@ class LightRAG:
|
|
232 |
####
|
233 |
self.full_docs = self.key_string_value_json_storage_cls(
|
234 |
namespace="full_docs",
|
235 |
-
global_config=asdict(self),
|
236 |
embedding_func=self.embedding_func,
|
237 |
)
|
238 |
self.text_chunks = self.key_string_value_json_storage_cls(
|
239 |
namespace="text_chunks",
|
240 |
-
global_config=asdict(self),
|
241 |
embedding_func=self.embedding_func,
|
242 |
)
|
243 |
self.chunk_entity_relation_graph = self.graph_storage_cls(
|
244 |
namespace="chunk_entity_relation",
|
245 |
-
global_config=asdict(self),
|
246 |
embedding_func=self.embedding_func,
|
247 |
)
|
248 |
####
|
@@ -251,72 +256,69 @@ class LightRAG:
|
|
251 |
|
252 |
self.entities_vdb = self.vector_db_storage_cls(
|
253 |
namespace="entities",
|
254 |
-
global_config=asdict(self),
|
255 |
embedding_func=self.embedding_func,
|
256 |
meta_fields={"entity_name"},
|
257 |
)
|
258 |
self.relationships_vdb = self.vector_db_storage_cls(
|
259 |
namespace="relationships",
|
260 |
-
global_config=asdict(self),
|
261 |
embedding_func=self.embedding_func,
|
262 |
meta_fields={"src_id", "tgt_id"},
|
263 |
)
|
264 |
self.chunks_vdb = self.vector_db_storage_cls(
|
265 |
namespace="chunks",
|
266 |
-
global_config=asdict(self),
|
267 |
embedding_func=self.embedding_func,
|
268 |
)
|
269 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
270 |
self.llm_model_func = limit_async_func_call(self.llm_model_max_async)(
|
271 |
partial(
|
272 |
self.llm_model_func,
|
273 |
-
hashing_kv=
|
274 |
-
if self.llm_response_cache
|
275 |
-
and hasattr(self.llm_response_cache, "global_config")
|
276 |
-
else self.key_string_value_json_storage_cls(
|
277 |
-
namespace="llm_response_cache",
|
278 |
-
global_config=asdict(self),
|
279 |
-
embedding_func=None,
|
280 |
-
),
|
281 |
**self.llm_model_kwargs,
|
282 |
)
|
283 |
)
|
284 |
|
285 |
# Initialize document status storage
|
286 |
-
self.doc_status_storage_cls = self._get_storage_class(
|
287 |
self.doc_status = self.doc_status_storage_cls(
|
288 |
namespace="doc_status",
|
289 |
-
global_config=
|
290 |
embedding_func=None,
|
291 |
)
|
292 |
|
293 |
-
def _get_storage_class(self) -> dict:
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
# "ArangoDBStorage": ArangoDBStorage
|
318 |
-
"JsonDocStatusStorage": JsonDocStatusStorage,
|
319 |
-
}
|
320 |
|
321 |
def insert(
|
322 |
self, string_or_strings, split_by_character=None, split_by_character_only=False
|
@@ -538,6 +540,195 @@ class LightRAG:
|
|
538 |
if update_storage:
|
539 |
await self._insert_done()
|
540 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
541 |
async def _insert_done(self):
|
542 |
tasks = []
|
543 |
for storage_inst in [
|
@@ -753,6 +944,114 @@ class LightRAG:
|
|
753 |
await self._query_done()
|
754 |
return response
|
755 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
756 |
async def _query_done(self):
|
757 |
tasks = []
|
758 |
for storage_inst in [self.llm_response_cache]:
|
|
|
17 |
kg_query,
|
18 |
naive_query,
|
19 |
mix_kg_vector_query,
|
20 |
+
extract_keywords_only,
|
21 |
+
kg_query_with_keywords,
|
22 |
)
|
23 |
|
24 |
from .utils import (
|
|
|
28 |
convert_response_to_json,
|
29 |
logger,
|
30 |
set_logger,
|
31 |
+
statistic_data,
|
32 |
)
|
33 |
from .base import (
|
34 |
BaseGraphStorage,
|
|
|
39 |
DocStatus,
|
40 |
)
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
from .prompt import GRAPH_FIELD_SEP
|
43 |
|
44 |
+
STORAGES = {
|
45 |
+
"JsonKVStorage": ".storage",
|
46 |
+
"NanoVectorDBStorage": ".storage",
|
47 |
+
"NetworkXStorage": ".storage",
|
48 |
+
"JsonDocStatusStorage": ".storage",
|
49 |
+
"Neo4JStorage": ".kg.neo4j_impl",
|
50 |
+
"OracleKVStorage": ".kg.oracle_impl",
|
51 |
+
"OracleGraphStorage": ".kg.oracle_impl",
|
52 |
+
"OracleVectorDBStorage": ".kg.oracle_impl",
|
53 |
+
"MilvusVectorDBStorge": ".kg.milvus_impl",
|
54 |
+
"MongoKVStorage": ".kg.mongo_impl",
|
55 |
+
"ChromaVectorDBStorage": ".kg.chroma_impl",
|
56 |
+
"TiDBKVStorage": ".kg.tidb_impl",
|
57 |
+
"TiDBVectorDBStorage": ".kg.tidb_impl",
|
58 |
+
"TiDBGraphStorage": ".kg.tidb_impl",
|
59 |
+
"PGKVStorage": ".kg.postgres_impl",
|
60 |
+
"PGVectorStorage": ".kg.postgres_impl",
|
61 |
+
"AGEStorage": ".kg.age_impl",
|
62 |
+
"PGGraphStorage": ".kg.postgres_impl",
|
63 |
+
"GremlinStorage": ".kg.gremlin_impl",
|
64 |
+
"PGDocStatusStorage": ".kg.postgres_impl",
|
65 |
+
}
|
66 |
|
67 |
|
68 |
def lazy_external_import(module_name: str, class_name: str):
|
|
|
78 |
def import_class(*args, **kwargs):
|
79 |
import importlib
|
80 |
|
|
|
81 |
module = importlib.import_module(module_name, package=package)
|
|
|
|
|
82 |
cls = getattr(module, class_name)
|
83 |
return cls(*args, **kwargs)
|
84 |
|
85 |
return import_class
|
86 |
|
87 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
def always_get_an_event_loop() -> asyncio.AbstractEventLoop:
|
89 |
"""
|
90 |
Ensure that there is always an event loop available.
|
|
|
188 |
logger.setLevel(self.log_level)
|
189 |
|
190 |
logger.info(f"Logger initialized for working directory: {self.working_dir}")
|
191 |
+
if not os.path.exists(self.working_dir):
|
192 |
+
logger.info(f"Creating working directory {self.working_dir}")
|
193 |
+
os.makedirs(self.working_dir)
|
194 |
|
195 |
+
# show config
|
196 |
+
global_config = asdict(self)
|
197 |
+
_print_config = ",\n ".join([f"{k} = {v}" for k, v in global_config.items()])
|
198 |
logger.debug(f"LightRAG init with param:\n {_print_config}\n")
|
199 |
|
200 |
+
# Init LLM
|
201 |
+
self.embedding_func = limit_async_func_call(self.embedding_func_max_async)(
|
202 |
+
self.embedding_func
|
203 |
+
)
|
204 |
|
205 |
+
# Initialize all storages
|
206 |
self.key_string_value_json_storage_cls: Type[BaseKVStorage] = (
|
207 |
+
self._get_storage_class(self.kv_storage)
|
208 |
)
|
209 |
+
self.vector_db_storage_cls: Type[BaseVectorStorage] = self._get_storage_class(
|
210 |
self.vector_storage
|
211 |
+
)
|
212 |
+
self.graph_storage_cls: Type[BaseGraphStorage] = self._get_storage_class(
|
213 |
self.graph_storage
|
214 |
+
)
|
215 |
|
216 |
+
self.key_string_value_json_storage_cls = partial(
|
217 |
+
self.key_string_value_json_storage_cls, global_config=global_config
|
218 |
+
)
|
219 |
|
220 |
+
self.vector_db_storage_cls = partial(
|
221 |
+
self.vector_db_storage_cls, global_config=global_config
|
222 |
+
)
|
223 |
+
|
224 |
+
self.graph_storage_cls = partial(
|
225 |
+
self.graph_storage_cls, global_config=global_config
|
226 |
+
)
|
227 |
+
|
228 |
+
self.json_doc_status_storage = self.key_string_value_json_storage_cls(
|
229 |
+
namespace="json_doc_status_storage",
|
230 |
embedding_func=None,
|
231 |
)
|
232 |
|
233 |
+
self.llm_response_cache = self.key_string_value_json_storage_cls(
|
234 |
+
namespace="llm_response_cache",
|
235 |
+
embedding_func=None,
|
236 |
)
|
237 |
|
238 |
####
|
|
|
240 |
####
|
241 |
self.full_docs = self.key_string_value_json_storage_cls(
|
242 |
namespace="full_docs",
|
|
|
243 |
embedding_func=self.embedding_func,
|
244 |
)
|
245 |
self.text_chunks = self.key_string_value_json_storage_cls(
|
246 |
namespace="text_chunks",
|
|
|
247 |
embedding_func=self.embedding_func,
|
248 |
)
|
249 |
self.chunk_entity_relation_graph = self.graph_storage_cls(
|
250 |
namespace="chunk_entity_relation",
|
|
|
251 |
embedding_func=self.embedding_func,
|
252 |
)
|
253 |
####
|
|
|
256 |
|
257 |
self.entities_vdb = self.vector_db_storage_cls(
|
258 |
namespace="entities",
|
|
|
259 |
embedding_func=self.embedding_func,
|
260 |
meta_fields={"entity_name"},
|
261 |
)
|
262 |
self.relationships_vdb = self.vector_db_storage_cls(
|
263 |
namespace="relationships",
|
|
|
264 |
embedding_func=self.embedding_func,
|
265 |
meta_fields={"src_id", "tgt_id"},
|
266 |
)
|
267 |
self.chunks_vdb = self.vector_db_storage_cls(
|
268 |
namespace="chunks",
|
|
|
269 |
embedding_func=self.embedding_func,
|
270 |
)
|
271 |
|
272 |
+
if self.llm_response_cache and hasattr(
|
273 |
+
self.llm_response_cache, "global_config"
|
274 |
+
):
|
275 |
+
hashing_kv = self.llm_response_cache
|
276 |
+
else:
|
277 |
+
hashing_kv = self.key_string_value_json_storage_cls(
|
278 |
+
namespace="llm_response_cache",
|
279 |
+
embedding_func=None,
|
280 |
+
)
|
281 |
+
|
282 |
self.llm_model_func = limit_async_func_call(self.llm_model_max_async)(
|
283 |
partial(
|
284 |
self.llm_model_func,
|
285 |
+
hashing_kv=hashing_kv,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
286 |
**self.llm_model_kwargs,
|
287 |
)
|
288 |
)
|
289 |
|
290 |
# Initialize document status storage
|
291 |
+
self.doc_status_storage_cls = self._get_storage_class(self.doc_status_storage)
|
292 |
self.doc_status = self.doc_status_storage_cls(
|
293 |
namespace="doc_status",
|
294 |
+
global_config=global_config,
|
295 |
embedding_func=None,
|
296 |
)
|
297 |
|
298 |
+
def _get_storage_class(self, storage_name: str) -> dict:
|
299 |
+
import_path = STORAGES[storage_name]
|
300 |
+
storage_class = lazy_external_import(import_path, storage_name)
|
301 |
+
return storage_class
|
302 |
+
|
303 |
+
def set_storage_client(self, db_client):
|
304 |
+
# Now only tested on Oracle Database
|
305 |
+
for storage in [
|
306 |
+
self.vector_db_storage_cls,
|
307 |
+
self.graph_storage_cls,
|
308 |
+
self.doc_status,
|
309 |
+
self.full_docs,
|
310 |
+
self.text_chunks,
|
311 |
+
self.llm_response_cache,
|
312 |
+
self.key_string_value_json_storage_cls,
|
313 |
+
self.chunks_vdb,
|
314 |
+
self.relationships_vdb,
|
315 |
+
self.entities_vdb,
|
316 |
+
self.graph_storage_cls,
|
317 |
+
self.chunk_entity_relation_graph,
|
318 |
+
self.llm_response_cache,
|
319 |
+
]:
|
320 |
+
# set client
|
321 |
+
storage.db = db_client
|
|
|
|
|
|
|
322 |
|
323 |
def insert(
|
324 |
self, string_or_strings, split_by_character=None, split_by_character_only=False
|
|
|
540 |
if update_storage:
|
541 |
await self._insert_done()
|
542 |
|
543 |
+
async def apipeline_process_documents(self, string_or_strings):
|
544 |
+
"""Input list remove duplicates, generate document IDs and initial pendding status, filter out already stored documents, store docs
|
545 |
+
Args:
|
546 |
+
string_or_strings: Single document string or list of document strings
|
547 |
+
"""
|
548 |
+
if isinstance(string_or_strings, str):
|
549 |
+
string_or_strings = [string_or_strings]
|
550 |
+
|
551 |
+
# 1. Remove duplicate contents from the list
|
552 |
+
unique_contents = list(set(doc.strip() for doc in string_or_strings))
|
553 |
+
|
554 |
+
logger.info(
|
555 |
+
f"Received {len(string_or_strings)} docs, contains {len(unique_contents)} new unique documents"
|
556 |
+
)
|
557 |
+
|
558 |
+
# 2. Generate document IDs and initial status
|
559 |
+
new_docs = {
|
560 |
+
compute_mdhash_id(content, prefix="doc-"): {
|
561 |
+
"content": content,
|
562 |
+
"content_summary": self._get_content_summary(content),
|
563 |
+
"content_length": len(content),
|
564 |
+
"status": DocStatus.PENDING,
|
565 |
+
"created_at": datetime.now().isoformat(),
|
566 |
+
"updated_at": None,
|
567 |
+
}
|
568 |
+
for content in unique_contents
|
569 |
+
}
|
570 |
+
|
571 |
+
# 3. Filter out already processed documents
|
572 |
+
_not_stored_doc_keys = await self.full_docs.filter_keys(list(new_docs.keys()))
|
573 |
+
if len(_not_stored_doc_keys) < len(new_docs):
|
574 |
+
logger.info(
|
575 |
+
f"Skipping {len(new_docs)-len(_not_stored_doc_keys)} already existing documents"
|
576 |
+
)
|
577 |
+
new_docs = {k: v for k, v in new_docs.items() if k in _not_stored_doc_keys}
|
578 |
+
|
579 |
+
if not new_docs:
|
580 |
+
logger.info("All documents have been processed or are duplicates")
|
581 |
+
return None
|
582 |
+
|
583 |
+
# 4. Store original document
|
584 |
+
for doc_id, doc in new_docs.items():
|
585 |
+
await self.full_docs.upsert({doc_id: {"content": doc["content"]}})
|
586 |
+
await self.full_docs.change_status(doc_id, DocStatus.PENDING)
|
587 |
+
logger.info(f"Stored {len(new_docs)} new unique documents")
|
588 |
+
|
589 |
+
async def apipeline_process_chunks(self):
|
590 |
+
"""Get pendding documents, split into chunks,insert chunks"""
|
591 |
+
# 1. get all pending and failed documents
|
592 |
+
_todo_doc_keys = []
|
593 |
+
_failed_doc = await self.full_docs.get_by_status_and_ids(
|
594 |
+
status=DocStatus.FAILED, ids=None
|
595 |
+
)
|
596 |
+
_pendding_doc = await self.full_docs.get_by_status_and_ids(
|
597 |
+
status=DocStatus.PENDING, ids=None
|
598 |
+
)
|
599 |
+
if _failed_doc:
|
600 |
+
_todo_doc_keys.extend([doc["id"] for doc in _failed_doc])
|
601 |
+
if _pendding_doc:
|
602 |
+
_todo_doc_keys.extend([doc["id"] for doc in _pendding_doc])
|
603 |
+
if not _todo_doc_keys:
|
604 |
+
logger.info("All documents have been processed or are duplicates")
|
605 |
+
return None
|
606 |
+
else:
|
607 |
+
logger.info(f"Filtered out {len(_todo_doc_keys)} not processed documents")
|
608 |
+
|
609 |
+
new_docs = {
|
610 |
+
doc["id"]: doc for doc in await self.full_docs.get_by_ids(_todo_doc_keys)
|
611 |
+
}
|
612 |
+
|
613 |
+
# 2. split docs into chunks, insert chunks, update doc status
|
614 |
+
chunk_cnt = 0
|
615 |
+
batch_size = self.addon_params.get("insert_batch_size", 10)
|
616 |
+
for i in range(0, len(new_docs), batch_size):
|
617 |
+
batch_docs = dict(list(new_docs.items())[i : i + batch_size])
|
618 |
+
for doc_id, doc in tqdm_async(
|
619 |
+
batch_docs.items(),
|
620 |
+
desc=f"Level 1 - Spliting doc in batch {i//batch_size + 1}",
|
621 |
+
):
|
622 |
+
try:
|
623 |
+
# Generate chunks from document
|
624 |
+
chunks = {
|
625 |
+
compute_mdhash_id(dp["content"], prefix="chunk-"): {
|
626 |
+
**dp,
|
627 |
+
"full_doc_id": doc_id,
|
628 |
+
"status": DocStatus.PENDING,
|
629 |
+
}
|
630 |
+
for dp in chunking_by_token_size(
|
631 |
+
doc["content"],
|
632 |
+
overlap_token_size=self.chunk_overlap_token_size,
|
633 |
+
max_token_size=self.chunk_token_size,
|
634 |
+
tiktoken_model=self.tiktoken_model_name,
|
635 |
+
)
|
636 |
+
}
|
637 |
+
chunk_cnt += len(chunks)
|
638 |
+
await self.text_chunks.upsert(chunks)
|
639 |
+
await self.text_chunks.change_status(doc_id, DocStatus.PROCESSED)
|
640 |
+
|
641 |
+
try:
|
642 |
+
# Store chunks in vector database
|
643 |
+
await self.chunks_vdb.upsert(chunks)
|
644 |
+
# Update doc status
|
645 |
+
await self.full_docs.change_status(doc_id, DocStatus.PROCESSED)
|
646 |
+
except Exception as e:
|
647 |
+
# Mark as failed if any step fails
|
648 |
+
await self.full_docs.change_status(doc_id, DocStatus.FAILED)
|
649 |
+
raise e
|
650 |
+
except Exception as e:
|
651 |
+
import traceback
|
652 |
+
|
653 |
+
error_msg = f"Failed to process document {doc_id}: {str(e)}\n{traceback.format_exc()}"
|
654 |
+
logger.error(error_msg)
|
655 |
+
continue
|
656 |
+
logger.info(f"Stored {chunk_cnt} chunks from {len(new_docs)} documents")
|
657 |
+
|
658 |
+
async def apipeline_process_extract_graph(self):
|
659 |
+
"""Get pendding or failed chunks, extract entities and relationships from each chunk"""
|
660 |
+
# 1. get all pending and failed chunks
|
661 |
+
_todo_chunk_keys = []
|
662 |
+
_failed_chunks = await self.text_chunks.get_by_status_and_ids(
|
663 |
+
status=DocStatus.FAILED, ids=None
|
664 |
+
)
|
665 |
+
_pendding_chunks = await self.text_chunks.get_by_status_and_ids(
|
666 |
+
status=DocStatus.PENDING, ids=None
|
667 |
+
)
|
668 |
+
if _failed_chunks:
|
669 |
+
_todo_chunk_keys.extend([doc["id"] for doc in _failed_chunks])
|
670 |
+
if _pendding_chunks:
|
671 |
+
_todo_chunk_keys.extend([doc["id"] for doc in _pendding_chunks])
|
672 |
+
if not _todo_chunk_keys:
|
673 |
+
logger.info("All chunks have been processed or are duplicates")
|
674 |
+
return None
|
675 |
+
|
676 |
+
# Process documents in batches
|
677 |
+
batch_size = self.addon_params.get("insert_batch_size", 10)
|
678 |
+
|
679 |
+
semaphore = asyncio.Semaphore(
|
680 |
+
batch_size
|
681 |
+
) # Control the number of tasks that are processed simultaneously
|
682 |
+
|
683 |
+
async def process_chunk(chunk_id):
|
684 |
+
async with semaphore:
|
685 |
+
chunks = {
|
686 |
+
i["id"]: i for i in await self.text_chunks.get_by_ids([chunk_id])
|
687 |
+
}
|
688 |
+
# Extract and store entities and relationships
|
689 |
+
try:
|
690 |
+
maybe_new_kg = await extract_entities(
|
691 |
+
chunks,
|
692 |
+
knowledge_graph_inst=self.chunk_entity_relation_graph,
|
693 |
+
entity_vdb=self.entities_vdb,
|
694 |
+
relationships_vdb=self.relationships_vdb,
|
695 |
+
llm_response_cache=self.llm_response_cache,
|
696 |
+
global_config=asdict(self),
|
697 |
+
)
|
698 |
+
if maybe_new_kg is None:
|
699 |
+
logger.info("No entities or relationships extracted!")
|
700 |
+
# Update status to processed
|
701 |
+
await self.text_chunks.change_status(chunk_id, DocStatus.PROCESSED)
|
702 |
+
except Exception as e:
|
703 |
+
logger.error("Failed to extract entities and relationships")
|
704 |
+
# Mark as failed if any step fails
|
705 |
+
await self.text_chunks.change_status(chunk_id, DocStatus.FAILED)
|
706 |
+
raise e
|
707 |
+
|
708 |
+
with tqdm_async(
|
709 |
+
total=len(_todo_chunk_keys),
|
710 |
+
desc="\nLevel 1 - Processing chunks",
|
711 |
+
unit="chunk",
|
712 |
+
position=0,
|
713 |
+
) as progress:
|
714 |
+
tasks = []
|
715 |
+
for chunk_id in _todo_chunk_keys:
|
716 |
+
task = asyncio.create_task(process_chunk(chunk_id))
|
717 |
+
tasks.append(task)
|
718 |
+
|
719 |
+
for future in asyncio.as_completed(tasks):
|
720 |
+
await future
|
721 |
+
progress.update(1)
|
722 |
+
progress.set_postfix(
|
723 |
+
{
|
724 |
+
"LLM call": statistic_data["llm_call"],
|
725 |
+
"LLM cache": statistic_data["llm_cache"],
|
726 |
+
}
|
727 |
+
)
|
728 |
+
|
729 |
+
# Ensure all indexes are updated after each document
|
730 |
+
await self._insert_done()
|
731 |
+
|
732 |
async def _insert_done(self):
|
733 |
tasks = []
|
734 |
for storage_inst in [
|
|
|
944 |
await self._query_done()
|
945 |
return response
|
946 |
|
947 |
+
def query_with_separate_keyword_extraction(
|
948 |
+
self, query: str, prompt: str, param: QueryParam = QueryParam()
|
949 |
+
):
|
950 |
+
"""
|
951 |
+
1. Extract keywords from the 'query' using new function in operate.py.
|
952 |
+
2. Then run the standard aquery() flow with the final prompt (formatted_question).
|
953 |
+
"""
|
954 |
+
|
955 |
+
loop = always_get_an_event_loop()
|
956 |
+
return loop.run_until_complete(
|
957 |
+
self.aquery_with_separate_keyword_extraction(query, prompt, param)
|
958 |
+
)
|
959 |
+
|
960 |
+
async def aquery_with_separate_keyword_extraction(
|
961 |
+
self, query: str, prompt: str, param: QueryParam = QueryParam()
|
962 |
+
):
|
963 |
+
"""
|
964 |
+
1. Calls extract_keywords_only to get HL/LL keywords from 'query'.
|
965 |
+
2. Then calls kg_query(...) or naive_query(...), etc. as the main query, while also injecting the newly extracted keywords if needed.
|
966 |
+
"""
|
967 |
+
|
968 |
+
# ---------------------
|
969 |
+
# STEP 1: Keyword Extraction
|
970 |
+
# ---------------------
|
971 |
+
# We'll assume 'extract_keywords_only(...)' returns (hl_keywords, ll_keywords).
|
972 |
+
hl_keywords, ll_keywords = await extract_keywords_only(
|
973 |
+
text=query,
|
974 |
+
param=param,
|
975 |
+
global_config=asdict(self),
|
976 |
+
hashing_kv=self.llm_response_cache
|
977 |
+
or self.key_string_value_json_storage_cls(
|
978 |
+
namespace="llm_response_cache",
|
979 |
+
global_config=asdict(self),
|
980 |
+
embedding_func=None,
|
981 |
+
),
|
982 |
+
)
|
983 |
+
|
984 |
+
param.hl_keywords = (hl_keywords,)
|
985 |
+
param.ll_keywords = (ll_keywords,)
|
986 |
+
|
987 |
+
# ---------------------
|
988 |
+
# STEP 2: Final Query Logic
|
989 |
+
# ---------------------
|
990 |
+
|
991 |
+
# Create a new string with the prompt and the keywords
|
992 |
+
ll_keywords_str = ", ".join(ll_keywords)
|
993 |
+
hl_keywords_str = ", ".join(hl_keywords)
|
994 |
+
formatted_question = f"{prompt}\n\n### Keywords:\nHigh-level: {hl_keywords_str}\nLow-level: {ll_keywords_str}\n\n### Query:\n{query}"
|
995 |
+
|
996 |
+
if param.mode in ["local", "global", "hybrid"]:
|
997 |
+
response = await kg_query_with_keywords(
|
998 |
+
formatted_question,
|
999 |
+
self.chunk_entity_relation_graph,
|
1000 |
+
self.entities_vdb,
|
1001 |
+
self.relationships_vdb,
|
1002 |
+
self.text_chunks,
|
1003 |
+
param,
|
1004 |
+
asdict(self),
|
1005 |
+
hashing_kv=self.llm_response_cache
|
1006 |
+
if self.llm_response_cache
|
1007 |
+
and hasattr(self.llm_response_cache, "global_config")
|
1008 |
+
else self.key_string_value_json_storage_cls(
|
1009 |
+
namespace="llm_response_cache",
|
1010 |
+
global_config=asdict(self),
|
1011 |
+
embedding_func=None,
|
1012 |
+
),
|
1013 |
+
)
|
1014 |
+
elif param.mode == "naive":
|
1015 |
+
response = await naive_query(
|
1016 |
+
formatted_question,
|
1017 |
+
self.chunks_vdb,
|
1018 |
+
self.text_chunks,
|
1019 |
+
param,
|
1020 |
+
asdict(self),
|
1021 |
+
hashing_kv=self.llm_response_cache
|
1022 |
+
if self.llm_response_cache
|
1023 |
+
and hasattr(self.llm_response_cache, "global_config")
|
1024 |
+
else self.key_string_value_json_storage_cls(
|
1025 |
+
namespace="llm_response_cache",
|
1026 |
+
global_config=asdict(self),
|
1027 |
+
embedding_func=None,
|
1028 |
+
),
|
1029 |
+
)
|
1030 |
+
elif param.mode == "mix":
|
1031 |
+
response = await mix_kg_vector_query(
|
1032 |
+
formatted_question,
|
1033 |
+
self.chunk_entity_relation_graph,
|
1034 |
+
self.entities_vdb,
|
1035 |
+
self.relationships_vdb,
|
1036 |
+
self.chunks_vdb,
|
1037 |
+
self.text_chunks,
|
1038 |
+
param,
|
1039 |
+
asdict(self),
|
1040 |
+
hashing_kv=self.llm_response_cache
|
1041 |
+
if self.llm_response_cache
|
1042 |
+
and hasattr(self.llm_response_cache, "global_config")
|
1043 |
+
else self.key_string_value_json_storage_cls(
|
1044 |
+
namespace="llm_response_cache",
|
1045 |
+
global_config=asdict(self),
|
1046 |
+
embedding_func=None,
|
1047 |
+
),
|
1048 |
+
)
|
1049 |
+
else:
|
1050 |
+
raise ValueError(f"Unknown mode {param.mode}")
|
1051 |
+
|
1052 |
+
await self._query_done()
|
1053 |
+
return response
|
1054 |
+
|
1055 |
async def _query_done(self):
|
1056 |
tasks = []
|
1057 |
for storage_inst in [self.llm_response_cache]:
|
lightrag/operate.py
CHANGED
@@ -20,6 +20,7 @@ from .utils import (
|
|
20 |
handle_cache,
|
21 |
save_to_cache,
|
22 |
CacheData,
|
|
|
23 |
)
|
24 |
from .base import (
|
25 |
BaseGraphStorage,
|
@@ -96,6 +97,10 @@ async def _handle_entity_relation_summary(
|
|
96 |
description: str,
|
97 |
global_config: dict,
|
98 |
) -> str:
|
|
|
|
|
|
|
|
|
99 |
use_llm_func: callable = global_config["llm_model_func"]
|
100 |
llm_max_tokens = global_config["llm_model_max_token_size"]
|
101 |
tiktoken_model_name = global_config["tiktoken_model_name"]
|
@@ -176,6 +181,7 @@ async def _merge_nodes_then_upsert(
|
|
176 |
knowledge_graph_inst: BaseGraphStorage,
|
177 |
global_config: dict,
|
178 |
):
|
|
|
179 |
already_entity_types = []
|
180 |
already_source_ids = []
|
181 |
already_description = []
|
@@ -356,7 +362,7 @@ async def extract_entities(
|
|
356 |
llm_response_cache.global_config = new_config
|
357 |
need_to_restore = True
|
358 |
if history_messages:
|
359 |
-
history = json.dumps(history_messages)
|
360 |
_prompt = history + "\n" + input_text
|
361 |
else:
|
362 |
_prompt = input_text
|
@@ -368,8 +374,10 @@ async def extract_entities(
|
|
368 |
if need_to_restore:
|
369 |
llm_response_cache.global_config = global_config
|
370 |
if cached_return:
|
|
|
|
|
371 |
return cached_return
|
372 |
-
|
373 |
if history_messages:
|
374 |
res: str = await use_llm_func(
|
375 |
input_text, history_messages=history_messages
|
@@ -388,6 +396,11 @@ async def extract_entities(
|
|
388 |
return await use_llm_func(input_text)
|
389 |
|
390 |
async def _process_single_content(chunk_key_dp: tuple[str, TextChunkSchema]):
|
|
|
|
|
|
|
|
|
|
|
391 |
nonlocal already_processed, already_entities, already_relations
|
392 |
chunk_key = chunk_key_dp[0]
|
393 |
chunk_dp = chunk_key_dp[1]
|
@@ -451,10 +464,8 @@ async def extract_entities(
|
|
451 |
now_ticks = PROMPTS["process_tickers"][
|
452 |
already_processed % len(PROMPTS["process_tickers"])
|
453 |
]
|
454 |
-
|
455 |
f"{now_ticks} Processed {already_processed} chunks, {already_entities} entities(duplicated), {already_relations} relations(duplicated)\r",
|
456 |
-
end="",
|
457 |
-
flush=True,
|
458 |
)
|
459 |
return dict(maybe_nodes), dict(maybe_edges)
|
460 |
|
@@ -462,8 +473,10 @@ async def extract_entities(
|
|
462 |
for result in tqdm_async(
|
463 |
asyncio.as_completed([_process_single_content(c) for c in ordered_chunks]),
|
464 |
total=len(ordered_chunks),
|
465 |
-
desc="Extracting entities
|
466 |
unit="chunk",
|
|
|
|
|
467 |
):
|
468 |
results.append(await result)
|
469 |
|
@@ -474,7 +487,7 @@ async def extract_entities(
|
|
474 |
maybe_nodes[k].extend(v)
|
475 |
for k, v in m_edges.items():
|
476 |
maybe_edges[tuple(sorted(k))].extend(v)
|
477 |
-
logger.
|
478 |
all_entities_data = []
|
479 |
for result in tqdm_async(
|
480 |
asyncio.as_completed(
|
@@ -484,12 +497,14 @@ async def extract_entities(
|
|
484 |
]
|
485 |
),
|
486 |
total=len(maybe_nodes),
|
487 |
-
desc="Inserting entities",
|
488 |
unit="entity",
|
|
|
|
|
489 |
):
|
490 |
all_entities_data.append(await result)
|
491 |
|
492 |
-
logger.
|
493 |
all_relationships_data = []
|
494 |
for result in tqdm_async(
|
495 |
asyncio.as_completed(
|
@@ -501,8 +516,10 @@ async def extract_entities(
|
|
501 |
]
|
502 |
),
|
503 |
total=len(maybe_edges),
|
504 |
-
desc="Inserting relationships",
|
505 |
unit="relationship",
|
|
|
|
|
506 |
):
|
507 |
all_relationships_data.append(await result)
|
508 |
|
@@ -681,6 +698,219 @@ async def kg_query(
|
|
681 |
return response
|
682 |
|
683 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
684 |
async def _build_query_context(
|
685 |
query: list,
|
686 |
knowledge_graph_inst: BaseGraphStorage,
|
|
|
20 |
handle_cache,
|
21 |
save_to_cache,
|
22 |
CacheData,
|
23 |
+
statistic_data,
|
24 |
)
|
25 |
from .base import (
|
26 |
BaseGraphStorage,
|
|
|
97 |
description: str,
|
98 |
global_config: dict,
|
99 |
) -> str:
|
100 |
+
"""Handle entity relation summary
|
101 |
+
For each entity or relation, input is the combined description of already existing description and new description.
|
102 |
+
If too long, use LLM to summarize.
|
103 |
+
"""
|
104 |
use_llm_func: callable = global_config["llm_model_func"]
|
105 |
llm_max_tokens = global_config["llm_model_max_token_size"]
|
106 |
tiktoken_model_name = global_config["tiktoken_model_name"]
|
|
|
181 |
knowledge_graph_inst: BaseGraphStorage,
|
182 |
global_config: dict,
|
183 |
):
|
184 |
+
"""Get existing nodes from knowledge graph use name,if exists, merge data, else create, then upsert."""
|
185 |
already_entity_types = []
|
186 |
already_source_ids = []
|
187 |
already_description = []
|
|
|
362 |
llm_response_cache.global_config = new_config
|
363 |
need_to_restore = True
|
364 |
if history_messages:
|
365 |
+
history = json.dumps(history_messages, ensure_ascii=False)
|
366 |
_prompt = history + "\n" + input_text
|
367 |
else:
|
368 |
_prompt = input_text
|
|
|
374 |
if need_to_restore:
|
375 |
llm_response_cache.global_config = global_config
|
376 |
if cached_return:
|
377 |
+
logger.debug(f"Found cache for {arg_hash}")
|
378 |
+
statistic_data["llm_cache"] += 1
|
379 |
return cached_return
|
380 |
+
statistic_data["llm_call"] += 1
|
381 |
if history_messages:
|
382 |
res: str = await use_llm_func(
|
383 |
input_text, history_messages=history_messages
|
|
|
396 |
return await use_llm_func(input_text)
|
397 |
|
398 |
async def _process_single_content(chunk_key_dp: tuple[str, TextChunkSchema]):
|
399 |
+
""" "Prpocess a single chunk
|
400 |
+
Args:
|
401 |
+
chunk_key_dp (tuple[str, TextChunkSchema]):
|
402 |
+
("chunck-xxxxxx", {"tokens": int, "content": str, "full_doc_id": str, "chunk_order_index": int})
|
403 |
+
"""
|
404 |
nonlocal already_processed, already_entities, already_relations
|
405 |
chunk_key = chunk_key_dp[0]
|
406 |
chunk_dp = chunk_key_dp[1]
|
|
|
464 |
now_ticks = PROMPTS["process_tickers"][
|
465 |
already_processed % len(PROMPTS["process_tickers"])
|
466 |
]
|
467 |
+
logger.debug(
|
468 |
f"{now_ticks} Processed {already_processed} chunks, {already_entities} entities(duplicated), {already_relations} relations(duplicated)\r",
|
|
|
|
|
469 |
)
|
470 |
return dict(maybe_nodes), dict(maybe_edges)
|
471 |
|
|
|
473 |
for result in tqdm_async(
|
474 |
asyncio.as_completed([_process_single_content(c) for c in ordered_chunks]),
|
475 |
total=len(ordered_chunks),
|
476 |
+
desc="Level 2 - Extracting entities and relationships",
|
477 |
unit="chunk",
|
478 |
+
position=1,
|
479 |
+
leave=False,
|
480 |
):
|
481 |
results.append(await result)
|
482 |
|
|
|
487 |
maybe_nodes[k].extend(v)
|
488 |
for k, v in m_edges.items():
|
489 |
maybe_edges[tuple(sorted(k))].extend(v)
|
490 |
+
logger.debug("Inserting entities into storage...")
|
491 |
all_entities_data = []
|
492 |
for result in tqdm_async(
|
493 |
asyncio.as_completed(
|
|
|
497 |
]
|
498 |
),
|
499 |
total=len(maybe_nodes),
|
500 |
+
desc="Level 3 - Inserting entities",
|
501 |
unit="entity",
|
502 |
+
position=2,
|
503 |
+
leave=False,
|
504 |
):
|
505 |
all_entities_data.append(await result)
|
506 |
|
507 |
+
logger.debug("Inserting relationships into storage...")
|
508 |
all_relationships_data = []
|
509 |
for result in tqdm_async(
|
510 |
asyncio.as_completed(
|
|
|
516 |
]
|
517 |
),
|
518 |
total=len(maybe_edges),
|
519 |
+
desc="Level 3 - Inserting relationships",
|
520 |
unit="relationship",
|
521 |
+
position=3,
|
522 |
+
leave=False,
|
523 |
):
|
524 |
all_relationships_data.append(await result)
|
525 |
|
|
|
698 |
return response
|
699 |
|
700 |
|
701 |
+
async def kg_query_with_keywords(
|
702 |
+
query: str,
|
703 |
+
knowledge_graph_inst: BaseGraphStorage,
|
704 |
+
entities_vdb: BaseVectorStorage,
|
705 |
+
relationships_vdb: BaseVectorStorage,
|
706 |
+
text_chunks_db: BaseKVStorage[TextChunkSchema],
|
707 |
+
query_param: QueryParam,
|
708 |
+
global_config: dict,
|
709 |
+
hashing_kv: BaseKVStorage = None,
|
710 |
+
) -> str:
|
711 |
+
"""
|
712 |
+
Refactored kg_query that does NOT extract keywords by itself.
|
713 |
+
It expects hl_keywords and ll_keywords to be set in query_param, or defaults to empty.
|
714 |
+
Then it uses those to build context and produce a final LLM response.
|
715 |
+
"""
|
716 |
+
|
717 |
+
# ---------------------------
|
718 |
+
# 0) Handle potential cache
|
719 |
+
# ---------------------------
|
720 |
+
use_model_func = global_config["llm_model_func"]
|
721 |
+
args_hash = compute_args_hash(query_param.mode, query)
|
722 |
+
cached_response, quantized, min_val, max_val = await handle_cache(
|
723 |
+
hashing_kv, args_hash, query, query_param.mode
|
724 |
+
)
|
725 |
+
if cached_response is not None:
|
726 |
+
return cached_response
|
727 |
+
|
728 |
+
# ---------------------------
|
729 |
+
# 1) RETRIEVE KEYWORDS FROM query_param
|
730 |
+
# ---------------------------
|
731 |
+
|
732 |
+
# If these fields don't exist, default to empty lists/strings.
|
733 |
+
hl_keywords = getattr(query_param, "hl_keywords", []) or []
|
734 |
+
ll_keywords = getattr(query_param, "ll_keywords", []) or []
|
735 |
+
|
736 |
+
# If neither has any keywords, you could handle that logic here.
|
737 |
+
if not hl_keywords and not ll_keywords:
|
738 |
+
logger.warning(
|
739 |
+
"No keywords found in query_param. Could default to global mode or fail."
|
740 |
+
)
|
741 |
+
return PROMPTS["fail_response"]
|
742 |
+
if not ll_keywords and query_param.mode in ["local", "hybrid"]:
|
743 |
+
logger.warning("low_level_keywords is empty, switching to global mode.")
|
744 |
+
query_param.mode = "global"
|
745 |
+
if not hl_keywords and query_param.mode in ["global", "hybrid"]:
|
746 |
+
logger.warning("high_level_keywords is empty, switching to local mode.")
|
747 |
+
query_param.mode = "local"
|
748 |
+
|
749 |
+
# Flatten low-level and high-level keywords if needed
|
750 |
+
ll_keywords_flat = (
|
751 |
+
[item for sublist in ll_keywords for item in sublist]
|
752 |
+
if any(isinstance(i, list) for i in ll_keywords)
|
753 |
+
else ll_keywords
|
754 |
+
)
|
755 |
+
hl_keywords_flat = (
|
756 |
+
[item for sublist in hl_keywords for item in sublist]
|
757 |
+
if any(isinstance(i, list) for i in hl_keywords)
|
758 |
+
else hl_keywords
|
759 |
+
)
|
760 |
+
|
761 |
+
# Join the flattened lists
|
762 |
+
ll_keywords_str = ", ".join(ll_keywords_flat) if ll_keywords_flat else ""
|
763 |
+
hl_keywords_str = ", ".join(hl_keywords_flat) if hl_keywords_flat else ""
|
764 |
+
|
765 |
+
keywords = [ll_keywords_str, hl_keywords_str]
|
766 |
+
|
767 |
+
logger.info("Using %s mode for query processing", query_param.mode)
|
768 |
+
|
769 |
+
# ---------------------------
|
770 |
+
# 2) BUILD CONTEXT
|
771 |
+
# ---------------------------
|
772 |
+
context = await _build_query_context(
|
773 |
+
keywords,
|
774 |
+
knowledge_graph_inst,
|
775 |
+
entities_vdb,
|
776 |
+
relationships_vdb,
|
777 |
+
text_chunks_db,
|
778 |
+
query_param,
|
779 |
+
)
|
780 |
+
if not context:
|
781 |
+
return PROMPTS["fail_response"]
|
782 |
+
|
783 |
+
# If only context is needed, return it
|
784 |
+
if query_param.only_need_context:
|
785 |
+
return context
|
786 |
+
|
787 |
+
# ---------------------------
|
788 |
+
# 3) BUILD THE SYSTEM PROMPT + CALL LLM
|
789 |
+
# ---------------------------
|
790 |
+
sys_prompt_temp = PROMPTS["rag_response"]
|
791 |
+
sys_prompt = sys_prompt_temp.format(
|
792 |
+
context_data=context, response_type=query_param.response_type
|
793 |
+
)
|
794 |
+
|
795 |
+
if query_param.only_need_prompt:
|
796 |
+
return sys_prompt
|
797 |
+
|
798 |
+
# Now call the LLM with the final system prompt
|
799 |
+
response = await use_model_func(
|
800 |
+
query,
|
801 |
+
system_prompt=sys_prompt,
|
802 |
+
stream=query_param.stream,
|
803 |
+
)
|
804 |
+
|
805 |
+
# Clean up the response
|
806 |
+
if isinstance(response, str) and len(response) > len(sys_prompt):
|
807 |
+
response = (
|
808 |
+
response.replace(sys_prompt, "")
|
809 |
+
.replace("user", "")
|
810 |
+
.replace("model", "")
|
811 |
+
.replace(query, "")
|
812 |
+
.replace("<system>", "")
|
813 |
+
.replace("</system>", "")
|
814 |
+
.strip()
|
815 |
+
)
|
816 |
+
|
817 |
+
# ---------------------------
|
818 |
+
# 4) SAVE TO CACHE
|
819 |
+
# ---------------------------
|
820 |
+
await save_to_cache(
|
821 |
+
hashing_kv,
|
822 |
+
CacheData(
|
823 |
+
args_hash=args_hash,
|
824 |
+
content=response,
|
825 |
+
prompt=query,
|
826 |
+
quantized=quantized,
|
827 |
+
min_val=min_val,
|
828 |
+
max_val=max_val,
|
829 |
+
mode=query_param.mode,
|
830 |
+
),
|
831 |
+
)
|
832 |
+
return response
|
833 |
+
|
834 |
+
|
835 |
+
async def extract_keywords_only(
|
836 |
+
text: str,
|
837 |
+
param: QueryParam,
|
838 |
+
global_config: dict,
|
839 |
+
hashing_kv: BaseKVStorage = None,
|
840 |
+
) -> tuple[list[str], list[str]]:
|
841 |
+
"""
|
842 |
+
Extract high-level and low-level keywords from the given 'text' using the LLM.
|
843 |
+
This method does NOT build the final RAG context or provide a final answer.
|
844 |
+
It ONLY extracts keywords (hl_keywords, ll_keywords).
|
845 |
+
"""
|
846 |
+
|
847 |
+
# 1. Handle cache if needed
|
848 |
+
args_hash = compute_args_hash(param.mode, text)
|
849 |
+
cached_response, quantized, min_val, max_val = await handle_cache(
|
850 |
+
hashing_kv, args_hash, text, param.mode
|
851 |
+
)
|
852 |
+
if cached_response is not None:
|
853 |
+
# parse the cached_response if it’s JSON containing keywords
|
854 |
+
# or simply return (hl_keywords, ll_keywords) from cached
|
855 |
+
# Assuming cached_response is in the same JSON structure:
|
856 |
+
match = re.search(r"\{.*\}", cached_response, re.DOTALL)
|
857 |
+
if match:
|
858 |
+
keywords_data = json.loads(match.group(0))
|
859 |
+
hl_keywords = keywords_data.get("high_level_keywords", [])
|
860 |
+
ll_keywords = keywords_data.get("low_level_keywords", [])
|
861 |
+
return hl_keywords, ll_keywords
|
862 |
+
return [], []
|
863 |
+
|
864 |
+
# 2. Build the examples
|
865 |
+
example_number = global_config["addon_params"].get("example_number", None)
|
866 |
+
if example_number and example_number < len(PROMPTS["keywords_extraction_examples"]):
|
867 |
+
examples = "\n".join(
|
868 |
+
PROMPTS["keywords_extraction_examples"][: int(example_number)]
|
869 |
+
)
|
870 |
+
else:
|
871 |
+
examples = "\n".join(PROMPTS["keywords_extraction_examples"])
|
872 |
+
language = global_config["addon_params"].get(
|
873 |
+
"language", PROMPTS["DEFAULT_LANGUAGE"]
|
874 |
+
)
|
875 |
+
|
876 |
+
# 3. Build the keyword-extraction prompt
|
877 |
+
kw_prompt_temp = PROMPTS["keywords_extraction"]
|
878 |
+
kw_prompt = kw_prompt_temp.format(query=text, examples=examples, language=language)
|
879 |
+
|
880 |
+
# 4. Call the LLM for keyword extraction
|
881 |
+
use_model_func = global_config["llm_model_func"]
|
882 |
+
result = await use_model_func(kw_prompt, keyword_extraction=True)
|
883 |
+
|
884 |
+
# 5. Parse out JSON from the LLM response
|
885 |
+
match = re.search(r"\{.*\}", result, re.DOTALL)
|
886 |
+
if not match:
|
887 |
+
logger.error("No JSON-like structure found in the result.")
|
888 |
+
return [], []
|
889 |
+
try:
|
890 |
+
keywords_data = json.loads(match.group(0))
|
891 |
+
except json.JSONDecodeError as e:
|
892 |
+
logger.error(f"JSON parsing error: {e}")
|
893 |
+
return [], []
|
894 |
+
|
895 |
+
hl_keywords = keywords_data.get("high_level_keywords", [])
|
896 |
+
ll_keywords = keywords_data.get("low_level_keywords", [])
|
897 |
+
|
898 |
+
# 6. Cache the result if needed
|
899 |
+
await save_to_cache(
|
900 |
+
hashing_kv,
|
901 |
+
CacheData(
|
902 |
+
args_hash=args_hash,
|
903 |
+
content=result,
|
904 |
+
prompt=text,
|
905 |
+
quantized=quantized,
|
906 |
+
min_val=min_val,
|
907 |
+
max_val=max_val,
|
908 |
+
mode=param.mode,
|
909 |
+
),
|
910 |
+
)
|
911 |
+
return hl_keywords, ll_keywords
|
912 |
+
|
913 |
+
|
914 |
async def _build_query_context(
|
915 |
query: list,
|
916 |
knowledge_graph_inst: BaseGraphStorage,
|
lightrag/utils.py
CHANGED
@@ -30,13 +30,18 @@ class UnlimitedSemaphore:
|
|
30 |
|
31 |
ENCODER = None
|
32 |
|
|
|
|
|
33 |
logger = logging.getLogger("lightrag")
|
34 |
|
|
|
|
|
|
|
35 |
|
36 |
def set_logger(log_file: str):
|
37 |
logger.setLevel(logging.DEBUG)
|
38 |
|
39 |
-
file_handler = logging.FileHandler(log_file)
|
40 |
file_handler.setLevel(logging.DEBUG)
|
41 |
|
42 |
formatter = logging.Formatter(
|
@@ -453,7 +458,8 @@ async def handle_cache(hashing_kv, args_hash, prompt, mode="default"):
|
|
453 |
return None, None, None, None
|
454 |
|
455 |
# For naive mode, only use simple cache matching
|
456 |
-
if mode == "naive":
|
|
|
457 |
if exists_func(hashing_kv, "get_by_mode_and_id"):
|
458 |
mode_cache = await hashing_kv.get_by_mode_and_id(mode, args_hash) or {}
|
459 |
else:
|
@@ -473,7 +479,9 @@ async def handle_cache(hashing_kv, args_hash, prompt, mode="default"):
|
|
473 |
quantized = min_val = max_val = None
|
474 |
if is_embedding_cache_enabled:
|
475 |
# Use embedding cache
|
476 |
-
embedding_model_func = hashing_kv.global_config[
|
|
|
|
|
477 |
llm_model_func = hashing_kv.global_config.get("llm_model_func")
|
478 |
|
479 |
current_embedding = await embedding_model_func([prompt])
|
|
|
30 |
|
31 |
ENCODER = None
|
32 |
|
33 |
+
statistic_data = {"llm_call": 0, "llm_cache": 0, "embed_call": 0}
|
34 |
+
|
35 |
logger = logging.getLogger("lightrag")
|
36 |
|
37 |
+
# Set httpx logging level to WARNING
|
38 |
+
logging.getLogger("httpx").setLevel(logging.WARNING)
|
39 |
+
|
40 |
|
41 |
def set_logger(log_file: str):
|
42 |
logger.setLevel(logging.DEBUG)
|
43 |
|
44 |
+
file_handler = logging.FileHandler(log_file, encoding="utf-8")
|
45 |
file_handler.setLevel(logging.DEBUG)
|
46 |
|
47 |
formatter = logging.Formatter(
|
|
|
458 |
return None, None, None, None
|
459 |
|
460 |
# For naive mode, only use simple cache matching
|
461 |
+
# if mode == "naive":
|
462 |
+
if mode == "default":
|
463 |
if exists_func(hashing_kv, "get_by_mode_and_id"):
|
464 |
mode_cache = await hashing_kv.get_by_mode_and_id(mode, args_hash) or {}
|
465 |
else:
|
|
|
479 |
quantized = min_val = max_val = None
|
480 |
if is_embedding_cache_enabled:
|
481 |
# Use embedding cache
|
482 |
+
embedding_model_func = hashing_kv.global_config[
|
483 |
+
"embedding_func"
|
484 |
+
].func # ["func"]
|
485 |
llm_model_func = hashing_kv.global_config.get("llm_model_func")
|
486 |
|
487 |
current_embedding = await embedding_model_func([prompt])
|